सहप्रसरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Measure of the joint variability}} File:covariance_trends.svg|thumb|upright|दो यादृच्छिक चर X और Y के सहप्र...")
 
No edit summary
Line 21: Line 21:
\end{align}
\end{align}
</math>
</math>
लेकिन यह समीकरण [[विनाशकारी रद्दीकरण]] के लिए अतिसंवेदनशील है (नीचे सहप्रसरण#संख्यात्मक संगणना पर अनुभाग देखें)।
किन्तु यह समीकरण [[विनाशकारी रद्दीकरण]] के लिए अतिसंवेदनशील है (नीचे सहप्रसरण#संख्यात्मक संगणना पर अनुभाग देखें)।


सहप्रसरण की [[माप की इकाई]] <math>\operatorname{cov}(X, Y)</math> के हैं <math>X</math> के समय <math>Y</math>. इसके विपरीत, सहसंबंध, जो सहप्रसरण पर निर्भर करता है, रैखिक निर्भरता का एक [[आयाम रहित संख्या]] माप है। (वास्तव में, सहसंबंध गुणांक सहप्रसरण के सामान्यीकृत संस्करण के रूप में समझा जा सकता है।)
सहप्रसरण की [[माप की इकाई]] <math>\operatorname{cov}(X, Y)</math> के हैं <math>X</math> के समय <math>Y</math>. इसके विपरीत, सहसंबंध, जो सहप्रसरण पर निर्भर करता है, रैखिक निर्भरता का एक [[आयाम रहित संख्या]] माप है। (वास्तव में, सहसंबंध गुणांक सहप्रसरण के सामान्यीकृत संस्करण के रूप में समझा जा सकता है।)
Line 44: Line 44:
यह सीधे तौर पर साधनों का जिक्र किए बिना समान रूप से व्यक्त किया जा सकता है<ref>{{cite conference|authors=Yuli Zhang, Huaiyu Wu, Lei Cheng|title=प्रसरण और सहप्रसरण के बारे में कुछ नए विरूपण सूत्र|conference=Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012)|date=June 2012|pages=987–992}}</ref>
यह सीधे तौर पर साधनों का जिक्र किए बिना समान रूप से व्यक्त किया जा सकता है<ref>{{cite conference|authors=Yuli Zhang, Huaiyu Wu, Lei Cheng|title=प्रसरण और सहप्रसरण के बारे में कुछ नए विरूपण सूत्र|conference=Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012)|date=June 2012|pages=987–992}}</ref>
:<math> \operatorname{cov}(X,Y) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{2}(x_i - x_j)(y_i - y_j) = \frac{1}{n^2} \sum_i \sum_{j>i} (x_i-x_j)(y_i - y_j). </math>
:<math> \operatorname{cov}(X,Y) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{2}(x_i - x_j)(y_i - y_j) = \frac{1}{n^2} \sum_i \sum_{j>i} (x_i-x_j)(y_i - y_j). </math>
अधिक आम तौर पर, अगर वहाँ हैं <math>n</math> की संभावित प्राप्ति <math>(X,Y)</math>, अर्थात् <math>(x_i,y_i)</math> लेकिन संभवतः असमान संभावनाओं के साथ <math>p_i</math> के लिए <math>i=1,\ldots,n</math>, तो सहप्रसरण है
अधिक सामान्यतः, यदि वहाँ हैं <math>n</math> की संभावित प्राप्ति <math>(X,Y)</math>, अर्थात् <math>(x_i,y_i)</math> किन्तु संभवतः असमान संभावनाओं के साथ <math>p_i</math> के लिए <math>i=1,\ldots,n</math>, तो सहप्रसरण है


:<math>\operatorname{cov} (X,Y)=\sum_{i=1}^n p_i (x_i-E(X)) (y_i-E(Y)).</math>
:<math>\operatorname{cov} (X,Y)=\sum_{i=1}^n p_i (x_i-E(X)) (y_i-E(Y)).</math>
Line 59: Line 59:
\end{align}
\end{align}
</math>
</math>
विशेष मामले में, <math>q=1</math> और <math>r=1</math>, के बीच सहप्रसरण <math>X</math> और <math>Y</math>, केवल का विचरण है <math>A</math> और सहप्रसरण नाम पूरी तरह उपयुक्त है।
विशेष स्थितियोंमें, <math>q=1</math> और <math>r=1</math>, के बीच सहप्रसरण <math>X</math> और <math>Y</math>, केवल का विचरण है <math>A</math> और सहप्रसरण नाम पूरी तरह उपयुक्त है।


[[File:Covariance_geometric_visualisation.svg|thumb|300px|सहप्रसरण उदाहरण की ज्यामितीय व्याख्या। {{nowrap|Each cuboid is the}} इसके बिंदु का अक्ष-संरेखित [[ आकार निर्धारक बॉक्स ]] {{nowrap|(''x'', ''y'', ''f''&thinsp;(''x'', ''y'')),}} और यह {{nowrap|''X'' and ''Y'' means}} (मैजेंटा पॉइंट)। {{nowrap|The covariance}} पहले और तीसरे चतुर्भुज (लाल) के घनाभों के आयतन का योग है और दूसरे और चौथे (नीले) चतुर्भुजों के आयतन को घटाता है।]]लगता है कि <math>X</math> और <math>Y</math> निम्नलिखित संयुक्त संभाव्यता वितरण है,<ref>{{Cite web|url=https://onlinecourses.science.psu.edu/stat414/node/109|title=Covariance of X and Y {{!}} STAT 414/415|publisher=The Pennsylvania State University|access-date=August 4, 2019|archive-url=https://web.archive.org/web/20170817034656/https://onlinecourses.science.psu.edu/stat414/node/109|archive-date=August 17, 2017|url-status=dead}}</ref> जिसमें छह केंद्रीय कोशिकाएं असतत संयुक्त संभावनाएं देती हैं <math>f(x, y)</math> छह काल्पनिक अहसासों में से <math>(x, y) \in S = \left\{ (5, 8), (6, 8), (7, 8), (5, 9), (6, 9), (7, 9) \right\}</math>:
[[File:Covariance_geometric_visualisation.svg|thumb|300px|सहप्रसरण उदाहरण की ज्यामितीय व्याख्या। {{nowrap|Each cuboid is the}} इसके बिंदु का अक्ष-संरेखित [[ आकार निर्धारक बॉक्स ]] {{nowrap|(''x'', ''y'', ''f''&thinsp;(''x'', ''y'')),}} और यह {{nowrap|''X'' and ''Y'' means}} (मैजेंटा पॉइंट)। {{nowrap|The covariance}} पहले और तीसरे चतुर्भुज (लाल) के घनाभों के आयतन का योग है और दूसरे और चौथे (नीले) चतुर्भुजों के आयतन को घटाता है।]]लगता है कि <math>X</math> और <math>Y</math> निम्नलिखित संयुक्त संभाव्यता वितरण है,<ref>{{Cite web|url=https://onlinecourses.science.psu.edu/stat414/node/109|title=Covariance of X and Y {{!}} STAT 414/415|publisher=The Pennsylvania State University|access-date=August 4, 2019|archive-url=https://web.archive.org/web/20170817034656/https://onlinecourses.science.psu.edu/stat414/node/109|archive-date=August 17, 2017|url-status=dead}}</ref> जिसमें छह केंद्रीय कोशिकाएं असतत संयुक्त संभावनाएं देती हैं <math>f(x, y)</math> छह काल्पनिक अहसासों में से <math>(x, y) \in S = \left\{ (5, 8), (6, 8), (7, 8), (5, 9), (6, 9), (7, 9) \right\}</math>:
Line 112: Line 112:


=== रैखिक संयोजनों का सहप्रसरण ===
=== रैखिक संयोजनों का सहप्रसरण ===
अगर <math>X</math>, <math>Y</math>, <math>W</math>, और <math>V</math> वास्तविक-मूल्यवान यादृच्छिक चर हैं और <math>a,b,c,d</math> वास्तविक-मूल्यवान स्थिरांक हैं, तो निम्नलिखित तथ्य सहप्रसरण की परिभाषा के परिणाम हैं:
यदि <math>X</math>, <math>Y</math>, <math>W</math>, और <math>V</math> वास्तविक-मूल्यवान यादृच्छिक चर हैं और <math>a,b,c,d</math> वास्तविक-मूल्यवान स्थिरांक हैं, तो निम्नलिखित तथ्य सहप्रसरण की परिभाषा के परिणाम हैं:
: <math>
: <math>
\begin{align}
\begin{align}
Line 138: Line 138:
यादृच्छिक चर जिनका सहप्रसरण शून्य है, असंबद्ध कहलाते हैं।<ref name=KunIlPark/>{{rp|p. 121}} इसी प्रकार, यादृच्छिक सदिशों के घटक जिनका सहप्रसरण मैट्रिक्स मुख्य विकर्ण के बाहर प्रत्येक प्रविष्टि में शून्य है, असंबद्ध भी कहलाते हैं।
यादृच्छिक चर जिनका सहप्रसरण शून्य है, असंबद्ध कहलाते हैं।<ref name=KunIlPark/>{{rp|p. 121}} इसी प्रकार, यादृच्छिक सदिशों के घटक जिनका सहप्रसरण मैट्रिक्स मुख्य विकर्ण के बाहर प्रत्येक प्रविष्टि में शून्य है, असंबद्ध भी कहलाते हैं।


अगर <math>X</math> और <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं, तो उनका सहप्रसरण शून्य है।<ref name=KunIlPark/>{{rp|p. 123}}<ref>{{Cite web|url=http://www.randomservices.org/random/expect/Covariance.html|title=सहप्रसरण और सहसंबंध|last=Siegrist|first=Kyle|publisher=University of Alabama in Huntsville|access-date=Oct 3, 2022}}</ref> यह इस प्रकार है क्योंकि स्वतंत्रता के तहत,
यदि <math>X</math> और <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं, तो उनका सहप्रसरण शून्य है।<ref name=KunIlPark/>{{rp|p. 123}}<ref>{{Cite web|url=http://www.randomservices.org/random/expect/Covariance.html|title=सहप्रसरण और सहसंबंध|last=Siegrist|first=Kyle|publisher=University of Alabama in Huntsville|access-date=Oct 3, 2022}}</ref> यह इस प्रकार है क्योंकि स्वतंत्रता के अनुसार ,


: <math>\operatorname{E}[XY]=\operatorname{E}[X] \cdot \operatorname{E}[Y]. </math>
: <math>\operatorname{E}[XY]=\operatorname{E}[X] \cdot \operatorname{E}[Y]. </math>
हालाँकि, आम तौर पर इसका विलोम सत्य नहीं है। उदाहरण के लिए, चलो <math>X</math> में समान रूप से वितरित हो <math>[-1,1]</math> और जाने <math>Y=X^2</math>. स्पष्ट रूप से, <math>X</math> और <math>Y</math> स्वतंत्र नहीं हैं, लेकिन
चूँकि, सामान्यतः इसका विलोम सत्य नहीं है। उदाहरण के लिए, चलो <math>X</math> में समान रूप से वितरित हो <math>[-1,1]</math> और जाने <math>Y=X^2</math>. स्पष्ट रूप से, <math>X</math> और <math>Y</math> स्वतंत्र नहीं हैं, किन्तु
: <math>\begin{align}
: <math>\begin{align}
   \operatorname{cov}(X, Y) &= \operatorname{cov}\left(X, X^2\right) \\
   \operatorname{cov}(X, Y) &= \operatorname{cov}\left(X, X^2\right) \\
Line 149: Line 149:
         &= 0.   
         &= 0.   
\end{align}</math>
\end{align}</math>
इस मामले में, के बीच संबंध <math>Y</math> और <math>X</math> गैर-रैखिक है, जबकि सहसंबंध और सहप्रसरण दो यादृच्छिक चर के बीच रैखिक निर्भरता के उपाय हैं। इस उदाहरण से पता चलता है कि यदि दो यादृच्छिक चर असंबंधित हैं, तो इसका मतलब यह नहीं है कि वे स्वतंत्र हैं। हालाँकि, यदि दो चर [[बहुभिन्नरूपी सामान्य वितरण]] हैं (लेकिन यदि वे केवल सामान्य रूप से वितरित नहीं हैं और असंबद्ध स्वतंत्र नहीं हैं), तो असंबद्धता का अर्थ स्वतंत्रता है।
इस स्थितियोंमें, के बीच संबंध <math>Y</math> और <math>X</math> गैर-रैखिक है, जबकि सहसंबंध और सहप्रसरण दो यादृच्छिक चर के बीच रैखिक निर्भरता के उपाय हैं। इस उदाहरण से पता चलता है कि यदि दो यादृच्छिक चर असंबंधित हैं, तो इसका मतलब यह नहीं है कि वे स्वतंत्र हैं। चूँकि, यदि दो चर [[बहुभिन्नरूपी सामान्य वितरण]] हैं (किन्तु यदि वे केवल सामान्य रूप से वितरित नहीं हैं और असंबद्ध स्वतंत्र नहीं हैं), तो असंबद्धता का अर्थ स्वतंत्रता है।


=== आंतरिक उत्पादों से संबंध ===
=== आंतरिक उत्पादों से संबंध ===
Line 159: Line 159:
वास्तव में इन गुणों का अर्थ है कि सहप्रसरण [[भागफल स्थान (रैखिक बीजगणित)]] पर एक आंतरिक उत्पाद को परिमित दूसरे क्षण के साथ यादृच्छिक चर के उप-स्थान को ले कर प्राप्त करता है और किसी भी दो की पहचान करता है जो एक स्थिरांक से भिन्न होता है। (यह पहचान सकारात्मक अर्ध-निश्चितता को सकारात्मक निश्चितता में बदल देती है।) वह भागफल सदिश स्थान परिमित दूसरे क्षण और शून्य के साथ यादृच्छिक चर के उप-स्थान के लिए आइसोमोर्फिक है; उस उप-स्थान पर, सहप्रसरण ठीक Lp स्थान है | L<sup>2</sup> नमूना स्थान पर वास्तविक-मूल्यवान कार्यों का आंतरिक उत्पाद।
वास्तव में इन गुणों का अर्थ है कि सहप्रसरण [[भागफल स्थान (रैखिक बीजगणित)]] पर एक आंतरिक उत्पाद को परिमित दूसरे क्षण के साथ यादृच्छिक चर के उप-स्थान को ले कर प्राप्त करता है और किसी भी दो की पहचान करता है जो एक स्थिरांक से भिन्न होता है। (यह पहचान सकारात्मक अर्ध-निश्चितता को सकारात्मक निश्चितता में बदल देती है।) वह भागफल सदिश स्थान परिमित दूसरे क्षण और शून्य के साथ यादृच्छिक चर के उप-स्थान के लिए आइसोमोर्फिक है; उस उप-स्थान पर, सहप्रसरण ठीक Lp स्थान है | L<sup>2</sup> नमूना स्थान पर वास्तविक-मूल्यवान कार्यों का आंतरिक उत्पाद।


नतीजतन, परिमित भिन्नता वाले यादृच्छिक चर के लिए, असमानता
परिणाम स्वरुप , परिमित भिन्नता वाले यादृच्छिक चर के लिए, असमानता


: <math>|\operatorname{cov}(X, Y)| \le \sqrt{\sigma^2(X) \sigma^2(Y)} </math>
: <math>|\operatorname{cov}(X, Y)| \le \sqrt{\sigma^2(X) \sigma^2(Y)} </math>
कॉची-श्वार्ज़ असमानता के माध्यम से है।
कॉची-श्वार्ज़ असमानता के माध्यम से है।


सबूत: अगर <math>\sigma^2(Y) = 0</math>, तो यह तुच्छ रूप से धारण करता है। अन्यथा, यादृच्छिक चर दें
सबूत: यदि <math>\sigma^2(Y) = 0</math>, तो यह तुच्छ रूप से धारण करता है। अन्यथा, यादृच्छिक चर दें


: <math> Z = X - \frac{\operatorname{cov}(X, Y)}{\sigma^2(Y)} Y.</math>
: <math> Z = X - \frac{\operatorname{cov}(X, Y)}{\sigma^2(Y)} Y.</math>
Line 187: Line 187:
जो चर के बीच सहप्रसरण का एक अनुमान है <math>j</math> और चर <math>k</math>.
जो चर के बीच सहप्रसरण का एक अनुमान है <math>j</math> और चर <math>k</math>.


नमूना माध्य और नमूना सहप्रसरण मैट्रिक्स माध्य के एक अनुमानक और यादृच्छिक सदिश के सहप्रसरण मैट्रिक्स के पूर्वाग्रह हैं <math>\textstyle \mathbf{X}</math>, एक सदिश जिसका jवाँ तत्व <math>(j = 1,\, \ldots,\, K)</math> यादृच्छिक चरों में से एक है। नमूना सहप्रसरण मैट्रिक्स का कारण है <math>\textstyle N-1</math> के बजाय भाजक में <math>\textstyle N</math> अनिवार्य रूप से जनसंख्या का मतलब है <math>\operatorname{E}(\mathbf{X})</math> ज्ञात नहीं है और इसे नमूना माध्य से बदल दिया गया है <math>\mathbf{\bar{X}}</math>. अगर जनसंख्या का मतलब है <math>\operatorname{E}(\mathbf{X})</math> ज्ञात है, अनुरूप निष्पक्ष अनुमान द्वारा दिया गया है
नमूना माध्य और नमूना सहप्रसरण मैट्रिक्स माध्य के एक अनुमानक और यादृच्छिक सदिश के सहप्रसरण मैट्रिक्स के पूर्वाग्रह हैं <math>\textstyle \mathbf{X}</math>, एक सदिश जिसका jवाँ तत्व <math>(j = 1,\, \ldots,\, K)</math> यादृच्छिक चरों में से एक है। नमूना सहप्रसरण मैट्रिक्स का कारण है <math>\textstyle N-1</math> के अतिरिक्त भाजक में <math>\textstyle N</math> अनिवार्य रूप से जनसंख्या का मतलब है <math>\operatorname{E}(\mathbf{X})</math> ज्ञात नहीं है और इसे नमूना माध्य से बदल दिया गया है <math>\mathbf{\bar{X}}</math>. यदि जनसंख्या का मतलब है <math>\operatorname{E}(\mathbf{X})</math> ज्ञात है, अनुरूप निष्पक्ष अनुमान द्वारा दिया गया है


: <math> q_{jk} = \frac{1}{N} \sum_{i=1}^N \left(X_{ij} - \operatorname{E}\left(X_j\right)\right) \left(X_{ik} - \operatorname{E}\left(X_k\right)\right)</math>.
: <math> q_{jk} = \frac{1}{N} \sum_{i=1}^N \left(X_{ij} - \operatorname{E}\left(X_j\right)\right) \left(X_{ik} - \operatorname{E}\left(X_k\right)\right)</math>.
Line 239: Line 239:


=== एक वास्तविक या जटिल हिल्बर्ट अंतरिक्ष में यादृच्छिक वैक्टर का क्रॉस-सहप्रसरण sesquilinear रूप ===
=== एक वास्तविक या जटिल हिल्बर्ट अंतरिक्ष में यादृच्छिक वैक्टर का क्रॉस-सहप्रसरण sesquilinear रूप ===
अधिक आम तौर पर चलो <math>H_1 = (H_1, \langle \,,\rangle_1)</math> और <math>H_2 = (H_2, \langle \,,\rangle_2)</math>, [[हिल्बर्ट अंतरिक्ष]] खत्म हो जाएं <math>\mathbb{R}</math> या <math>\mathbb{C}</math> साथ <math>\langle \,, \rangle</math> पहले चर में विरोधी रेखीय, और चलो <math>\mathbf{X}, \mathbf{Y}</math> होना <math>H_1</math> सम्मान। <math>H_2</math> मूल्यवान यादृच्छिक चर।
अधिक सामान्यतः चलो <math>H_1 = (H_1, \langle \,,\rangle_1)</math> और <math>H_2 = (H_2, \langle \,,\rangle_2)</math>, [[हिल्बर्ट अंतरिक्ष]] खत्म हो जाएं <math>\mathbb{R}</math> या <math>\mathbb{C}</math> साथ <math>\langle \,, \rangle</math> पहले चर में विरोधी रेखीय, और चलो <math>\mathbf{X}, \mathbf{Y}</math> होना <math>H_1</math> सम्मान। <math>H_2</math> मूल्यवान यादृच्छिक चर।
फिर का सहप्रसरण <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> पर se[[squilinear]] रूप है <math>H_1 \times H_2</math> (पहले चर में विरोधी रेखीय) द्वारा दिया गया
फिर का सहप्रसरण <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> पर se[[squilinear]] रूप है <math>H_1 \times H_2</math> (पहले चर में विरोधी रेखीय) द्वारा दिया गया
:<math>\begin{align}
:<math>\begin{align}
Line 252: Line 252:
== संख्यात्मक गणना ==
== संख्यात्मक गणना ==
{{main|Algorithms for calculating variance#Covariance}}
{{main|Algorithms for calculating variance#Covariance}}
कब <math>\operatorname{E}[XY] \approx \operatorname{E}[X]\operatorname{E}[Y]</math>, समीकरण <math>\operatorname{cov}(X, Y) = \operatorname{E}\left[X Y\right] - \operatorname{E}\left[X\right] \operatorname{E}\left[Y\right]</math> विनाशकारी रद्दीकरण की संभावना है यदि <math>\operatorname{E}\left[X Y\right]</math> और <math>\operatorname{E}\left[X\right] \operatorname{E}\left[Y\right]</math> सटीक रूप से गणना नहीं की जाती है और इस प्रकार कंप्यूटर प्रोग्राम से बचा जाना चाहिए जब डेटा पहले केंद्रित नहीं किया गया हो।<ref>[[Donald E. Knuth]] (1998). ''[[The Art of Computer Programming]]'', volume 2: ''Seminumerical Algorithms'', 3rd edn., p. 232. Boston: Addison-Wesley.</ref> इस मामले में प्रसरण#सहप्रसरण की गणना के लिए एल्गोरिदम को प्राथमिकता दी जानी चाहिए।<ref>{{Cite journal|last1=Schubert|first1=Erich|last2=Gertz|first2=Michael|date=2018|title=(सह-) विचरण की संख्यात्मक रूप से स्थिर समानांतर संगणना|url=http://dl.acm.org/citation.cfm?doid=3221269.3223036|journal=Proceedings of the 30th International Conference on Scientific and Statistical Database Management – SSDBM '18|language=en|location=Bozen-Bolzano, Italy|publisher=ACM Press|pages=1–12|doi=10.1145/3221269.3223036|isbn=9781450365055|s2cid=49665540}}</ref>
कब <math>\operatorname{E}[XY] \approx \operatorname{E}[X]\operatorname{E}[Y]</math>, समीकरण <math>\operatorname{cov}(X, Y) = \operatorname{E}\left[X Y\right] - \operatorname{E}\left[X\right] \operatorname{E}\left[Y\right]</math> विनाशकारी रद्दीकरण की संभावना है यदि <math>\operatorname{E}\left[X Y\right]</math> और <math>\operatorname{E}\left[X\right] \operatorname{E}\left[Y\right]</math> त्रुटिहीन रूप से गणना नहीं की जाती है और इस प्रकार कंप्यूटर प्रोग्राम से बचा जाना चाहिए जब डेटा पहले केंद्रित नहीं किया गया हो।<ref>[[Donald E. Knuth]] (1998). ''[[The Art of Computer Programming]]'', volume 2: ''Seminumerical Algorithms'', 3rd edn., p. 232. Boston: Addison-Wesley.</ref> इस स्थितियोंमें प्रसरण#सहप्रसरण की गणना के लिए एल्गोरिदम को प्राथमिकता दी जानी चाहिए।<ref>{{Cite journal|last1=Schubert|first1=Erich|last2=Gertz|first2=Michael|date=2018|title=(सह-) विचरण की संख्यात्मक रूप से स्थिर समानांतर संगणना|url=http://dl.acm.org/citation.cfm?doid=3221269.3223036|journal=Proceedings of the 30th International Conference on Scientific and Statistical Database Management – SSDBM '18|language=en|location=Bozen-Bolzano, Italy|publisher=ACM Press|pages=1–12|doi=10.1145/3221269.3223036|isbn=9781450365055|s2cid=49665540}}</ref>




Line 263: Line 263:
सहप्रसरण जीव विज्ञान में एक महत्वपूर्ण उपाय है। [[डीएनए]] के कुछ अनुक्रम प्रजातियों के बीच दूसरों की तुलना में अधिक संरक्षित हैं, और इस प्रकार [[प्रोटीन]] या आरएनए संरचनाओं की द्वितीयक और तृतीयक संरचनाओं का अध्ययन करने के लिए, अनुक्रमों की बारीकी से संबंधित प्रजातियों में तुलना की जाती है। यदि अनुक्रम परिवर्तन पाए जाते हैं या गैर-कोडिंग आरएनए (जैसे कि [[माइक्रो RNA]]) में कोई परिवर्तन नहीं पाया जाता है, तो आरएनए लूप जैसे सामान्य संरचनात्मक रूपांकनों के लिए अनुक्रम आवश्यक पाए जाते हैं। आनुवांशिकी में, सहप्रसरण आनुवंशिक संबंध मैट्रिक्स (जीआरएम) (उर्फ रिश्तेदारी मैट्रिक्स) की गणना के लिए एक आधार प्रदान करता है, जो किसी ज्ञात करीबी रिश्तेदार के साथ-साथ जटिल लक्षणों की आनुवंशिकता के अनुमान पर अनुमान से जनसंख्या संरचना पर अनुमान लगाने में सक्षम बनाता है।
सहप्रसरण जीव विज्ञान में एक महत्वपूर्ण उपाय है। [[डीएनए]] के कुछ अनुक्रम प्रजातियों के बीच दूसरों की तुलना में अधिक संरक्षित हैं, और इस प्रकार [[प्रोटीन]] या आरएनए संरचनाओं की द्वितीयक और तृतीयक संरचनाओं का अध्ययन करने के लिए, अनुक्रमों की बारीकी से संबंधित प्रजातियों में तुलना की जाती है। यदि अनुक्रम परिवर्तन पाए जाते हैं या गैर-कोडिंग आरएनए (जैसे कि [[माइक्रो RNA]]) में कोई परिवर्तन नहीं पाया जाता है, तो आरएनए लूप जैसे सामान्य संरचनात्मक रूपांकनों के लिए अनुक्रम आवश्यक पाए जाते हैं। आनुवांशिकी में, सहप्रसरण आनुवंशिक संबंध मैट्रिक्स (जीआरएम) (उर्फ रिश्तेदारी मैट्रिक्स) की गणना के लिए एक आधार प्रदान करता है, जो किसी ज्ञात करीबी रिश्तेदार के साथ-साथ जटिल लक्षणों की आनुवंशिकता के अनुमान पर अनुमान से जनसंख्या संरचना पर अनुमान लगाने में सक्षम बनाता है।


[[विकास]] और [[प्राकृतिक चयन]] के सिद्धांत में, [[मूल्य समीकरण]] वर्णन करता है कि समय के साथ एक आनुवंशिक विशेषता आवृत्ति में कैसे बदलती है। विकास और प्राकृतिक चयन का गणितीय विवरण देने के लिए समीकरण एक विशेषता और [[फिटनेस (जीव विज्ञान)]] के बीच सहप्रसरण का उपयोग करता है। यह उन प्रभावों को समझने का एक तरीका प्रदान करता है जो जीन संचरण और प्राकृतिक चयन का जनसंख्या की प्रत्येक नई पीढ़ी के भीतर जीन के अनुपात पर होता है।<ref name="Price1970">{{cite journal |last1= Price | first1=George |year=1970 |title=चयन और सहप्रसरण|journal=[[Nature (journal)|Nature]] |volume=227 |issue=5257 |pages=520–521 | doi=10.1038/227520a0 |pmid=5428476| bibcode=1970Natur.227..520P | s2cid=4264723 }}</ref><ref name="Harman2020">{{cite journal |last1= Harman |first1=Oren |year=2020 | title=When science mirrors life: on the origins of the Price equation. |journal=Phil. Trans. R. Soc. B |volume=375 |issue=1797 |pages=1–7 | doi=10.1098/rstb.2019.0352 |pmid=32146891 |pmc=7133509 | url=https://royalsocietypublishing.org/toc/rstb/2020/375/1797 | access-date=2020-05-15 |doi-access=free }}</ref> परिजन चयन पर डब्ल्यू.डी. हैमिल्टन के कार्य को फिर से व्युत्पन्न करने के लिए मूल्य समीकरण जॉर्ज आर. प्राइस द्वारा व्युत्पन्न किया गया था। विभिन्न विकासवादी मामलों के लिए [[मूल्य समीकरण उदाहरण]]ों का निर्माण किया गया है।
[[विकास]] और [[प्राकृतिक चयन]] के सिद्धांत में, [[मूल्य समीकरण]] वर्णन करता है कि समय के साथ एक आनुवंशिक विशेषता आवृत्ति में कैसे बदलती है। विकास और प्राकृतिक चयन का गणितीय विवरण देने के लिए समीकरण एक विशेषता और [[फिटनेस (जीव विज्ञान)]] के बीच सहप्रसरण का उपयोग करता है। यह उन प्रभावों को समझने का एक विधि प्रदान करता है जो जीन संचरण और प्राकृतिक चयन का जनसंख्या की प्रत्येक नई पीढ़ी के भीतर जीन के अनुपात पर होता है।<ref name="Price1970">{{cite journal |last1= Price | first1=George |year=1970 |title=चयन और सहप्रसरण|journal=[[Nature (journal)|Nature]] |volume=227 |issue=5257 |pages=520–521 | doi=10.1038/227520a0 |pmid=5428476| bibcode=1970Natur.227..520P | s2cid=4264723 }}</ref><ref name="Harman2020">{{cite journal |last1= Harman |first1=Oren |year=2020 | title=When science mirrors life: on the origins of the Price equation. |journal=Phil. Trans. R. Soc. B |volume=375 |issue=1797 |pages=1–7 | doi=10.1098/rstb.2019.0352 |pmid=32146891 |pmc=7133509 | url=https://royalsocietypublishing.org/toc/rstb/2020/375/1797 | access-date=2020-05-15 |doi-access=free }}</ref> परिजन चयन पर डब्ल्यू.डी. हैमिल्टन के कार्य को फिर से व्युत्पन्न करने के लिए मूल्य समीकरण जॉर्ज आर. प्राइस द्वारा व्युत्पन्न किया गया था। विभिन्न विकासवादी स्थितियोंके लिए [[मूल्य समीकरण उदाहरण]]ों का निर्माण किया गया है।नियत


=== [[वित्तीय अर्थशास्त्र]] में ===
=== [[वित्तीय अर्थशास्त्र]] में ===


सहप्रसरण वित्तीय अर्थशास्त्र में महत्वपूर्ण भूमिका निभाते हैं, विशेष रूप से [[आधुनिक पोर्टफोलियो सिद्धांत]] और [[पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल]] में। विभिन्न संपत्तियों के रिटर्न के बीच सहप्रसरण का उपयोग, कुछ मान्यताओं के तहत, विभिन्न संपत्तियों की सापेक्ष मात्रा निर्धारित करने के लिए किया जाता है, जो निवेशकों को (एक सामान्य अर्थशास्त्र में) या भविष्यवाणी की जाती है (एक [[सकारात्मक अर्थशास्त्र]] में) [[विविधीकरण (वित्त)]] के संदर्भ में धारण करना चुनते हैं। ).
सहप्रसरण वित्तीय अर्थशास्त्र में महत्वपूर्ण भूमिका निभाते हैं, विशेष रूप से [[आधुनिक पोर्टफोलियो सिद्धांत]] और [[पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल]] में। विभिन्न संपत्तियों के रिटर्न के बीच सहप्रसरण का उपयोग, कुछ मान्यताओं के अनुसार , विभिन्न संपत्तियों की सापेक्ष मात्रा निर्धारित करने के लिए किया जाता है, जो निवेशकों को (एक सामान्य अर्थशास्त्र में) या भविष्यवाणी की जाती है (एक [[सकारात्मक अर्थशास्त्र]] में) [[विविधीकरण (वित्त)]] के संदर्भ में धारण करना चुनते हैं। ).


=== मौसम संबंधी और समुद्र संबंधी [[डेटा आत्मसात]] === में
=== मौसम संबंधी और समुद्र संबंधी [[डेटा आत्मसात]] === में
मौसम पूर्वानुमान मॉडल चलाने के लिए आवश्यक प्रारंभिक स्थितियों का अनुमान लगाने में सहप्रसरण मैट्रिक्स महत्वपूर्ण है, एक प्रक्रिया जिसे डेटा सम्मिलन के रूप में जाना जाता है। 'पूर्वानुमान त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण आम तौर पर एक माध्य स्थिति (या तो एक जलवायु विज्ञान या पहनावा माध्य) के आसपास गड़बड़ी के बीच किया जाता है। 'अवलोकन त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण संयुक्त अवलोकन संबंधी त्रुटियों (विकर्ण पर) और माप (विकर्ण से दूर) के बीच सहसंबद्ध त्रुटियों के परिमाण का प्रतिनिधित्व करने के लिए किया गया है। यह [[कलमन फ़िल्टरिंग]] और समय-भिन्न प्रणालियों के लिए अधिक सामान्य [[राज्य अनुमान]] के लिए व्यापक अनुप्रयोग का एक उदाहरण है।
मौसम पूर्वानुमान मॉडल चलाने के लिए आवश्यक प्रारंभिक स्थितियों का अनुमान लगाने में सहप्रसरण मैट्रिक्स महत्वपूर्ण है, एक प्रक्रिया जिसे डेटा सम्मिलन के रूप में जाना जाता है। 'पूर्वानुमान त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण सामान्यतः एक माध्य स्थिति (या तो एक जलवायु विज्ञान या पहनावा माध्य) के आसपास गड़बड़ी के बीच किया जाता है। 'अवलोकन त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण संयुक्त अवलोकन संबंधी त्रुटियों (विकर्ण पर) और माप (विकर्ण से दूर) के बीच सहसंबद्ध त्रुटियों के परिमाण का प्रतिनिधित्व करने के लिए किया गया है। यह [[कलमन फ़िल्टरिंग]] और समय-भिन्न प्रणालियों के लिए अधिक सामान्य [[राज्य अनुमान]] के लिए व्यापक अनुप्रयोग का एक उदाहरण है।


=== सूक्ष्म मौसम विज्ञान में ===
=== सूक्ष्म मौसम विज्ञान में ===

Revision as of 20:54, 24 March 2023

दो यादृच्छिक चर X और Y के सहप्रसरण का चिह्न

संभाव्यता सिद्धांत और सांख्यिकी में सहप्रसरण दो यादृच्छिक चरों की संयुक्त परिवर्तनशीलता का एक उपाय है।[1] यदि एक चर के बड़े मान मुख्य रूप से दूसरे चर के बड़े मूल्यों के अनुरूप होते हैं, और वही कम मानों के लिए होता है (अर्थात, चर समान व्यवहार दिखाते हैं), सहप्रसरण सकारात्मक है।[2] विपरीत स्थिति में, जब एक चर के अधिक मूल्य मुख्य रूप से दूसरे के कम मूल्यों के अनुरूप होते हैं, (अर्थात, चर विपरीत व्यवहार दिखाते हैं), सहप्रसरण ऋणात्मक होता है। सहप्रसरण का चिन्ह, इसलिए, चरों के बीच रैखिक संबंध में प्रवृत्ति को दर्शाता है। सहप्रसरण का परिमाण उन प्रसरणों का ज्यामितीय माध्य है जो दो यादृच्छिक चरों के लिए सामान्य हैं। पियर्सन गुणनफल-आघूर्ण सहसंबंध गुणांक दो यादृच्छिक चरों के लिए कुल प्रसरणों के ज्यामितीय माध्य से विभाजित करके सहप्रसरण को सामान्य करता है।

(1) दो यादृच्छिक चर के सहप्रसरण के बीच एक अंतर किया जाना चाहिए, जो एक सांख्यिकीय जनसंख्या सांख्यिकीय पैरामीटर है जिसे संयुक्त संभाव्यता वितरण की संपत्ति के रूप में देखा जा सकता है, और (2) नमूना (सांख्यिकी) सहप्रसरण, जो इसके अतिरिक्त नमूने के वर्णनकर्ता के रूप में सेवा करने के लिए, जनसंख्या पैरामीटर के सांख्यिकीय अनुमान मान के रूप में भी कार्य करता है।

परिभाषा

दो संयुक्त वितरण के लिए वास्तविक संख्या-मूल्यवान यादृच्छिक चर और परिमित दूसरे क्षणों के साथ, सहप्रसरण को उनके व्यक्तिगत अपेक्षित मूल्यों से उनके विचलन के उत्पाद के अपेक्षित मूल्य (या माध्य) के रूप में परिभाषित किया गया है:[3][4]: p. 119 

कहाँ का अपेक्षित मूल्य है , के माध्य के रूप में भी जाना जाता है . सहप्रसरण को भी कभी-कभी निरूपित किया जाता है या , विचरण के अनुरूप। अपेक्षाओं की रैखिकता संपत्ति का उपयोग करके, यह उनके उत्पाद के अपेक्षित मूल्य घटाकर उनके अपेक्षित मूल्यों के उत्पाद को सरल बनाया जा सकता है:

किन्तु यह समीकरण विनाशकारी रद्दीकरण के लिए अतिसंवेदनशील है (नीचे सहप्रसरण#संख्यात्मक संगणना पर अनुभाग देखें)।

सहप्रसरण की माप की इकाई के हैं के समय . इसके विपरीत, सहसंबंध, जो सहप्रसरण पर निर्भर करता है, रैखिक निर्भरता का एक आयाम रहित संख्या माप है। (वास्तव में, सहसंबंध गुणांक सहप्रसरण के सामान्यीकृत संस्करण के रूप में समझा जा सकता है।)

जटिल यादृच्छिक चर के लिए परिभाषा

दो जटिल यादृच्छिक चर के बीच सहप्रसरण परिभाषित किया जाता है[4]: p. 119 

परिभाषा में दूसरे कारक के जटिल संयुग्मन पर ध्यान दें।

एक संबंधित छद्म सहप्रसरण को भी परिभाषित किया जा सकता है।

असतत यादृच्छिक चर

यदि (वास्तविक) यादृच्छिक चर जोड़ी मान ग्रहण कर सकते हैं के लिए , समान संभावनाओं के साथ , तो साधन के संदर्भ में सहप्रसरण को समान रूप से लिखा जा सकता है और जैसा

यह सीधे तौर पर साधनों का जिक्र किए बिना समान रूप से व्यक्त किया जा सकता है[5]

अधिक सामान्यतः, यदि वहाँ हैं की संभावित प्राप्ति , अर्थात् किन्तु संभवतः असमान संभावनाओं के साथ के लिए , तो सहप्रसरण है


उदाहरण

3 स्वतंत्र यादृच्छिक चर पर विचार करें और दो स्थिरांक .

विशेष स्थितियोंमें, और , के बीच सहप्रसरण और , केवल का विचरण है और सहप्रसरण नाम पूरी तरह उपयुक्त है।

सहप्रसरण उदाहरण की ज्यामितीय व्याख्या। Each cuboid is the इसके बिंदु का अक्ष-संरेखित आकार निर्धारक बॉक्स (x, y, f (x, y)), और यह X and Y means (मैजेंटा पॉइंट)। The covariance पहले और तीसरे चतुर्भुज (लाल) के घनाभों के आयतन का योग है और दूसरे और चौथे (नीले) चतुर्भुजों के आयतन को घटाता है।

लगता है कि और निम्नलिखित संयुक्त संभाव्यता वितरण है,[6] जिसमें छह केंद्रीय कोशिकाएं असतत संयुक्त संभावनाएं देती हैं छह काल्पनिक अहसासों में से :

x
5 6 7
y 8 0 0.4 0.1 0.5
9 0.3 0 0.2 0.5
0.3 0.4 0.3 1

जबकि तीन मान (5, 6 और 7) ले सकते हैं दो (8 और 9) ले सकते हैं। उनके साधन हैं और . तब,


गुण

स्वयं के साथ सहप्रसरण

विचरण सहप्रसरण का एक विशेष मामला है जिसमें दो चर समान होते हैं (अर्थात, जिसमें एक चर हमेशा दूसरे के समान मान लेता है):[4]: 121 


रैखिक संयोजनों का सहप्रसरण

यदि , , , और वास्तविक-मूल्यवान यादृच्छिक चर हैं और वास्तविक-मूल्यवान स्थिरांक हैं, तो निम्नलिखित तथ्य सहप्रसरण की परिभाषा के परिणाम हैं:

एक क्रम के लिए वास्तविक-मूल्यवान और स्थिरांक में यादृच्छिक चर , अपने पास


हॉफडिंग की सहप्रसरण पहचान

दो यादृच्छिक चर के बीच सहप्रसरण की गणना करने के लिए एक उपयोगी पहचान होफ़डिंग की सहप्रसरण पहचान है:[7]

कहाँ यादृच्छिक सदिश का संयुक्त संचयी बंटन फलन है और सीमांत वितरण हैं।

असंबद्धता और स्वतंत्रता

यादृच्छिक चर जिनका सहप्रसरण शून्य है, असंबद्ध कहलाते हैं।[4]: p. 121  इसी प्रकार, यादृच्छिक सदिशों के घटक जिनका सहप्रसरण मैट्रिक्स मुख्य विकर्ण के बाहर प्रत्येक प्रविष्टि में शून्य है, असंबद्ध भी कहलाते हैं।

यदि और सांख्यिकीय स्वतंत्रता हैं, तो उनका सहप्रसरण शून्य है।[4]: p. 123 [8] यह इस प्रकार है क्योंकि स्वतंत्रता के अनुसार ,

चूँकि, सामान्यतः इसका विलोम सत्य नहीं है। उदाहरण के लिए, चलो में समान रूप से वितरित हो और जाने . स्पष्ट रूप से, और स्वतंत्र नहीं हैं, किन्तु

इस स्थितियोंमें, के बीच संबंध और गैर-रैखिक है, जबकि सहसंबंध और सहप्रसरण दो यादृच्छिक चर के बीच रैखिक निर्भरता के उपाय हैं। इस उदाहरण से पता चलता है कि यदि दो यादृच्छिक चर असंबंधित हैं, तो इसका मतलब यह नहीं है कि वे स्वतंत्र हैं। चूँकि, यदि दो चर बहुभिन्नरूपी सामान्य वितरण हैं (किन्तु यदि वे केवल सामान्य रूप से वितरित नहीं हैं और असंबद्ध स्वतंत्र नहीं हैं), तो असंबद्धता का अर्थ स्वतंत्रता है।

आंतरिक उत्पादों से संबंध

सहप्रसरण के कई गुणों को यह देखकर सुरुचिपूर्ण ढंग से निकाला जा सकता है कि यह एक आंतरिक उत्पाद के समान गुणों को संतुष्ट करता है:

  1. बिलिनियर ऑपरेटर: स्थिरांक के लिए और और यादृच्छिक चर
  2. सममित:
  3. निश्चित द्विरेखीय रूप|सकारात्मक अर्ध-निश्चित: सभी यादृच्छिक चर के लिए , और इसका आशय है स्थिर लगभग निश्चित है।

वास्तव में इन गुणों का अर्थ है कि सहप्रसरण भागफल स्थान (रैखिक बीजगणित) पर एक आंतरिक उत्पाद को परिमित दूसरे क्षण के साथ यादृच्छिक चर के उप-स्थान को ले कर प्राप्त करता है और किसी भी दो की पहचान करता है जो एक स्थिरांक से भिन्न होता है। (यह पहचान सकारात्मक अर्ध-निश्चितता को सकारात्मक निश्चितता में बदल देती है।) वह भागफल सदिश स्थान परिमित दूसरे क्षण और शून्य के साथ यादृच्छिक चर के उप-स्थान के लिए आइसोमोर्फिक है; उस उप-स्थान पर, सहप्रसरण ठीक Lp स्थान है | L2 नमूना स्थान पर वास्तविक-मूल्यवान कार्यों का आंतरिक उत्पाद।

परिणाम स्वरुप , परिमित भिन्नता वाले यादृच्छिक चर के लिए, असमानता

कॉची-श्वार्ज़ असमानता के माध्यम से है।

सबूत: यदि , तो यह तुच्छ रूप से धारण करता है। अन्यथा, यादृच्छिक चर दें

तो हमारे पास हैं


नमूना सहप्रसरण की गणना

बीच में नमूना सहप्रसरण पर आधारित चर अन्यथा अप्राप्य आबादी से खींची गई प्रत्येक की टिप्पणियां, द्वारा दी जाती हैं मैट्रिक्स (गणित) प्रविष्टियों के साथ

जो चर के बीच सहप्रसरण का एक अनुमान है और चर .

नमूना माध्य और नमूना सहप्रसरण मैट्रिक्स माध्य के एक अनुमानक और यादृच्छिक सदिश के सहप्रसरण मैट्रिक्स के पूर्वाग्रह हैं , एक सदिश जिसका jवाँ तत्व यादृच्छिक चरों में से एक है। नमूना सहप्रसरण मैट्रिक्स का कारण है के अतिरिक्त भाजक में अनिवार्य रूप से जनसंख्या का मतलब है ज्ञात नहीं है और इसे नमूना माध्य से बदल दिया गया है . यदि जनसंख्या का मतलब है ज्ञात है, अनुरूप निष्पक्ष अनुमान द्वारा दिया गया है

.

सामान्यीकरण

=== वास्तविक यादृच्छिक वैक्टर === के ऑटो-सहप्रसरण मैट्रिक्स

एक वेक्टर के लिए का परिमित दूसरे क्षणों के साथ संयुक्त रूप से वितरित रैंडम चर, इसका ऑटो-कोवैरियंस मैट्रिक्स (जिसे वैरियंस-कॉवैरियंस मैट्रिक्स या बस कोवैरियंस मैट्रिक्स के रूप में भी जाना जाता है) (द्वारा भी दर्शाया गया है या ) परिभाषित किया जाता है[9]: p.335 

होने देना सहप्रसरण मैट्रिक्स के साथ एक यादृच्छिक वेक्टर बनें Σ, और जाने A एक मैट्रिक्स बनें जो कार्य कर सके बाईं तरफ। मैट्रिक्स-वेक्टर उत्पाद का सहप्रसरण मैट्रिक्स A X है:

यह अपेक्षित मूल्य की रैखिकता का प्रत्यक्ष परिणाम है और उपयोगी है एक रैखिक परिवर्तन लागू करते समय, जैसे एक सफ़ेद परिवर्तन, एक सदिश के लिए।

वास्तविक यादृच्छिक सदिशों का क्रॉस-सहप्रसरण मैट्रिक्स

वास्तविक यादृच्छिक वैक्टर के लिए और , द क्रॉस-कोवैरियंस मैट्रिक्स बराबर है[9]: p.336 

 

 

 

 

(Eq.2)

कहाँ वेक्टर (या मैट्रिक्स) का स्थानान्तरण है . इस मैट्रिक्स का वां>-वां तत्व सहप्रसरण के बराबर है बीच i- का अदिश घटक और यह j- का अदिश घटक . विशेष रूप से, का स्थानान्तरण है .

एक वास्तविक या जटिल हिल्बर्ट अंतरिक्ष में यादृच्छिक वैक्टर का क्रॉस-सहप्रसरण sesquilinear रूप

अधिक सामान्यतः चलो और , हिल्बर्ट अंतरिक्ष खत्म हो जाएं या साथ पहले चर में विरोधी रेखीय, और चलो होना सम्मान। मूल्यवान यादृच्छिक चर। फिर का सहप्रसरण और पर sesquilinear रूप है (पहले चर में विरोधी रेखीय) द्वारा दिया गया


संख्यात्मक गणना

कब , समीकरण विनाशकारी रद्दीकरण की संभावना है यदि और त्रुटिहीन रूप से गणना नहीं की जाती है और इस प्रकार कंप्यूटर प्रोग्राम से बचा जाना चाहिए जब डेटा पहले केंद्रित नहीं किया गया हो।[10] इस स्थितियोंमें प्रसरण#सहप्रसरण की गणना के लिए एल्गोरिदम को प्राथमिकता दी जानी चाहिए।[11]


टिप्पणियाँ

सहप्रसरण को कभी-कभी दो यादृच्छिक चरों के बीच रैखिक निर्भरता का माप कहा जाता है। इसका मतलब वही नहीं है जो रैखिक बीजगणित के संदर्भ में है (रैखिक निर्भरता देखें)। जब सहप्रसरण सामान्यीकृत होता है, तो पियर्सन सहसंबंध गुणांक प्राप्त होता है, जो चरों के बीच संबंध का वर्णन करने वाले सर्वोत्तम संभव रैखिक फ़ंक्शन के लिए उपयुक्तता प्रदान करता है। इस अर्थ में सहप्रसरण निर्भरता का एक रेखीय गेज है।

अनुप्रयोग

आनुवंशिकी और आणविक जीव विज्ञान में

सहप्रसरण जीव विज्ञान में एक महत्वपूर्ण उपाय है। डीएनए के कुछ अनुक्रम प्रजातियों के बीच दूसरों की तुलना में अधिक संरक्षित हैं, और इस प्रकार प्रोटीन या आरएनए संरचनाओं की द्वितीयक और तृतीयक संरचनाओं का अध्ययन करने के लिए, अनुक्रमों की बारीकी से संबंधित प्रजातियों में तुलना की जाती है। यदि अनुक्रम परिवर्तन पाए जाते हैं या गैर-कोडिंग आरएनए (जैसे कि माइक्रो RNA) में कोई परिवर्तन नहीं पाया जाता है, तो आरएनए लूप जैसे सामान्य संरचनात्मक रूपांकनों के लिए अनुक्रम आवश्यक पाए जाते हैं। आनुवांशिकी में, सहप्रसरण आनुवंशिक संबंध मैट्रिक्स (जीआरएम) (उर्फ रिश्तेदारी मैट्रिक्स) की गणना के लिए एक आधार प्रदान करता है, जो किसी ज्ञात करीबी रिश्तेदार के साथ-साथ जटिल लक्षणों की आनुवंशिकता के अनुमान पर अनुमान से जनसंख्या संरचना पर अनुमान लगाने में सक्षम बनाता है।

विकास और प्राकृतिक चयन के सिद्धांत में, मूल्य समीकरण वर्णन करता है कि समय के साथ एक आनुवंशिक विशेषता आवृत्ति में कैसे बदलती है। विकास और प्राकृतिक चयन का गणितीय विवरण देने के लिए समीकरण एक विशेषता और फिटनेस (जीव विज्ञान) के बीच सहप्रसरण का उपयोग करता है। यह उन प्रभावों को समझने का एक विधि प्रदान करता है जो जीन संचरण और प्राकृतिक चयन का जनसंख्या की प्रत्येक नई पीढ़ी के भीतर जीन के अनुपात पर होता है।[12][13] परिजन चयन पर डब्ल्यू.डी. हैमिल्टन के कार्य को फिर से व्युत्पन्न करने के लिए मूल्य समीकरण जॉर्ज आर. प्राइस द्वारा व्युत्पन्न किया गया था। विभिन्न विकासवादी स्थितियोंके लिए मूल्य समीकरण उदाहरणों का निर्माण किया गया है।नियत

वित्तीय अर्थशास्त्र में

सहप्रसरण वित्तीय अर्थशास्त्र में महत्वपूर्ण भूमिका निभाते हैं, विशेष रूप से आधुनिक पोर्टफोलियो सिद्धांत और पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल में। विभिन्न संपत्तियों के रिटर्न के बीच सहप्रसरण का उपयोग, कुछ मान्यताओं के अनुसार , विभिन्न संपत्तियों की सापेक्ष मात्रा निर्धारित करने के लिए किया जाता है, जो निवेशकों को (एक सामान्य अर्थशास्त्र में) या भविष्यवाणी की जाती है (एक सकारात्मक अर्थशास्त्र में) विविधीकरण (वित्त) के संदर्भ में धारण करना चुनते हैं। ).

=== मौसम संबंधी और समुद्र संबंधी डेटा आत्मसात === में मौसम पूर्वानुमान मॉडल चलाने के लिए आवश्यक प्रारंभिक स्थितियों का अनुमान लगाने में सहप्रसरण मैट्रिक्स महत्वपूर्ण है, एक प्रक्रिया जिसे डेटा सम्मिलन के रूप में जाना जाता है। 'पूर्वानुमान त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण सामान्यतः एक माध्य स्थिति (या तो एक जलवायु विज्ञान या पहनावा माध्य) के आसपास गड़बड़ी के बीच किया जाता है। 'अवलोकन त्रुटि सहप्रसरण मैट्रिक्स' का निर्माण संयुक्त अवलोकन संबंधी त्रुटियों (विकर्ण पर) और माप (विकर्ण से दूर) के बीच सहसंबद्ध त्रुटियों के परिमाण का प्रतिनिधित्व करने के लिए किया गया है। यह कलमन फ़िल्टरिंग और समय-भिन्न प्रणालियों के लिए अधिक सामान्य राज्य अनुमान के लिए व्यापक अनुप्रयोग का एक उदाहरण है।

सूक्ष्म मौसम विज्ञान में

भँवर सहप्रसरण तकनीक एक प्रमुख वायुमंडलीय माप तकनीक है जहाँ औसत मूल्य से ऊर्ध्वाधर हवा की गति में तात्कालिक विचलन और गैस सांद्रता में तात्कालिक विचलन के बीच सहप्रसरण ऊर्ध्वाधर अशांत प्रवाह की गणना का आधार है।

सिग्नल प्रोसेसिंग में

एक संकेत के वर्णक्रमीय परिवर्तनशीलता को पकड़ने के लिए सहप्रसरण मैट्रिक्स का उपयोग किया जाता है।[14]


सांख्यिकी और छवि प्रसंस्करण में

सहप्रसरण मैट्रिक्स का उपयोग मुख्य घटक विश्लेषण में डेटा प्रीप्रोसेसिंग में फीचर डायमेंशनलिटी को कम करने के लिए किया जाता है।

यह भी देखें

संदर्भ

  1. Rice, John (2007). गणितीय सांख्यिकी और डेटा विश्लेषण. Belmont, CA: Brooks/Cole Cengage Learning. p. 138. ISBN 978-0534-39942-9.
  2. Weisstein, Eric W. "Covariance". MathWorld.
  3. Oxford Dictionary of Statistics, Oxford University Press, 2002, p. 104.
  4. 4.0 4.1 4.2 4.3 4.4 Park,Kun Il (2018). संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों. Springer. ISBN 978-3-319-68074-3.
  5. Yuli Zhang, Huaiyu Wu, Lei Cheng (June 2012). प्रसरण और सहप्रसरण के बारे में कुछ नए विरूपण सूत्र. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.{{cite conference}}: CS1 maint: uses authors parameter (link)
  6. "Covariance of X and Y | STAT 414/415". The Pennsylvania State University. Archived from the original on August 17, 2017. Retrieved August 4, 2019.
  7. Papoulis (1991). संभाव्यता, यादृच्छिक चर और स्टोकेस्टिक प्रक्रियाएं. McGraw-Hill.
  8. Siegrist, Kyle. "सहप्रसरण और सहसंबंध". University of Alabama in Huntsville. Retrieved Oct 3, 2022.
  9. 9.0 9.1 Gubner, John A. (2006). इलेक्ट्रिकल और कंप्यूटर इंजीनियरों के लिए संभाव्यता और यादृच्छिक प्रक्रियाएं. Cambridge University Press. ISBN 978-0-521-86470-1.
  10. Donald E. Knuth (1998). The Art of Computer Programming, volume 2: Seminumerical Algorithms, 3rd edn., p. 232. Boston: Addison-Wesley.
  11. Schubert, Erich; Gertz, Michael (2018). "(सह-) विचरण की संख्यात्मक रूप से स्थिर समानांतर संगणना". Proceedings of the 30th International Conference on Scientific and Statistical Database Management – SSDBM '18 (in English). Bozen-Bolzano, Italy: ACM Press: 1–12. doi:10.1145/3221269.3223036. ISBN 9781450365055. S2CID 49665540.
  12. Price, George (1970). "चयन और सहप्रसरण". Nature. 227 (5257): 520–521. Bibcode:1970Natur.227..520P. doi:10.1038/227520a0. PMID 5428476. S2CID 4264723.
  13. Harman, Oren (2020). "When science mirrors life: on the origins of the Price equation". Phil. Trans. R. Soc. B. 375 (1797): 1–7. doi:10.1098/rstb.2019.0352. PMC 7133509. PMID 32146891. Retrieved 2020-05-15.
  14. Sahidullah, Md.; Kinnunen, Tomi (March 2016). "स्पीकर सत्यापन के लिए स्थानीय स्पेक्ट्रल परिवर्तनशीलता सुविधाएँ". Digital Signal Processing. 50: 1–11. doi:10.1016/j.dsp.2015.10.011.