डी रम कोहोलॉजी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Cohomology with real coefficients computed using differential forms}} | {{Short description|Cohomology with real coefficients computed using differential forms}} | ||
{{for|Grothendieck's de Rham cohomology of varieties|algebraic de Rham cohomology}} | {{for|Grothendieck's de Rham cohomology of varieties|algebraic de Rham cohomology}} | ||
[[File:Irrotationalfield.svg|thumb|सदिश क्षेत्र पंक्चर किए गए विमान पर एक विभेदक रूप से संबंधित है जो बंद है | [[File:Irrotationalfield.svg|thumb|सदिश क्षेत्र पंक्चर किए गए विमान पर एक विभेदक रूप से संबंधित है जो बंद है किन्तु सटीक नहीं है, यह दर्शाता है कि इस स्थान का डे रम कोहोलॉजी गैर-तुच्छ है।]]गणित में, डी रहम कोहोलॉजी (जॉर्ज डी रम के नाम पर) [[बीजगणितीय टोपोलॉजी]] और विभेदक टोपोलॉजी दोनों से संबंधित एक उपकरण है, जो विशेष रूप से संगणना और [[कोहोलॉजी वर्ग]] के ठोस प्रतिनिधित्व के लिए अनुकूल रूप में चिकनी कई गुना के बारे में बुनियादी टोपोलॉजिकल जानकारी व्यक्त करने में सक्षम है। यह निर्धारित गुणों के साथ [[विभेदक रूप]]ों के अस्तित्व पर आधारित एक [[कोहोलॉजी सिद्धांत]] है। | ||
किसी भी चिकनी कई गुना पर, प्रत्येक [[बंद और सटीक अंतर रूप]] बंद हो जाते हैं, | किसी भी चिकनी कई गुना पर, प्रत्येक [[बंद और सटीक अंतर रूप]] बंद हो जाते हैं, किन्तु बातचीत पकड़ में विफल हो सकती है। मोटे तौर पर कहा जाए तो यह असफलता होल#इन [[अंक शास्त्र]] के संभावित अस्तित्व से संबंधित [[चिकना कई गुना]] में छेद, और डी रम कोहोलॉजी समूह में चिकनी मैनिफोल्ड के [[टोपोलॉजिकल इनवेरिएंट]] का एक सेट सम्मिलित होता है जो इस संबंध को सटीक रूप से निर्धारित करता है।{{sfn|Lee|2013|p=440}} | ||
{{Quote frame|text=The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of ''cohomology'', namely ''de Rham cohomology'', which (roughly speaking) measures precisely the extent to which the [[fundamental theorem of calculus]] fails in higher dimensions and on general manifolds. | {{Quote frame|text=The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of ''cohomology'', namely ''de Rham cohomology'', which (roughly speaking) measures precisely the extent to which the [[fundamental theorem of calculus]] fails in higher dimensions and on general manifolds. | ||
Line 14: | Line 14: | ||
कहाँ {{math|Ω<sup>0</sup>(''M'')}} [[चिकनाई]] का स्थान है {{mvar|M}}, {{math|Ω<sup>1</sup>(''M'')}} का स्थान है {{math|1}}-रूप आदि। ऐसे प्रपत्र जो बाहरी डेरिवेटिव के अंतर्गत अन्य रूपों की छवि हैं, साथ ही स्थिरांक भी {{math|0}} में कार्य करता है {{math|Ω<sup>0</sup>(''M'')}}, यथार्थ और रूप कहलाते हैं जिनकी बाह्य व्युत्पत्ति होती है {{math|0}} को बंद कहा जाता है (''बंद और सटीक अंतर रूप'' देखें); का रिश्ता {{math|''d''{{i sup|2}} {{=}} 0}} फिर कहता है कि सटीक फॉर्म बंद हैं। | कहाँ {{math|Ω<sup>0</sup>(''M'')}} [[चिकनाई]] का स्थान है {{mvar|M}}, {{math|Ω<sup>1</sup>(''M'')}} का स्थान है {{math|1}}-रूप आदि। ऐसे प्रपत्र जो बाहरी डेरिवेटिव के अंतर्गत अन्य रूपों की छवि हैं, साथ ही स्थिरांक भी {{math|0}} में कार्य करता है {{math|Ω<sup>0</sup>(''M'')}}, यथार्थ और रूप कहलाते हैं जिनकी बाह्य व्युत्पत्ति होती है {{math|0}} को बंद कहा जाता है (''बंद और सटीक अंतर रूप'' देखें); का रिश्ता {{math|''d''{{i sup|2}} {{=}} 0}} फिर कहता है कि सटीक फॉर्म बंद हैं। | ||
इसके विपरीत, बंद रूप आवश्यक रूप से सटीक नहीं होते हैं। एक व्याख्यात्मक | इसके विपरीत, बंद रूप आवश्यक रूप से सटीक नहीं होते हैं। एक व्याख्यात्मक स्थिति कई गुना के रूप में एक वृत्त है, और {{math|1}}-इसके केंद्र में एक संदर्भ बिंदु से कोण के व्युत्पन्न के अनुरूप, सामान्यतः लिखा जाता है {{math|''dθ''}} (बंद और सटीक अंतर रूपों में वर्णित)। कोई कार्य नहीं है {{math|''θ''}} पूरे सर्कल पर इस तरह परिभाषित किया गया है {{math|''dθ''}} इसका व्युत्पन्न है; की वृद्धि {{math|2''π''}} एक बार सकारात्मक दिशा में सर्कल के चारों ओर जाने से एक बहुविकल्पीय कार्य का तात्पर्य होता है {{math|''θ''}}. सर्कल के एक बिंदु को हटाने से यह कम हो जाता है, साथ ही कई गुना की टोपोलॉजी बदल जाती है। | ||
एक प्रमुख उदाहरण जब सभी बंद रूप सटीक होते हैं, जब अंतर्निहित स्थान एक बिंदु के लिए अनुबंधित होता है, अर्थात, यह केवल जुड़ा हुआ स्थान (नो-होल स्थिति) है। इस | एक प्रमुख उदाहरण जब सभी बंद रूप सटीक होते हैं, जब अंतर्निहित स्थान एक बिंदु के लिए अनुबंधित होता है, अर्थात, यह केवल जुड़ा हुआ स्थान (नो-होल स्थिति) है। इस स्थितियों में बाहरी व्युत्पन्न <math>d</math> बंद रूपों तक सीमित एक स्थानीय व्युत्क्रम है जिसे एक बंद और सटीक अंतर रूप कहा जाता है।<ref name=":0">{{Cite book|last=Edelen|first=Dominic G. B.|url=https://www.worldcat.org/oclc/56347718|title=एप्लाइड बाहरी कलन|publisher=Dover Publications|year=2011|isbn=978-0-486-43871-9|edition=Revised|location=Mineola, N.Y.|oclc=56347718}}</ref><ref>{{Cite book|last=Warner|first=Frank W.|url=https://www.worldcat.org/oclc/9683855|title=डिफरेंशियल मैनिफोल्ड्स और लाइ ग्रुप्स की नींव|date=1983|publisher=Springer|isbn=0-387-90894-3|location=New York|oclc=9683855}}</ref> चूंकि यह भी शून्य है,<ref name=":0" />यह उलटे तीरों के साथ एक दोहरी श्रृंखला परिसर बनाता है<ref>{{Cite journal|last=Kycia|first=Radosław Antoni|date=2020|title=पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर|url=https://link.springer.com/10.1007/s00025-020-01247-8|journal=Results in Mathematics|language=en|volume=75|issue=3|pages=122|doi=10.1007/s00025-020-01247-8|s2cid=199472766 |issn=1422-6383}}</ref> डी राम कॉम्प्लेक्स की तुलना में। पोंकारे लेम्मा में वर्णित स्थिति यही है। | ||
डी राम कोहोलॉजी के पीछे का विचार बंद रूपों के समतुल्य वर्गों को कई गुना परिभाषित करना है। एक दो बंद रूपों को वर्गीकृत करता है {{math|''α'', ''β'' ∈ Ω<sup>''k''</sup>(''M'')}} कोहोमोलॉगस के रूप में यदि वे एक सटीक रूप से भिन्न होते हैं, अर्थात यदि {{math|''α'' − ''β''}} सटीक है। यह वर्गीकरण बंद रूपों के स्थान पर एक तुल्यता संबंध को प्रेरित करता है {{math|Ω<sup>''k''</sup>(''M'')}}. एक तो परिभाषित करता है {{mvar|k}}-वाँ दे राम कोहोलॉजी समूह <math>H^{k}_{\mathrm{dR}}(M)</math> तुल्यता वर्गों का समुच्चय होने के लिए, अर्थात्, बंद रूपों का समुच्चय {{math|Ω<sup>''k''</sup>(''M'')}} मॉड्यूल सटीक रूपों। | डी राम कोहोलॉजी के पीछे का विचार बंद रूपों के समतुल्य वर्गों को कई गुना परिभाषित करना है। एक दो बंद रूपों को वर्गीकृत करता है {{math|''α'', ''β'' ∈ Ω<sup>''k''</sup>(''M'')}} कोहोमोलॉगस के रूप में यदि वे एक सटीक रूप से भिन्न होते हैं, अर्थात यदि {{math|''α'' − ''β''}} सटीक है। यह वर्गीकरण बंद रूपों के स्थान पर एक तुल्यता संबंध को प्रेरित करता है {{math|Ω<sup>''k''</sup>(''M'')}}. एक तो परिभाषित करता है {{mvar|k}}-वाँ दे राम कोहोलॉजी समूह <math>H^{k}_{\mathrm{dR}}(M)</math> तुल्यता वर्गों का समुच्चय होने के लिए, अर्थात्, बंद रूपों का समुच्चय {{math|Ω<sup>''k''</sup>(''M'')}} मॉड्यूल सटीक रूपों। | ||
Line 26: | Line 26: | ||
==डी राम कोहोलॉजी की गणना == | ==डी राम कोहोलॉजी की गणना == | ||
शून्य कोहोलॉजी और मेयर-विएटोरिस अनुक्रम के बारे में उपरोक्त तथ्य का उपयोग करते हुए | शून्य कोहोलॉजी और मेयर-विएटोरिस अनुक्रम के बारे में उपरोक्त तथ्य का उपयोग करते हुए अधिकांशतः कई गुना सामान्य डी रम कॉहोमोलॉजी मिल सकती है। एक अन्य उपयोगी तथ्य यह है कि डी राम कोहोलॉजी एक [[होमोटॉपी]] इनवेरिएंट है। जबकि संगणना नहीं दी गई है, कुछ सामान्य सांस्थितिकीय वस्तुओं के लिए संगणित डी रम कोहोलॉजी निम्नलिखित हैं: | ||
=== {{math|''n''}}}-क्षेत्र === | === {{math|''n''}}}-क्षेत्र === | ||
Line 37: | Line 37: | ||
:<math>H_{\mathrm{dR}}^{k}(T^n) \simeq \R ^{n \choose k}.</math> | :<math>H_{\mathrm{dR}}^{k}(T^n) \simeq \R ^{n \choose k}.</math> | ||
हम अलग-अलग रूपों का उपयोग करके सीधे टोरस के डे राम कोहोलॉजी के लिए स्पष्ट जनरेटर भी पा सकते हैं। भागफल कई गुना दिया गया है <math>\pi: X \to X/G</math> और एक विभेदक रूप <math>\omega \in \Omega^k(X)</math> हम कह सकते हैं कि <math>\omega</math> है <math>G</math>-invariant अगर किसी भी भिन्नता से प्रेरित है <math>G</math>, <math>\cdot g:X \to X</math> अपने पास <math>(\cdot g)^*(\omega) = \omega</math>. विशेष रूप से, पर किसी भी रूप का पुलबैक <math>X/G</math> है <math>G</math>-अपरिवर्तनीय। इसके अलावा, पुलबैक एक इंजेक्टिव मोर्फिज्म है। हमारे | हम अलग-अलग रूपों का उपयोग करके सीधे टोरस के डे राम कोहोलॉजी के लिए स्पष्ट जनरेटर भी पा सकते हैं। भागफल कई गुना दिया गया है <math>\pi: X \to X/G</math> और एक विभेदक रूप <math>\omega \in \Omega^k(X)</math> हम कह सकते हैं कि <math>\omega</math> है <math>G</math>-invariant अगर किसी भी भिन्नता से प्रेरित है <math>G</math>, <math>\cdot g:X \to X</math> अपने पास <math>(\cdot g)^*(\omega) = \omega</math>. विशेष रूप से, पर किसी भी रूप का पुलबैक <math>X/G</math> है <math>G</math>-अपरिवर्तनीय। इसके अलावा, पुलबैक एक इंजेक्टिव मोर्फिज्म है। हमारे स्थितियों में <math>\R^n/\Z^n</math> विभेदक रूप <math>dx_i</math> हैं <math>\Z^n</math>-अपरिवर्तनीय के बाद से <math>d (x_i + k) = dx_i</math>. किन्तु, ध्यान दें <math>x_i + \alpha</math> के लिए <math>\alpha \in \R</math> एक अपरिवर्तनीय नहीं है <math>0</math>-प्रपत्र। इंजेक्शन के साथ इसका तात्पर्य है | ||
:<math>[dx_i] \in H^1_{dR}(T^n)</math> | :<math>[dx_i] \in H^1_{dR}(T^n)</math> | ||
Line 80: | Line 80: | ||
== संबंधित विचार == | == संबंधित विचार == | ||
द रम कोहोलॉजी ने कई गणितीय विचारों को प्रेरित किया है, जिसमें [[डोलबौल्ट कोहोलॉजी]], हॉज थ्योरी और अतियाह-सिंगर इंडेक्स प्रमेय | द रम कोहोलॉजी ने कई गणितीय विचारों को प्रेरित किया है, जिसमें [[डोलबौल्ट कोहोलॉजी]], हॉज थ्योरी और अतियाह-सिंगर इंडेक्स प्रमेय सम्मिलित हैं। चूंकि, अधिक मौलिक संदर्भों में भी, प्रमेय ने कई विकासों को प्रेरित किया है। सबसे पहले, [[हॉज सिद्धांत]] यह साबित करता है कि कोहोलॉजी के बीच एक समरूपता है जिसमें हार्मोनिक रूप होते हैं और डे रम कोहोलॉजी बंद रूपों से मिलकर मॉडुलो सटीक रूप होते हैं। यह हार्मोनिक रूपों और हॉज प्रमेय की उपयुक्त परिभाषा पर निर्भर करता है। अधिक जानकारी के लिए हॉज थ्योरी देखें। | ||
=== हार्मोनिक रूप === | === हार्मोनिक रूप === | ||
{{see also|Harmonic differential}} | {{see also|Harmonic differential}} | ||
अगर {{mvar|M}} एक [[ कॉम्पैक्ट जगह ]] [[ रीमैनियन कई गुना ]] है, फिर प्रत्येक समकक्ष वर्ग <math>H^k_{\mathrm{dR}}(M)</math> बिल्कुल एक [[हार्मोनिक रूप]] होता है। | अगर {{mvar|M}} एक [[ कॉम्पैक्ट जगह ]] [[ रीमैनियन कई गुना ]] है, फिर प्रत्येक समकक्ष वर्ग <math>H^k_{\mathrm{dR}}(M)</math> बिल्कुल एक [[हार्मोनिक रूप]] होता है। अर्ताथ हर सदस्य <math>\omega</math> किसी दिए गए तुल्यता वर्ग के बंद रूपों को इस रूप में लिखा जा सकता है | ||
:<math>\omega = \alpha + \gamma</math> | :<math>\omega = \alpha + \gamma</math> | ||
कहाँ <math>\alpha</math> सटीक है और <math>\gamma</math> हार्मोनिक है: <math>\Delta\gamma = 0</math>. | कहाँ <math>\alpha</math> सटीक है और <math>\gamma</math> हार्मोनिक है: <math>\Delta\gamma = 0</math>. | ||
कॉम्पैक्ट कनेक्टेड रीमैनियन मैनिफोल्ड पर कोई भी [[हार्मोनिक फ़ंक्शन]] स्थिर है। इस प्रकार, इस विशेष प्रतिनिधि तत्व को कई गुना पर समतुल्य रूप से समतुल्य रूपों का एक चरम (न्यूनतम) समझा जा सकता है। उदाहरण के लिए, ए पर {{math|2}}-[[ टोरस्र्स ]], कोई स्थिरांक की कल्पना कर सकता है {{math|1}}-एक रूप जहां सभी बालों को एक ही दिशा में बड़े करीने से कंघी की जाती है (और सभी बालों की लंबाई समान होती है)। इस | कॉम्पैक्ट कनेक्टेड रीमैनियन मैनिफोल्ड पर कोई भी [[हार्मोनिक फ़ंक्शन]] स्थिर है। इस प्रकार, इस विशेष प्रतिनिधि तत्व को कई गुना पर समतुल्य रूप से समतुल्य रूपों का एक चरम (न्यूनतम) समझा जा सकता है। उदाहरण के लिए, ए पर {{math|2}}-[[ टोरस्र्स ]], कोई स्थिरांक की कल्पना कर सकता है {{math|1}}-एक रूप जहां सभी बालों को एक ही दिशा में बड़े करीने से कंघी की जाती है (और सभी बालों की लंबाई समान होती है)। इस स्थितियों में, दो कोहोलॉजिकल रूप से अलग-अलग कंघी हैं; अन्य सभी रैखिक संयोजन हैं। विशेष रूप से, इसका अर्थ है कि a की पहली बेट्टी संख्या {{math|2}}-टोरस दो होते हैं। अधिक सामान्यतः, एक पर <math>n</math>-आयामी टोरस <math>T^n</math>, के विभिन्न संयोजनों पर विचार कर सकते हैं <math>k</math>- टोरस पर बनता है। वहाँ हैं <math>n</math> चुनना <math>k</math> ऐसे संयोजन जिनका उपयोग आधार वैक्टर बनाने के लिए किया जा सकता है <math>H^k_{\text{dR}}(T^n)</math>; <math>k</math>डी राम कोहोलॉजी समूह के लिए -थ बेट्टी संख्या <math>n</math>-टोरस इस प्रकार है <math>n</math> चुनना <math>k</math>. | ||
अधिक सटीक, एक [[अंतर कई गुना]] के लिए {{mvar|M}}, कोई इसे कुछ सहायक [[रिमेंनियन मीट्रिक]] से लैस कर सकता है। फिर [[लाप्लासियन]] <math>\Delta</math> द्वारा परिभाषित किया गया है | अधिक सटीक, एक [[अंतर कई गुना]] के लिए {{mvar|M}}, कोई इसे कुछ सहायक [[रिमेंनियन मीट्रिक]] से लैस कर सकता है। फिर [[लाप्लासियन]] <math>\Delta</math> द्वारा परिभाषित किया गया है | ||
Line 104: | Line 104: | ||
कहाँ <math>\alpha</math> सटीक है, <math>\beta</math> सह-सटीक है, और <math>\gamma</math> हार्मोनिक है। | कहाँ <math>\alpha</math> सटीक है, <math>\beta</math> सह-सटीक है, और <math>\gamma</math> हार्मोनिक है। | ||
एक कहता है कि एक रूप <math>\beta</math> सह-बंद है अगर <math>\delta \beta = 0</math> और सह-सटीक अगर <math>\beta = \delta \eta</math> किसी रूप के लिए <math>\eta</math>, ओर वो <math>\gamma</math> हार्मोनिक है अगर लाप्लासियन शून्य है, <math>\Delta\gamma = 0</math>. यह इस बात पर ध्यान देने के बाद होता है कि सटीक और सह-सटीक रूप ऑर्थोगोनल हैं; ऑर्थोगोनल पूरक में ऐसे रूप होते हैं जो बंद और सह-बंद दोनों होते हैं: | एक कहता है कि एक रूप <math>\beta</math> सह-बंद है अगर <math>\delta \beta = 0</math> और सह-सटीक अगर <math>\beta = \delta \eta</math> किसी रूप के लिए <math>\eta</math>, ओर वो <math>\gamma</math> हार्मोनिक है अगर लाप्लासियन शून्य है, <math>\Delta\gamma = 0</math>. यह इस बात पर ध्यान देने के बाद होता है कि सटीक और सह-सटीक रूप ऑर्थोगोनल हैं; ऑर्थोगोनल पूरक में ऐसे रूप होते हैं जो बंद और सह-बंद दोनों होते हैं: अर्ताथ हार्मोनिक रूपों का। यहाँ, रूढ़िवादिता को इसके संबंध में परिभाषित किया गया है {{math|[[lp space|''L''<sup>2</sup>]]}} आंतरिक उत्पाद चालू <math>\Omega^k(M)</math>: | ||
:<math>(\alpha,\beta)=\int_M \alpha \wedge {\star\beta}.</math> | :<math>(\alpha,\beta)=\int_M \alpha \wedge {\star\beta}.</math> | ||
Line 112: | Line 112: | ||
* [[तंतुओं के साथ एकीकरण]] (डे रम कोहोलॉजी के लिए, [[पुशफॉरवर्ड (कोहोलॉजी)]] [[एकीकरण (गणित)]] द्वारा दिया जाता है) | * [[तंतुओं के साथ एकीकरण]] (डे रम कोहोलॉजी के लिए, [[पुशफॉरवर्ड (कोहोलॉजी)]] [[एकीकरण (गणित)]] द्वारा दिया जाता है) | ||
* शेफ़ (गणित) | * शेफ़ (गणित) | ||
* डीडीबार लेम्मा|<math>\partial \bar \partial</math>कॉम्पैक्ट काहलर मैनिफोल्ड्स के | * डीडीबार लेम्मा|<math>\partial \bar \partial</math>कॉम्पैक्ट काहलर मैनिफोल्ड्स के स्थितियों में सटीक अंतर रूपों के शोधन के लिए लेम्मा। | ||
==उद्धरण== | ==उद्धरण== |
Revision as of 20:36, 1 April 2023
गणित में, डी रहम कोहोलॉजी (जॉर्ज डी रम के नाम पर) बीजगणितीय टोपोलॉजी और विभेदक टोपोलॉजी दोनों से संबंधित एक उपकरण है, जो विशेष रूप से संगणना और कोहोलॉजी वर्ग के ठोस प्रतिनिधित्व के लिए अनुकूल रूप में चिकनी कई गुना के बारे में बुनियादी टोपोलॉजिकल जानकारी व्यक्त करने में सक्षम है। यह निर्धारित गुणों के साथ विभेदक रूपों के अस्तित्व पर आधारित एक कोहोलॉजी सिद्धांत है।
किसी भी चिकनी कई गुना पर, प्रत्येक बंद और सटीक अंतर रूप बंद हो जाते हैं, किन्तु बातचीत पकड़ में विफल हो सकती है। मोटे तौर पर कहा जाए तो यह असफलता होल#इन अंक शास्त्र के संभावित अस्तित्व से संबंधित चिकना कई गुना में छेद, और डी रम कोहोलॉजी समूह में चिकनी मैनिफोल्ड के टोपोलॉजिकल इनवेरिएंट का एक सेट सम्मिलित होता है जो इस संबंध को सटीक रूप से निर्धारित करता है।[1]
The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of cohomology, namely de Rham cohomology, which (roughly speaking) measures precisely the extent to which the fundamental theorem of calculus fails in higher dimensions and on general manifolds.
— Terence Tao, Differential Forms and Integration[2]
परिभाषा
डी रम कॉम्प्लेक्स कुछ चिकने मैनिफोल्ड पर डिफरेंशियल फॉर्म्स का कोचेन कॉम्प्लेक्स है M, अंतर के रूप में बाहरी व्युत्पन्न के साथ:
कहाँ Ω0(M) चिकनाई का स्थान है M, Ω1(M) का स्थान है 1-रूप आदि। ऐसे प्रपत्र जो बाहरी डेरिवेटिव के अंतर्गत अन्य रूपों की छवि हैं, साथ ही स्थिरांक भी 0 में कार्य करता है Ω0(M), यथार्थ और रूप कहलाते हैं जिनकी बाह्य व्युत्पत्ति होती है 0 को बंद कहा जाता है (बंद और सटीक अंतर रूप देखें); का रिश्ता d2 = 0 फिर कहता है कि सटीक फॉर्म बंद हैं।
इसके विपरीत, बंद रूप आवश्यक रूप से सटीक नहीं होते हैं। एक व्याख्यात्मक स्थिति कई गुना के रूप में एक वृत्त है, और 1-इसके केंद्र में एक संदर्भ बिंदु से कोण के व्युत्पन्न के अनुरूप, सामान्यतः लिखा जाता है dθ (बंद और सटीक अंतर रूपों में वर्णित)। कोई कार्य नहीं है θ पूरे सर्कल पर इस तरह परिभाषित किया गया है dθ इसका व्युत्पन्न है; की वृद्धि 2π एक बार सकारात्मक दिशा में सर्कल के चारों ओर जाने से एक बहुविकल्पीय कार्य का तात्पर्य होता है θ. सर्कल के एक बिंदु को हटाने से यह कम हो जाता है, साथ ही कई गुना की टोपोलॉजी बदल जाती है।
एक प्रमुख उदाहरण जब सभी बंद रूप सटीक होते हैं, जब अंतर्निहित स्थान एक बिंदु के लिए अनुबंधित होता है, अर्थात, यह केवल जुड़ा हुआ स्थान (नो-होल स्थिति) है। इस स्थितियों में बाहरी व्युत्पन्न बंद रूपों तक सीमित एक स्थानीय व्युत्क्रम है जिसे एक बंद और सटीक अंतर रूप कहा जाता है।[3][4] चूंकि यह भी शून्य है,[3]यह उलटे तीरों के साथ एक दोहरी श्रृंखला परिसर बनाता है[5] डी राम कॉम्प्लेक्स की तुलना में। पोंकारे लेम्मा में वर्णित स्थिति यही है।
डी राम कोहोलॉजी के पीछे का विचार बंद रूपों के समतुल्य वर्गों को कई गुना परिभाषित करना है। एक दो बंद रूपों को वर्गीकृत करता है α, β ∈ Ωk(M) कोहोमोलॉगस के रूप में यदि वे एक सटीक रूप से भिन्न होते हैं, अर्थात यदि α − β सटीक है। यह वर्गीकरण बंद रूपों के स्थान पर एक तुल्यता संबंध को प्रेरित करता है Ωk(M). एक तो परिभाषित करता है k-वाँ दे राम कोहोलॉजी समूह तुल्यता वर्गों का समुच्चय होने के लिए, अर्थात्, बंद रूपों का समुच्चय Ωk(M) मॉड्यूल सटीक रूपों।
ध्यान दें कि, किसी भी कई गुना के लिए M की रचना m डिस्कनेक्ट किए गए घटक, जिनमें से प्रत्येक जुड़ा हुआ स्थान है, हमारे पास वह है
यह इस तथ्य से अनुसरण करता है कि कोई भी सुचारू कार्य चालू है M शून्य व्युत्पन्न के साथ हर जगह अलग-अलग जुड़े हुए घटकों में से प्रत्येक पर स्थिर है M.
डी राम कोहोलॉजी की गणना
शून्य कोहोलॉजी और मेयर-विएटोरिस अनुक्रम के बारे में उपरोक्त तथ्य का उपयोग करते हुए अधिकांशतः कई गुना सामान्य डी रम कॉहोमोलॉजी मिल सकती है। एक अन्य उपयोगी तथ्य यह है कि डी राम कोहोलॉजी एक होमोटॉपी इनवेरिएंट है। जबकि संगणना नहीं दी गई है, कुछ सामान्य सांस्थितिकीय वस्तुओं के लिए संगणित डी रम कोहोलॉजी निम्नलिखित हैं:
n}-क्षेत्र
एन-क्षेत्र के लिए |n-वृत्त, , और साथ ही खुले अंतराल के उत्पाद के साथ मिलकर, हमारे पास निम्नलिखित हैं। होने देना n > 0, m ≥ 0, और I एक खुला वास्तविक अंतराल हो। तब
=== n}-टोरस=== वें>-टोरस कार्टेशियन उत्पाद है: . इसी तरह, अनुमति यहाँ, हम प्राप्त करते हैं
हम अलग-अलग रूपों का उपयोग करके सीधे टोरस के डे राम कोहोलॉजी के लिए स्पष्ट जनरेटर भी पा सकते हैं। भागफल कई गुना दिया गया है और एक विभेदक रूप हम कह सकते हैं कि है -invariant अगर किसी भी भिन्नता से प्रेरित है , अपने पास . विशेष रूप से, पर किसी भी रूप का पुलबैक है -अपरिवर्तनीय। इसके अलावा, पुलबैक एक इंजेक्टिव मोर्फिज्म है। हमारे स्थितियों में विभेदक रूप हैं -अपरिवर्तनीय के बाद से . किन्तु, ध्यान दें के लिए एक अपरिवर्तनीय नहीं है -प्रपत्र। इंजेक्शन के साथ इसका तात्पर्य है
चूंकि एक टोरस की कोहोलॉजी रिंग किसके द्वारा उत्पन्न होती है , इन रूपों के बाहरी उत्पादों को लेने से एक टोरस के डी रम कोहोलॉजी के लिए सभी स्पष्ट प्रतिनिधि (गणित) मिलते हैं।
पंचर यूक्लिडियन स्पेस
छिद्रित यूक्लिडियन स्थान सरल है मूल के साथ हटा दिया गया।
मोबियस पट्टी
हम इस तथ्य से निष्कर्ष निकाल सकते हैं कि मोबियस पट्टी, M, विरूपण को वापस ले लिया जा सकता है 1-क्षेत्र (अर्थात वास्तविक इकाई वृत्त), कि:
दे राम की प्रमेय
सामान्यीकृत स्टोक्स प्रमेय | स्टोक्स प्रमेय डी रम कोहोलॉजी और चेन (बीजगणितीय टोपोलॉजी) के समरूपता (गणित) के बीच द्वंद्व (गणित) की अभिव्यक्ति है। इसमें कहा गया है कि अंतर रूपों और जंजीरों की जोड़ी, एकीकरण के माध्यम से, डी रम कोहोलॉजी से एक समूह समरूपता प्रदान करती है एकवचन कोहोलॉजी के लिए 1931 में जार्ज डी राम द्वारा सिद्ध किया गया डी राम का प्रमेय बताता है कि एक सहज कई गुना के लिए M, यह मानचित्र वास्तव में एक तुल्याकारिता है।
अधिक सटीक रूप से, मानचित्र पर विचार करें
निम्नानुसार परिभाषित किया गया है: किसी के लिए , होने देना I(ω) का तत्व हो जो निम्नानुसार कार्य करता है:
डी राम के प्रमेय का दावा है कि यह डी रम कोहोमोलॉजी और एकवचन कोहोलॉजी के बीच एक समरूपता है।
बाहरी उत्पाद इन समूहों के समूहों के प्रत्यक्ष योग को एक अंगूठी (गणित) संरचना के साथ संपन्न करता है। प्रमेय का एक और परिणाम यह है कि दो कोहोलॉजी रिंग्स आइसोमोर्फिक (वर्गीकृत अंगूठी ्स के रूप में) हैं, जहां एकवचन कोहोलॉजी पर अनुरूप उत्पाद कप उत्पाद है।
शीफ-सैद्धांतिक डी राम समरूपता
किसी भी चिकने मैनिफोल्ड एम के लिए, मान लीजिए एबेलियन समूह से जुड़े एम पर निरंतर शीफ बनें ; दूसरे शब्दों में, एम पर स्थानीय रूप से निरंतर वास्तविक-मूल्यवान कार्यों का समूह है। फिर हमारे पास एक प्राकृतिक समरूपता है
डी रम कोहोलॉजी और शेफ कोहोलॉजी के बीच . (ध्यान दें कि इससे पता चलता है कि डे रम कोहोलॉजी की गणना सीच कोहोलॉजी के संदर्भ में भी की जा सकती है; वास्तव में, चूंकि हर स्मूथ मैनिफोल्ड पैराकॉम्पैक्ट हौसडॉर्फ है, हमारे पास यह है कि शीफ कोहोलॉजी सीच कोहोलॉजी के लिए आइसोमोर्फिक है किसी भी अच्छे कवर के लिए (बीजगणितीय टोपोलॉजी) एम.)
प्रमाण
मानक प्रमाण यह दिखाते हुए आगे बढ़ता है कि डे रहम परिसर, जब शीशों के एक परिसर के रूप में देखा जाता है, का एक चक्रीय संकल्प है . अधिक विस्तार से, मान लीजिए m, M का आयाम है और मान लीजिए के शीफ (गणित) को निरूपित करें एम पर फॉर्म (के साथ का पुलिया एम पर कार्य करता है)। पॉइंकेयर लेम्मा द्वारा, ढेरों का निम्नलिखित क्रम सटीक है (शेवों की एबेलियन श्रेणी में):
यह लंबा सटीक क्रम अब ढेरों के छोटे सटीक अनुक्रमों में टूट जाता है
जहाँ सटीकता से हमारे पास समरूपताएँ हैं सबके लिए कश्मीर इनमें से प्रत्येक कोहोलॉजी में एक लंबे सटीक अनुक्रम को प्रेरित करता है। पुलिया के बाद से का एम पर कार्य एकता के विभाजन को स्वीकार करते हैं, कोई भी -मॉड्यूल एक महीन शीफ है; विशेष रूप से, ढेरी सब ठीक हैं। इसलिए, शीफ कोहोलॉजी समूह के लिए गायब हो जाना चूँकि पैराकॉम्पैक्ट स्थानों पर सभी महीन ढेर एसाइक्लिक होते हैं। तो लंबी सटीक कोहोलॉजी खुद को अंततः आइसोमोर्फिज्म की एक श्रृंखला में अलग करती है। श्रृंखला के एक छोर पर शीफ कोहोलॉजी है और दूसरी तरफ डी रम कोहोलॉजी है।
संबंधित विचार
द रम कोहोलॉजी ने कई गणितीय विचारों को प्रेरित किया है, जिसमें डोलबौल्ट कोहोलॉजी, हॉज थ्योरी और अतियाह-सिंगर इंडेक्स प्रमेय सम्मिलित हैं। चूंकि, अधिक मौलिक संदर्भों में भी, प्रमेय ने कई विकासों को प्रेरित किया है। सबसे पहले, हॉज सिद्धांत यह साबित करता है कि कोहोलॉजी के बीच एक समरूपता है जिसमें हार्मोनिक रूप होते हैं और डे रम कोहोलॉजी बंद रूपों से मिलकर मॉडुलो सटीक रूप होते हैं। यह हार्मोनिक रूपों और हॉज प्रमेय की उपयुक्त परिभाषा पर निर्भर करता है। अधिक जानकारी के लिए हॉज थ्योरी देखें।
हार्मोनिक रूप
अगर M एक कॉम्पैक्ट जगह रीमैनियन कई गुना है, फिर प्रत्येक समकक्ष वर्ग बिल्कुल एक हार्मोनिक रूप होता है। अर्ताथ हर सदस्य किसी दिए गए तुल्यता वर्ग के बंद रूपों को इस रूप में लिखा जा सकता है
कहाँ सटीक है और हार्मोनिक है: .
कॉम्पैक्ट कनेक्टेड रीमैनियन मैनिफोल्ड पर कोई भी हार्मोनिक फ़ंक्शन स्थिर है। इस प्रकार, इस विशेष प्रतिनिधि तत्व को कई गुना पर समतुल्य रूप से समतुल्य रूपों का एक चरम (न्यूनतम) समझा जा सकता है। उदाहरण के लिए, ए पर 2-टोरस्र्स , कोई स्थिरांक की कल्पना कर सकता है 1-एक रूप जहां सभी बालों को एक ही दिशा में बड़े करीने से कंघी की जाती है (और सभी बालों की लंबाई समान होती है)। इस स्थितियों में, दो कोहोलॉजिकल रूप से अलग-अलग कंघी हैं; अन्य सभी रैखिक संयोजन हैं। विशेष रूप से, इसका अर्थ है कि a की पहली बेट्टी संख्या 2-टोरस दो होते हैं। अधिक सामान्यतः, एक पर -आयामी टोरस , के विभिन्न संयोजनों पर विचार कर सकते हैं - टोरस पर बनता है। वहाँ हैं चुनना ऐसे संयोजन जिनका उपयोग आधार वैक्टर बनाने के लिए किया जा सकता है ; डी राम कोहोलॉजी समूह के लिए -थ बेट्टी संख्या -टोरस इस प्रकार है चुनना .
अधिक सटीक, एक अंतर कई गुना के लिए M, कोई इसे कुछ सहायक रिमेंनियन मीट्रिक से लैस कर सकता है। फिर लाप्लासियन द्वारा परिभाषित किया गया है
साथ बाहरी व्युत्पन्न और सहविभेदक। लाप्लासियन एक सजातीय (श्रेणीबद्ध बीजगणित में) रेखीय अंतर ऑपरेटर है जो अंतर रूपों के बाहरी बीजगणित पर कार्य करता है: हम डिग्री के प्रत्येक घटक पर इसकी क्रिया को देख सकते हैं अलग से।
अगर कॉम्पैक्ट स्पेस और उन्मुखी है, डिफरेंशियल फॉर्म के स्पेस पर अभिनय करने वाले लाप्लासियन के कर्नेल (बीजगणित) का आयाम |k-रूप तब बराबर (हॉज सिद्धांत द्वारा) डी रम कोहोलॉजी समूह की डिग्री के बराबर है : लाप्लासियन बंद रूप (कैलकुलस) के प्रत्येक कोहोलॉजी वर्ग में एक अद्वितीय हार्मोनिक रूप चुनता है। विशेष रूप से, सभी हार्मोनिक का स्थान -फॉर्म चालू है के लिए आइसोमोर्फिक है ऐसे प्रत्येक स्थान का आयाम परिमित है, और इसके द्वारा दिया गया है -वीं बेट्टी संख्या।
हॉज अपघटन
होने देना एक कॉम्पैक्ट स्पेस उन्मुख कई गुना रीमैनियन मैनिफोल्ड हो। हॉज अपघटन बताता है कि कोई भी -फॉर्म ऑन विशिष्ट रूप से तीन के योग में विभाजित होता है L2 अवयव:
कहाँ सटीक है, सह-सटीक है, और हार्मोनिक है।
एक कहता है कि एक रूप सह-बंद है अगर और सह-सटीक अगर किसी रूप के लिए , ओर वो हार्मोनिक है अगर लाप्लासियन शून्य है, . यह इस बात पर ध्यान देने के बाद होता है कि सटीक और सह-सटीक रूप ऑर्थोगोनल हैं; ऑर्थोगोनल पूरक में ऐसे रूप होते हैं जो बंद और सह-बंद दोनों होते हैं: अर्ताथ हार्मोनिक रूपों का। यहाँ, रूढ़िवादिता को इसके संबंध में परिभाषित किया गया है L2 आंतरिक उत्पाद चालू :
सोबोलेव रिक्त स्थान या वितरण (गणित) के उपयोग से, अपघटन को उदाहरण के लिए एक पूर्ण (उन्मुख या नहीं) रीमैनियन मैनिफोल्ड तक बढ़ाया जा सकता है।[6]
यह भी देखें
- हॉज सिद्धांत
- तंतुओं के साथ एकीकरण (डे रम कोहोलॉजी के लिए, पुशफॉरवर्ड (कोहोलॉजी) एकीकरण (गणित) द्वारा दिया जाता है)
- शेफ़ (गणित)
- डीडीबार लेम्मा|कॉम्पैक्ट काहलर मैनिफोल्ड्स के स्थितियों में सटीक अंतर रूपों के शोधन के लिए लेम्मा।
उद्धरण
- ↑ Lee 2013, p. 440.
- ↑ Tao, Terence (2007) "Differential Forms and Integration" Princeton Companion to Mathematics 2008. Timothy Gowers, ed.
- ↑ 3.0 3.1 Edelen, Dominic G. B. (2011). एप्लाइड बाहरी कलन (Revised ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43871-9. OCLC 56347718.
- ↑ Warner, Frank W. (1983). डिफरेंशियल मैनिफोल्ड्स और लाइ ग्रुप्स की नींव. New York: Springer. ISBN 0-387-90894-3. OCLC 9683855.
- ↑ Kycia, Radosław Antoni (2020). "पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर". Results in Mathematics (in English). 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383. S2CID 199472766.
- ↑ Jean-Pierre Demailly, Complex Analytic and Differential Geometry Ch VIII, § 3.
संदर्भ
- Lee, John M. (2013). Introduction to Smooth Manifolds. Springer-Verlag. ISBN 978-1-4419-9981-8.
- Bott, Raoul; Tu, Loring W. (1982), Differential Forms in Algebraic Topology, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90613-3
- Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-05059-9, MR 1288523
- Warner, Frank (1983), Foundations of Differentiable Manifolds and Lie Groups, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90894-6