क्रमपरिवर्तन समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
एक सममित समूह का एक उपसमूह होने के नाते, समूह सिद्धांतों को संतुष्ट करने के लिए क्रमपरिवर्तन के एक समुच्चय के लिए आवश्यक है और एक क्रमचय समूह है। इसमें पहचान क्रमचय सम्मिलित है, इसमें सम्मिलित प्रत्येक क्रमपरिवर्तन का व्युत्क्रम क्रमचय है, और इसके क्रमपरिवर्तन की संरचना के अंतर्गत संवृत होना चाहिए।<ref>{{harvnb|Rotman|2006|loc=p. 148, Definition of subgroup}}</ref> परिमित समूहों की एक सामान्य गुणधर्म का अर्थ है कि सममित समूह का एक परिमित अरिक्त उपसमुच्चय फिर से एक समूह है, और यदि केवल यह समूह संचालन के अंतर्गत संवृत है।<ref>{{harvnb|Rotman|2006|loc=p. 149, Proposition 2.69}}</ref> | एक सममित समूह का एक उपसमूह होने के नाते, समूह सिद्धांतों को संतुष्ट करने के लिए क्रमपरिवर्तन के एक समुच्चय के लिए आवश्यक है और एक क्रमचय समूह है। इसमें पहचान क्रमचय सम्मिलित है, इसमें सम्मिलित प्रत्येक क्रमपरिवर्तन का व्युत्क्रम क्रमचय है, और इसके क्रमपरिवर्तन की संरचना के अंतर्गत संवृत होना चाहिए।<ref>{{harvnb|Rotman|2006|loc=p. 148, Definition of subgroup}}</ref> परिमित समूहों की एक सामान्य गुणधर्म का अर्थ है कि सममित समूह का एक परिमित अरिक्त उपसमुच्चय फिर से एक समूह है, और यदि केवल यह समूह संचालन के अंतर्गत संवृत है।<ref>{{harvnb|Rotman|2006|loc=p. 149, Proposition 2.69}}</ref> | ||
एक [[परिमित सेट|परिमित समुच्चय]] के क्रमचय के समूह की डिग्री समुच्चय में [[प्रमुखता]] है। समूह का क्रम (किसी भी प्रकार का) समूह में तत्वों ( | एक [[परिमित सेट|परिमित समुच्चय]] के क्रमचय के समूह की डिग्री समुच्चय में [[प्रमुखता|तत्वों]] की संख्या है। समूह का क्रम (किसी भी प्रकार का) समूह में तत्वों (गणनांक) की संख्या है। लैग्रेंज के प्रमेयके अनुसार, डिग्री ''n'' के किसी भी परिमित क्रमचय समूह के क्रम ''n'' को विभाजित करना चाहिए, चूँकि ''n''-[[ कारख़ाने का |क्रमगुणित]] सममित समूह ''S''<sub>''n''</sub> का क्रम है। | ||
== अंकन == | == अंकन == | ||
{{main|क्रमचय#अंकन}} | {{main|क्रमचय#अंकन}} | ||
चूँकि क्रमचय एक समुच्चय के [[द्विभाजन]] हैं, उन्हें [[ऑगस्टिन-लुई कॉची]] के | चूँकि क्रमचय एक समुच्चय के [[द्विभाजन]] हैं, उन्हें [[ऑगस्टिन-लुई कॉची]] के द्वि-पंक्ति संकेतन द्वारा दर्शाया जा सकता है।<ref>{{citation|title=The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory|first=Hans|last=Wussing|publisher=Courier Dover Publications|year=2007|isbn=9780486458687|page=94|url=https://books.google.com/books?id=Xp3JymnfAq4C&pg=PA94|quote=Cauchy used his permutation notation—in which the arrangements are written one below the other and both are enclosed in parentheses—for the first time in 1815.}}</ref> यह संकेतन प्रथम पंक्ति में ''M'' के प्रत्येक तत्व को सूचीबद्ध करता है, और प्रत्येक तत्व के लिए, द्वितीय पंक्ति में इसके नीचे क्रमचय के अंतर्गत इसकी छवि को सूचीबद्ध करता है। यदि <math>\sigma</math> समुच्चय <math>M = \{x_1,x_2,\ldots,x_n\}</math> का क्रमचय है, तब | ||
: <math> \sigma = \begin{pmatrix} | : <math> \sigma = \begin{pmatrix} | ||
x_1 & x_2 & x_3 & \cdots & x_n \\ | x_1 & x_2 & x_3 & \cdots & x_n \\ | ||
\sigma(x_1) &\sigma(x_2) & \sigma(x_3) & \cdots& \sigma(x_n)\end{pmatrix} | \sigma(x_1) &\sigma(x_2) & \sigma(x_3) & \cdots& \sigma(x_n)\end{pmatrix}</math> | ||
उदाहरण के लिए, समुच्चय {1, 2, 3, 4, 5} के एक विशेष क्रमचय को इस प्रकार लिखा जा सकता है | उदाहरण के लिए, समुच्चय {1, 2, 3, 4, 5} के एक विशेष क्रमचय को इस प्रकार लिखा जा सकता है; | ||
: <math>\sigma=\begin{pmatrix} | : <math>\sigma=\begin{pmatrix} | ||
1 & 2 & 3 & 4 & 5 \\ | 1 & 2 & 3 & 4 & 5 \\ | ||
2 & 5 & 4 & 3 & 1\end{pmatrix} | 2 & 5 & 4 & 3 & 1\end{pmatrix}</math> | ||
इसका अर्थ है कि σ σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, और σ(5) = 1 को संतुष्ट करता है। प्रथम पंक्ति में विशेष क्रम, इसलिए उसी क्रमचय को इस रूप में भी लिखा जा सकता है | इसका अर्थ है कि σ σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, और σ(5) = 1 को संतुष्ट करता है। प्रथम पंक्ति में विशेष क्रम, इसलिए उसी क्रमचय को इस रूप में भी लिखा जा सकता है; | ||
: <math>\sigma=\begin{pmatrix} | : <math>\sigma=\begin{pmatrix} | ||
3 & 2 & 5 & 1 & 4 \\ | 3 & 2 & 5 & 1 & 4 \\ | ||
4 & 5 & 1 & 2 & 3\end{pmatrix} | 4 & 5 & 1 & 2 & 3\end{pmatrix}</math> | ||
क्रमपरिवर्तन भी | क्रमपरिवर्तन भी प्रायः चक्र संकेतन (चक्रीय रूप) में लिखे जाते हैं<ref>especially when the algebraic properties of the permutation are of interest.</ref>ताकि समुच्चय M = {1, 2, 3, 4} दिया जा सके, g(1) = 2, g(2) = 4, g(4) = 1 और g(3) = 3 के साथ M का क्रमपरिवर्तन g (1, 2, 4) (3), या अधिक सामान्यतः, (1, 2, 4) के रूप में लिखा जाएगा क्योंकि 3 को अपरिवर्तित छोड़ दिया गया है; यदि वस्तुओं को एकल अक्षरों या अंकों से दर्शाया जाता है, तो अल्पविराम और रिक्त स्थान को भी हटाया जा सकता है, और हमारे पास (124) जैसा एक अंकन है। ऊपर 2-पंक्ति संकेतन में लिखे गए क्रमचय को चक्र संकेतन <math> \sigma = (125)(34)</math> के रूप में लिखा जाएगा। | ||
== | ==क्रमपरिवर्तन की संरचना-समूह उत्पाद== | ||
दो क्रमपरिवर्तन के उत्पाद को उनके कार्य संरचना के | दो क्रमपरिवर्तन के उत्पाद को उनके कार्य संरचना के कार्यों के रूप में परिभाषित किया गया है, इसलिए <math>\sigma \cdot \pi</math> वह फलन है, जो समुच्चय <math>\sigma (\pi (x))</math> के किसी तत्व x को प्रतिचित्र करता है। ध्यान दें कि जिस प्रकार से फलन संरचना लिखी जाती है, उसके कारण सबसे सही क्रमचय प्रथम तर्क पर अनुप्रयुक्त होता है।<ref> | ||
{{cite book | last1=Biggs | first1=Norman L. | last2=White | first2=A. T. | {{cite book | last1=Biggs | first1=Norman L. | last2=White | first2=A. T. | ||
|year=1979 | |year=1979 | ||
Line 42: | Line 42: | ||
|isbn=0-521-22287-7 | |isbn=0-521-22287-7 | ||
}} | }} | ||
</ref><ref>{{harvnb|Rotman|2006|loc=p. 107}} – note especially the footnote on this page.</ref> कुछ लेखक सबसे बाएँ कारक को पहले अभिनय करना पसंद करते हैं, | </ref><ref>{{harvnb|Rotman|2006|loc=p. 107}} – note especially the footnote on this page.</ref> कुछ लेखक सबसे बाएँ कारक को पहले अभिनय करना पसंद करते हैं, परन्तु इसके लिए क्रमपरिवर्तन को उनके तर्क के दाईं ओर लिखा जाना चाहिए, प्रायः एक [[ ऊपर की ओर लिखा हुआ |अधिलेख]] के रूप में, इसलिए क्रमचय <math>\sigma</math> तत्व <math>x</math> छवि में परिणाम <math>x ^{\sigma}</math> पर अभिनय करता है। इस सम्मेलन के साथ, उत्पाद द्वारा <math>x ^{\sigma \cdot \pi} = (x ^{\sigma})^{\pi}</math> प्रदान किया है।<ref> | ||
{{harvnb|Dixon|Mortimer|1996|loc=p. 3}} – see the comment following Example 1.2.2</ref> | {{harvnb|Dixon|Mortimer|1996|loc=p. 3}} – see the comment following Example 1.2.2</ref><ref> | ||
<ref> | |||
{{cite book | last1=Cameron | first1= Peter J. | {{cite book | last1=Cameron | first1= Peter J. | ||
|year=1999 | |year=1999 | ||
Line 51: | Line 50: | ||
| url=https://archive.org/details/permutationgroup0000came | url-access=registration |isbn=0-521-65302-9 | | url=https://archive.org/details/permutationgroup0000came | url-access=registration |isbn=0-521-65302-9 | ||
}} | }} | ||
</ref> | </ref><ref> | ||
<ref> | |||
{{cite journal | first1=M. | last1=Jerrum | {{cite journal | first1=M. | last1=Jerrum | ||
|journal = J. Algorithms | |journal = J. Algorithms | ||
Line 62: | Line 60: | ||
|doi=10.1016/0196-6774(86)90038-6 | |doi=10.1016/0196-6774(86)90038-6 | ||
}} | }} | ||
</ref> हालांकि, यह क्रमपरिवर्तन को गुणा करने के लिए एक अलग नियम | </ref> हालांकि, यह क्रमपरिवर्तन को गुणा करने के लिए एक अलग नियम प्रदान करता है। क्रमपरिवर्तन समूह साहित्य में सामान्यतः इस सम्मेलन का उपयोग किया जाता है, परन्तु यह लेख उस सम्मेलन का उपयोग करता है, जहां सबसे सही क्रमपरिवर्तन पहले अनुप्रयुक्त किया जाता है। | ||
चूँकि दो द्विविभाजकों का संघटन सदैव एक अन्य आक्षेप देता है, दो क्रमपरिवर्तनों का गुणनफल पुनः एक क्रमचय होता है। | चूँकि दो द्विविभाजकों का संघटन सदैव एक अन्य आक्षेप देता है, दो क्रमपरिवर्तनों का गुणनफल पुनः एक क्रमचय होता है। द्वि-पंक्ति संकेतन में, दो क्रमचय का गुणनफल दूसरे (सबसे बाएँ) क्रमचय के स्तंभों को पुनर्व्यवस्थित करके प्राप्त किया जाता है ताकि इसकी प्रथम पंक्ति प्रथम (दाहिनी ओर) क्रमचय की द्वितीय पंक्ति के समान हो। उत्पाद को तब संशोधित दूसरे क्रमपरिवर्तन की द्वितीय पंक्ति पर प्रथम क्रमचय की प्रथम पंक्ति के रूप में लिखा जा सकता है। उदाहरण के लिए, दिए गए क्रमचय, | ||
:<math>P = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix}\quad \text{ and } \quad Q = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} | :<math>P = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix}\quad \text{ and } \quad Q = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}</math> | ||
उत्पाद क्यूपी है: | उत्पाद क्यूपी है: | ||
:<math>QP =\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 & 3 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix} \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix} = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\4 & 2 & 5 & 3 & 1 \end{pmatrix} | :<math>QP =\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 & 3 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix} \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\2 & 4 & 1 & 3 & 5 \end{pmatrix} = \begin{pmatrix}1 & 2 & 3 & 4 & 5 \\4 & 2 & 5 & 3 & 1 \end{pmatrix}</math> | ||
क्रमपरिवर्तन की संरचना, जब वे चक्र संकेतन में लिखे जाते हैं, तो दो क्रमपरिवर्तन (बाईं ओर लिखे गए दूसरे क्रमांक के साथ) को जोड़कर प्राप्त किया जाता है और फिर वांछित होने पर एक असम्बद्ध चक्र रूप को सरल बनाया जाता है। इस प्रकार, उपरोक्त उत्पाद द्वारा दिया जाएगा: | क्रमपरिवर्तन की संरचना, जब वे चक्र संकेतन में लिखे जाते हैं, तो दो क्रमपरिवर्तन (बाईं ओर लिखे गए दूसरे क्रमांक के साथ) को जोड़कर प्राप्त किया जाता है और फिर वांछित होने पर एक असम्बद्ध चक्र रूप को सरल बनाया जाता है। इस प्रकार, उपरोक्त उत्पाद द्वारा दिया जाएगा: | ||
:<math>Q \cdot P = (1 5)(2 4) \cdot (1 2 4 3) = (1 4 3 5) | :<math>Q \cdot P = (1 5)(2 4) \cdot (1 2 4 3) = (1 4 3 5)</math> | ||
चूँकि फलन संरचना साहचर्य है, इसलिए क्रमपरिवर्तन | चूँकि फलन संरचना साहचर्य है, इसलिए क्रमपरिवर्तन <math>(\sigma \cdot \pi) \cdot \rho = \sigma \cdot(\pi \cdot \rho)</math> पर उत्पाद संचालन है, इसलिए दो या दो से अधिक क्रमचयों के गुणनफल सामान्यतः व्यक्त समूहन में कोष्ठक जोड़े बिना लिखे जाते हैं; वे सामान्यतः गुणा को इंगित करने के लिए एक बिंदु या अन्य चिह्न के बिना लिखे जाते हैं (पूर्व उदाहरण के बिंदुओं को जोर देने के लिए जोड़ा गया था, इसलिए इसे केवल इस <math>\sigma \pi \rho</math> रूप में लिखा जाएगा)। | ||
== तटस्थ तत्व और व्युत्क्रम == | == तटस्थ तत्व और व्युत्क्रम == | ||
पहचान क्रमचय, जो समुच्चय के प्रत्येक तत्व को अपने आप में प्रतिचित्र करता है, इस उत्पाद के लिए तटस्थ तत्व है। | पहचान क्रमचय, जो समुच्चय के प्रत्येक तत्व को अपने आप में प्रतिचित्र करता है, इस उत्पाद के लिए तटस्थ तत्व है। द्वि-पंक्ति संकेतन में, पहचान है | ||
:<math>\begin{pmatrix}1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n\end{pmatrix} | :<math>\begin{pmatrix}1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n\end{pmatrix}</math> | ||
चक्र संकेतन में, ई = (1)(2)(3)...(n) जिसे परिपाटी द्वारा भी केवल (1) या यहां तक कि () द्वारा निरूपित किया जाता है।<ref>{{harvnb|Rotman|2006|loc=p. 108}}</ref> | चक्र संकेतन में, ई = (1)(2)(3)...(n) जिसे परिपाटी द्वारा भी केवल (1) या यहां तक कि () द्वारा निरूपित किया जाता है।<ref>{{harvnb|Rotman|2006|loc=p. 108}}</ref> | ||
चूँकि [[आक्षेप]] | |||
चूँकि [[आक्षेप|आक्षेपों]] का व्युत्क्रम फलन होता है, इसलिए क्रमपरिवर्तन और ''σ'' का व्युत्क्रम ''σ''<sup>−1</sup> पुनः एक क्रमचय है। स्पष्ट रूप से, जब भी σ(x)=y किसी के पास भी σ होता है<sup>−1</sup>(y)=x. दो-पंक्ति संकेतन में व्युत्क्रम दो पंक्तियों को आपस में परिवर्तन प्राप्त किया जा सकता है (और स्तंभों को क्रमबद्ध करना यदि कोई चाहता है कि प्रथम पंक्ति किसी दिए गए क्रम में हो)। उदाहरण के लिए | |||
:<math>\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1\end{pmatrix}^{-1} | :<math>\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1\end{pmatrix}^{-1} | ||
=\begin{pmatrix}2 & 5 & 4 & 3 & 1\\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} | =\begin{pmatrix}2 & 5 & 4 & 3 & 1\\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} | ||
=\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2\end{pmatrix} | =\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2\end{pmatrix}</math> | ||
एक चक्र का व्युत्क्रम प्राप्त करने के लिए, हम इसके तत्वों के क्रम को उलट देते हैं। इस प्रकार, | एक चक्र का व्युत्क्रम प्राप्त करने के लिए, हम इसके तत्वों के क्रम को उलट देते हैं। इस प्रकार, | ||
:<math> (1 2 5)^{-1} = (5 2 1) = (152).</math> | :<math> (1 2 5)^{-1} = (5 2 1) = (152).</math> | ||
Line 96: | Line 95: | ||
**यह क्रमचय 1 और 2 को आपस में बदल देता है, और 3 और 4 को ठीक कर देता है। | **यह क्रमचय 1 और 2 को आपस में बदल देता है, और 3 और 4 को ठीक कर देता है। | ||
* ''b'' = (1)(2)(3 4) = (3 4) | * ''b'' = (1)(2)(3 4) = (3 4) | ||
** पिछले वाले की प्रकार, | ** पिछले वाले की प्रकार, परन्तु 3 और 4 का आदान-प्रदान करना, और दूसरों को ठीक करना। | ||
* ''ab'' = (1 2) (3 4) | * ''ab'' = (1 2) (3 4) | ||
** यह क्रमचय, जो पिछले दो का संयोजन है, एक साथ 1 का 2 से, और 3 का 4 से आदान-प्रदान करता है। | ** यह क्रमचय, जो पिछले दो का संयोजन है, एक साथ 1 का 2 से, और 3 का 4 से आदान-प्रदान करता है। | ||
Line 136: | Line 135: | ||
=== सकर्मक क्रियाएं === | === सकर्मक क्रियाएं === | ||
समुच्चय M पर समूह G की क्रिया को सकर्मक कहा जाता है, यदि M के प्रत्येक दो तत्वों s, t के लिए, कुछ समूह तत्व g ऐसा हो कि g(s) = t। समान रूप से, समुच्चय M, G की क्रिया के अंतर्गत एकल [[कक्षा (समूह सिद्धांत)]] बनाता है।<ref>{{harvnb|Artin|1991|p=177}}</ref> उदाहरणों में से, {1, 2, 3, 4} के क्रमपरिवर्तन का समूह {e, (1 2), (3 4), (1 2)(3 4)} सकर्मक नहीं है (कोई समूह तत्व नहीं लेता है 1 से 3) | समुच्चय M पर समूह G की क्रिया को सकर्मक कहा जाता है, यदि M के प्रत्येक दो तत्वों s, t के लिए, कुछ समूह तत्व g ऐसा हो कि g(s) = t। समान रूप से, समुच्चय M, G की क्रिया के अंतर्गत एकल [[कक्षा (समूह सिद्धांत)]] बनाता है।<ref>{{harvnb|Artin|1991|p=177}}</ref> उदाहरणों में से, {1, 2, 3, 4} के क्रमपरिवर्तन का समूह {e, (1 2), (3 4), (1 2)(3 4)} सकर्मक नहीं है (कोई समूह तत्व नहीं लेता है 1 से 3) परन्तु एक वर्ग की सममितियों का समूह शीर्षों पर सकर्मक होता है। | ||
=== आदिम क्रियाएं === | === आदिम क्रियाएं === | ||
{{main| | {{main|आदिम क्रमपरिवर्तन समूह}} | ||
एक अरिक्त परिमित समुच्चय M पर सकर्मक रूप से कार्य करने वाला एक क्रमपरिवर्तन समूह G अभेद्य है यदि M का कुछ गैर-तुच्छ समुच्चय विभाजन है जो G की क्रिया द्वारा संरक्षित है, जहां गैर-तुच्छ का अर्थ है कि विभाजन [[सिंगलटन सेट|सिंगलटन समुच्चय]] में विभाजन नहीं है और न ही विभाजन केवल एक भाग के साथ। अन्यथा, यदि G सकर्मक है, | एक अरिक्त परिमित समुच्चय M पर सकर्मक रूप से कार्य करने वाला एक क्रमपरिवर्तन समूह G अभेद्य है यदि M का कुछ गैर-तुच्छ समुच्चय विभाजन है जो G की क्रिया द्वारा संरक्षित है, जहां गैर-तुच्छ का अर्थ है कि विभाजन [[सिंगलटन सेट|सिंगलटन समुच्चय]] में विभाजन नहीं है और न ही विभाजन केवल एक भाग के साथ। अन्यथा, यदि G सकर्मक है, परन्तु M के किसी भी गैर-तुच्छ विभाजन को संरक्षित नहीं करता है, तो समूह G आदिम है। | ||
उदाहरण के लिए, किसी वर्ग की सममितियों का समूह शीर्षों पर अपरिमेय होता है: यदि उन्हें चक्रीय क्रम में 1, 2, 3, 4 क्रमांकित किया जाता है, तो विभाजन <nowiki>{{1, 3}, {2, 4}}</nowiki> विपरीत जोड़े में प्रत्येक समूह तत्व द्वारा संरक्षित किया जाता है। | उदाहरण के लिए, किसी वर्ग की सममितियों का समूह शीर्षों पर अपरिमेय होता है: यदि उन्हें चक्रीय क्रम में 1, 2, 3, 4 क्रमांकित किया जाता है, तो विभाजन <nowiki>{{1, 3}, {2, 4}}</nowiki> विपरीत जोड़े में प्रत्येक समूह तत्व द्वारा संरक्षित किया जाता है। द्वितीय ओर, समुच्चय एम पर पूर्ण सममित समूह सदैव आदिम होता है। | ||
== केली प्रमेय == | == केली प्रमेय == | ||
{{main| | {{main|केली की प्रमेय}} | ||
कोई भी समूह G स्वयं पर कार्य कर सकता है (समूह के तत्वों को समुच्चय M के रूप में माना जाता है) कई तरीकों से। विशेष रूप से, समूह में (बाएं) गुणन द्वारा दी गई एक नियमित समूह क्रिया होती है। अर्थात, G में सभी g और x के लिए f(g, x) = gx। प्रत्येक नियत g के लिए, फलन f<sub>''g''</sub>(x) = gx, G पर एक आक्षेप है और इसलिए G के तत्वों के समुच्चय का एक क्रमचय है। G के प्रत्येक तत्व को इस प्रकार एक क्रमचय के रूप में माना जा सकता है और इसलिए G एक क्रमचय समूह के लिए समरूप है; यह केली के प्रमेय की सामग्री है। | कोई भी समूह G स्वयं पर कार्य कर सकता है (समूह के तत्वों को समुच्चय M के रूप में माना जाता है) कई तरीकों से। विशेष रूप से, समूह में (बाएं) गुणन द्वारा दी गई एक नियमित समूह क्रिया होती है। अर्थात, G में सभी g और x के लिए f(g, x) = gx। प्रत्येक नियत g के लिए, फलन f<sub>''g''</sub>(x) = gx, G पर एक आक्षेप है और इसलिए G के तत्वों के समुच्चय का एक क्रमचय है। G के प्रत्येक तत्व को इस प्रकार एक क्रमचय के रूप में माना जा सकता है और इसलिए G एक क्रमचय समूह के लिए समरूप है; यह केली के प्रमेय की सामग्री है। | ||
Line 159: | Line 158: | ||
यदि G और H क्रिया f के साथ समुच्चय X और Y पर दो क्रमचय समूह हैं<sub>1</sub> और एफ<sub>2</sub> क्रमशः, तो हम कहते हैं कि जी और एच क्रमचय आइसोमोर्फिक हैं (या क्रमपरिवर्तन समूहों के रूप में [[ समाकृतिकता ]]) यदि कोई आक्षेप उपस्थित है {{nowrap|''λ'' : ''X'' → ''Y''}} और एक [[समूह समरूपता]] {{nowrap|''ψ'' : ''G'' → ''H''}} ऐसा है कि | यदि G और H क्रिया f के साथ समुच्चय X और Y पर दो क्रमचय समूह हैं<sub>1</sub> और एफ<sub>2</sub> क्रमशः, तो हम कहते हैं कि जी और एच क्रमचय आइसोमोर्फिक हैं (या क्रमपरिवर्तन समूहों के रूप में [[ समाकृतिकता ]]) यदि कोई आक्षेप उपस्थित है {{nowrap|''λ'' : ''X'' → ''Y''}} और एक [[समूह समरूपता]] {{nowrap|''ψ'' : ''G'' → ''H''}} ऐसा है कि | ||
: ''λ''(''f''<sub>1</sub>(''g'', ''x'')) = ''f''<sub>2</sub>(''ψ''(''g''), ''λ''(''x'')) G में सभी g और X में x के लिए।<ref>{{harvnb|Dixon|Mortimer|1996|p=17}}</ref> | : ''λ''(''f''<sub>1</sub>(''g'', ''x'')) = ''f''<sub>2</sub>(''ψ''(''g''), ''λ''(''x'')) G में सभी g और X में x के लिए।<ref>{{harvnb|Dixon|Mortimer|1996|p=17}}</ref> | ||
यदि {{nowrap|1=''X'' = ''Y''}} यह G और H के समान है जो कि Sym(X) के उपसमूहों के रूप में संयुग्मित है।<ref>{{harvnb|Dixon|Mortimer|1996|loc=p. 18}}</ref> विशेष | यदि {{nowrap|1=''X'' = ''Y''}} यह G और H के समान है जो कि Sym(X) के उपसमूहों के रूप में संयुग्मित है।<ref>{{harvnb|Dixon|Mortimer|1996|loc=p. 18}}</ref> विशेष स्थिति जहां {{nowrap|1=''G'' = ''H''}} और ψ एक [[पहचान मानचित्र]] है जो एक समूह की समतुल्य क्रियाओं की अवधारणा को जन्म देता है।<ref>{{harvnb|Cameron|1994|loc=p. 228}}</ref> | ||
ऊपर दिए गए वर्ग के समरूपता के उदाहरण में, समुच्चय {1,2,3,4} पर प्राकृतिक क्रिया त्रिकोण पर क्रिया के समान है। समुच्चय के मध्य की आपत्ति λ द्वारा दी गई है {{nowrap|''i'' ↦ ''t''<sub>''i''</sub>}}. समूह जी की प्राकृतिक क्रिया<sub>1</sub> ऊपर और स्वयं पर इसकी क्रिया (बाएं गुणन के माध्यम से) समतुल्य नहीं है क्योंकि प्राकृतिक क्रिया के निश्चित बिंदु होते हैं और | ऊपर दिए गए वर्ग के समरूपता के उदाहरण में, समुच्चय {1,2,3,4} पर प्राकृतिक क्रिया त्रिकोण पर क्रिया के समान है। समुच्चय के मध्य की आपत्ति λ द्वारा दी गई है {{nowrap|''i'' ↦ ''t''<sub>''i''</sub>}}. समूह जी की प्राकृतिक क्रिया<sub>1</sub> ऊपर और स्वयं पर इसकी क्रिया (बाएं गुणन के माध्यम से) समतुल्य नहीं है क्योंकि प्राकृतिक क्रिया के निश्चित बिंदु होते हैं और द्वितीय क्रिया नहीं होती है। | ||
== | == अल्परूपी समूह == | ||
जब एक समूह G एक समुच्चय | जब एक समूह G एक समुच्चय S पर कार्य करता है, तो S के कार्तीय उत्पाद ''S<sup>n</sup>'' के लिए क्रिया स्वाभाविक रूप से तक विस्तारित हो सकती है, जिसमें S के तत्वों के n-टुपल्स सम्मिलित हैं: n-ट्यूपल (''s''<sub>1</sub>, ..., ''s<sub>n</sub>'') पर एक तत्व ''g'' की क्रिया द्वारा दिया गया है; | ||
: ''g''(''s''<sub>1</sub>, ..., ''s<sub>n</sub>'') = (''g''(''s''<sub>1</sub>), ..., ''g''(''s<sub>n</sub>'')) | : ''g''(''s''<sub>1</sub>, ..., ''s<sub>n</sub>'') = (''g''(''s''<sub>1</sub>), ..., ''g''(''s<sub>n</sub>'')) | ||
Line 174: | Line 173: | ||
== इतिहास == | == इतिहास == | ||
{{main| | {{main|समूह सिद्धांत का इतिहास}} | ||
समूह (गणित) का अध्ययन मूल रूप से क्रमचय समूहों की समझ से विकसित हुआ।<ref>{{harvnb|Dixon|Mortimer|1996|loc=p. 28}}</ref> बहुपद समीकरणों के बीजगणितीय समाधानों पर अपने काम में 1770 में [[Lagrange]] द्वारा क्रमचय का गहन अध्ययन किया गया था। यह विषय फला-फूला और 19वीं शताब्दी के मध्य तक क्रमचय समूहों का एक सुविकसित सिद्धांत उपस्थित था, जिसे [[केमिली जॉर्डन]] ने अपनी पुस्तक ट्रेटे डेस सबस्टिट्यूशंस एट डेस समीकरण बीजगणित ऑफ 1870 में संहिताबद्ध किया। बदले में, जॉर्डन की पुस्तक बचे हुए कागजात पर आधारित थी। 1832 में Évariste Galois द्वारा। | समूह (गणित) का अध्ययन मूल रूप से क्रमचय समूहों की समझ से विकसित हुआ।<ref>{{harvnb|Dixon|Mortimer|1996|loc=p. 28}}</ref> बहुपद समीकरणों के बीजगणितीय समाधानों पर अपने काम में 1770 में [[Lagrange]] द्वारा क्रमचय का गहन अध्ययन किया गया था। यह विषय फला-फूला और 19वीं शताब्दी के मध्य तक क्रमचय समूहों का एक सुविकसित सिद्धांत उपस्थित था, जिसे [[केमिली जॉर्डन]] ने अपनी पुस्तक ट्रेटे डेस सबस्टिट्यूशंस एट डेस समीकरण बीजगणित ऑफ 1870 में संहिताबद्ध किया। बदले में, जॉर्डन की पुस्तक बचे हुए कागजात पर आधारित थी। 1832 में Évariste Galois द्वारा। | ||
जब [[आर्थर केली]] ने एक सार समूह की अवधारणा प्रस्तुत की, तो यह तुरंत स्पष्ट नहीं था कि यह ज्ञात क्रमपरिवर्तन समूहों (जिसकी परिभाषा आधुनिक से | जब [[आर्थर केली]] ने एक सार समूह की अवधारणा प्रस्तुत की, तो यह तुरंत स्पष्ट नहीं था कि यह ज्ञात क्रमपरिवर्तन समूहों (जिसकी परिभाषा आधुनिक से भिन्न थी) की तुलना में वस्तुओं का एक बड़ा संग्रह था या नहीं। केली ने सिद्ध किया कि केली के प्रमेय में दो अवधारणाएं समान थीं।<ref>{{harvnb|Cameron|1994|loc=p. 226}}</ref> | ||
क्रमपरिवर्तन समूहों पर कई अध्यायों वाला एक अन्य शास्त्रीय पाठ 1911 के [[विलियम बर्नसाइड]] के परिमित आदेश के समूहों का सिद्धांत है।<ref>{{citation|first=William|last=Burnside|title=Theory of Groups of Finite Order|year=1955|orig-year=1911|edition=2nd|publisher=Dover}}</ref> बीसवीं शताब्दी की प्रथम छमाही सामान्य रूप से समूह सिद्धांत के अध्ययन में एक परती अवधि थी, | क्रमपरिवर्तन समूहों पर कई अध्यायों वाला एक अन्य शास्त्रीय पाठ 1911 के [[विलियम बर्नसाइड]] के परिमित आदेश के समूहों का सिद्धांत है।<ref>{{citation|first=William|last=Burnside|title=Theory of Groups of Finite Order|year=1955|orig-year=1911|edition=2nd|publisher=Dover}}</ref> बीसवीं शताब्दी की प्रथम छमाही सामान्य रूप से समूह सिद्धांत के अध्ययन में एक परती अवधि थी, परन्तु 1950 के दशक में एच. वीलैंड्ट द्वारा क्रमपरिवर्तन समूहों में रुचि को पुनर्जीवित किया गया था, जिनके जर्मन व्याख्यान टिप्पणी को 1964 में परिमित क्रमपरिवर्तन समूह के रूप में पुनर्मुद्रित किया गया था।<ref>{{citation|first=H.|last=Wielandt|title=Finite Permutation Groups|year=1964|publisher=Academic Press}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
*2- सकर्मक समूह | *2-सकर्मक समूह | ||
* [[रैंक 3 क्रमचय समूह]] | * [[रैंक 3 क्रमचय समूह|क्रम 3 क्रमचय समूह]] | ||
* [[मैथ्यू समूह]] | * [[मैथ्यू समूह]] | ||
Revision as of 00:16, 30 March 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में, एक क्रमचय समूह एक समूह G होते है, जिसके तत्व किसी दिए गए समुच्चय M के क्रमचय होते हैं और जिसकी समूह संक्रिया G में क्रमपरिवर्तनों का संघटन होती है (जिन्हें समुच्चय M से स्वयं के लिए विशेषण कार्यों के रूप में माना जाता है)। एक समुच्चय M के सभी क्रमपरिवर्तनों का समूह M का सममित समूह है, जिसे प्रायः सिम(M) के रूप में लिखा जाता है।[1] पद क्रमचय समूह इस प्रकार सममित समूह का एक उपसमूह है। यदि M = {1, 2, ..., n} तो सिम(M) को सामान्यतः S द्वारा निरूपित किया जाता है, और इसे n अक्षरों पर सममित समूह कहा जा सकता है।
केली के प्रमेय के अनुसार, प्रत्येक समूह कुछ क्रमचय समूह के लिए तुल्याकारी है।
जिस प्रकार से एक क्रमचय समूह के तत्व समुच्चय के तत्वों को क्रमबद्ध करते हैं, उसे समूह क्रिया कहा जाता है। समूह क्रियाओं में समरूपता, संयोजकता और गणित, भौतिकी और रसायन विज्ञान की कई अन्य शाखाओं के अध्ययन में अनुप्रयोग होते हैं।
आधारभूत गुण और शब्दावली
एक सममित समूह का एक उपसमूह होने के नाते, समूह सिद्धांतों को संतुष्ट करने के लिए क्रमपरिवर्तन के एक समुच्चय के लिए आवश्यक है और एक क्रमचय समूह है। इसमें पहचान क्रमचय सम्मिलित है, इसमें सम्मिलित प्रत्येक क्रमपरिवर्तन का व्युत्क्रम क्रमचय है, और इसके क्रमपरिवर्तन की संरचना के अंतर्गत संवृत होना चाहिए।[2] परिमित समूहों की एक सामान्य गुणधर्म का अर्थ है कि सममित समूह का एक परिमित अरिक्त उपसमुच्चय फिर से एक समूह है, और यदि केवल यह समूह संचालन के अंतर्गत संवृत है।[3]
एक परिमित समुच्चय के क्रमचय के समूह की डिग्री समुच्चय में तत्वों की संख्या है। समूह का क्रम (किसी भी प्रकार का) समूह में तत्वों (गणनांक) की संख्या है। लैग्रेंज के प्रमेयके अनुसार, डिग्री n के किसी भी परिमित क्रमचय समूह के क्रम n को विभाजित करना चाहिए, चूँकि n-क्रमगुणित सममित समूह Sn का क्रम है।
अंकन
चूँकि क्रमचय एक समुच्चय के द्विभाजन हैं, उन्हें ऑगस्टिन-लुई कॉची के द्वि-पंक्ति संकेतन द्वारा दर्शाया जा सकता है।[4] यह संकेतन प्रथम पंक्ति में M के प्रत्येक तत्व को सूचीबद्ध करता है, और प्रत्येक तत्व के लिए, द्वितीय पंक्ति में इसके नीचे क्रमचय के अंतर्गत इसकी छवि को सूचीबद्ध करता है। यदि समुच्चय का क्रमचय है, तब
उदाहरण के लिए, समुच्चय {1, 2, 3, 4, 5} के एक विशेष क्रमचय को इस प्रकार लिखा जा सकता है;
इसका अर्थ है कि σ σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, और σ(5) = 1 को संतुष्ट करता है। प्रथम पंक्ति में विशेष क्रम, इसलिए उसी क्रमचय को इस रूप में भी लिखा जा सकता है;
क्रमपरिवर्तन भी प्रायः चक्र संकेतन (चक्रीय रूप) में लिखे जाते हैं[5]ताकि समुच्चय M = {1, 2, 3, 4} दिया जा सके, g(1) = 2, g(2) = 4, g(4) = 1 और g(3) = 3 के साथ M का क्रमपरिवर्तन g (1, 2, 4) (3), या अधिक सामान्यतः, (1, 2, 4) के रूप में लिखा जाएगा क्योंकि 3 को अपरिवर्तित छोड़ दिया गया है; यदि वस्तुओं को एकल अक्षरों या अंकों से दर्शाया जाता है, तो अल्पविराम और रिक्त स्थान को भी हटाया जा सकता है, और हमारे पास (124) जैसा एक अंकन है। ऊपर 2-पंक्ति संकेतन में लिखे गए क्रमचय को चक्र संकेतन के रूप में लिखा जाएगा।
क्रमपरिवर्तन की संरचना-समूह उत्पाद
दो क्रमपरिवर्तन के उत्पाद को उनके कार्य संरचना के कार्यों के रूप में परिभाषित किया गया है, इसलिए वह फलन है, जो समुच्चय के किसी तत्व x को प्रतिचित्र करता है। ध्यान दें कि जिस प्रकार से फलन संरचना लिखी जाती है, उसके कारण सबसे सही क्रमचय प्रथम तर्क पर अनुप्रयुक्त होता है।[6][7] कुछ लेखक सबसे बाएँ कारक को पहले अभिनय करना पसंद करते हैं, परन्तु इसके लिए क्रमपरिवर्तन को उनके तर्क के दाईं ओर लिखा जाना चाहिए, प्रायः एक अधिलेख के रूप में, इसलिए क्रमचय तत्व छवि में परिणाम पर अभिनय करता है। इस सम्मेलन के साथ, उत्पाद द्वारा प्रदान किया है।[8][9][10] हालांकि, यह क्रमपरिवर्तन को गुणा करने के लिए एक अलग नियम प्रदान करता है। क्रमपरिवर्तन समूह साहित्य में सामान्यतः इस सम्मेलन का उपयोग किया जाता है, परन्तु यह लेख उस सम्मेलन का उपयोग करता है, जहां सबसे सही क्रमपरिवर्तन पहले अनुप्रयुक्त किया जाता है।
चूँकि दो द्विविभाजकों का संघटन सदैव एक अन्य आक्षेप देता है, दो क्रमपरिवर्तनों का गुणनफल पुनः एक क्रमचय होता है। द्वि-पंक्ति संकेतन में, दो क्रमचय का गुणनफल दूसरे (सबसे बाएँ) क्रमचय के स्तंभों को पुनर्व्यवस्थित करके प्राप्त किया जाता है ताकि इसकी प्रथम पंक्ति प्रथम (दाहिनी ओर) क्रमचय की द्वितीय पंक्ति के समान हो। उत्पाद को तब संशोधित दूसरे क्रमपरिवर्तन की द्वितीय पंक्ति पर प्रथम क्रमचय की प्रथम पंक्ति के रूप में लिखा जा सकता है। उदाहरण के लिए, दिए गए क्रमचय,
उत्पाद क्यूपी है:
क्रमपरिवर्तन की संरचना, जब वे चक्र संकेतन में लिखे जाते हैं, तो दो क्रमपरिवर्तन (बाईं ओर लिखे गए दूसरे क्रमांक के साथ) को जोड़कर प्राप्त किया जाता है और फिर वांछित होने पर एक असम्बद्ध चक्र रूप को सरल बनाया जाता है। इस प्रकार, उपरोक्त उत्पाद द्वारा दिया जाएगा:
चूँकि फलन संरचना साहचर्य है, इसलिए क्रमपरिवर्तन पर उत्पाद संचालन है, इसलिए दो या दो से अधिक क्रमचयों के गुणनफल सामान्यतः व्यक्त समूहन में कोष्ठक जोड़े बिना लिखे जाते हैं; वे सामान्यतः गुणा को इंगित करने के लिए एक बिंदु या अन्य चिह्न के बिना लिखे जाते हैं (पूर्व उदाहरण के बिंदुओं को जोर देने के लिए जोड़ा गया था, इसलिए इसे केवल इस रूप में लिखा जाएगा)।
तटस्थ तत्व और व्युत्क्रम
पहचान क्रमचय, जो समुच्चय के प्रत्येक तत्व को अपने आप में प्रतिचित्र करता है, इस उत्पाद के लिए तटस्थ तत्व है। द्वि-पंक्ति संकेतन में, पहचान है
चक्र संकेतन में, ई = (1)(2)(3)...(n) जिसे परिपाटी द्वारा भी केवल (1) या यहां तक कि () द्वारा निरूपित किया जाता है।[11]
चूँकि आक्षेपों का व्युत्क्रम फलन होता है, इसलिए क्रमपरिवर्तन और σ का व्युत्क्रम σ−1 पुनः एक क्रमचय है। स्पष्ट रूप से, जब भी σ(x)=y किसी के पास भी σ होता है−1(y)=x. दो-पंक्ति संकेतन में व्युत्क्रम दो पंक्तियों को आपस में परिवर्तन प्राप्त किया जा सकता है (और स्तंभों को क्रमबद्ध करना यदि कोई चाहता है कि प्रथम पंक्ति किसी दिए गए क्रम में हो)। उदाहरण के लिए
एक चक्र का व्युत्क्रम प्राप्त करने के लिए, हम इसके तत्वों के क्रम को उलट देते हैं। इस प्रकार,
चक्रों के गुणनफल का व्युत्क्रम प्राप्त करने के लिए, हम पहले चक्रों के क्रम को उल्टा करते हैं, और फिर हम प्रत्येक का व्युत्क्रम ऊपर की प्रकार लेते हैं। इस प्रकार,
एक साहचर्य उत्पाद, एक पहचान तत्व, और इसके सभी तत्वों के व्युत्क्रम होने से, M के सभी क्रमपरिवर्तनों का एक समूह (गणित), Sym(M) में समुच्चय हो जाता है; एक क्रमपरिवर्तन समूह।
उदाहरण
निम्नलिखित समुच्चय जी पर विचार करें1 समुच्चय M = {1, 2, 3, 4} के क्रमचयों की संख्या:
- e = (1)(2)(3)(4) = (1)
- यह पहचान है, तुच्छ क्रमचय जो प्रत्येक तत्व को ठीक करता है।
- a = (1 2)(3)(4) = (1 2)
- यह क्रमचय 1 और 2 को आपस में बदल देता है, और 3 और 4 को ठीक कर देता है।
- b = (1)(2)(3 4) = (3 4)
- पिछले वाले की प्रकार, परन्तु 3 और 4 का आदान-प्रदान करना, और दूसरों को ठीक करना।
- ab = (1 2) (3 4)
- यह क्रमचय, जो पिछले दो का संयोजन है, एक साथ 1 का 2 से, और 3 का 4 से आदान-प्रदान करता है।
G1एक समूह बनाता है, क्योंकि aa = bb = e, ba = ab, and abab = e। यह क्रमचय समूह, एक अमूर्त समूह के रूप में, क्लेन समूह V4 है
एक अन्य उदाहरण के रूप में समूहों के उदाहरणों पर विचार करें # एक वर्ग का समरूपता समूह: आदेश 8 का डायहेड्रल समूह। वर्ग के शीर्षों को 1, 2, 3 और 4 लेबल करें (शीर्ष बाएं कोने में 1 से शुरू होने वाले वर्ग के चारों ओर वामावर्त ). समरूपता को शीर्षों की छवियों द्वारा निर्धारित किया जाता है, जो क्रमपरिवर्तन द्वारा वर्णित किया जा सकता है। वर्ग के केंद्र के विषय में 90° (घड़ी की विपरीत दिशा में) घूर्णन को क्रमचय (1234) द्वारा वर्णित किया गया है। 180° और 270° घुमाव क्रमशः (13)(24) और (1432) द्वारा दिए गए हैं। केंद्र के माध्यम से क्षैतिज रेखा के विषय में प्रतिबिंब (12) (34) द्वारा दिया गया है और संबंधित लंबवत रेखा प्रतिबिंब (14) (23) है। 1,3-विकर्ण रेखा के विषय में प्रतिबिंब (24) है और 2,4-विकर्ण रेखा के विषय में प्रतिबिंब (13) है। एकमात्र शेष समरूपता पहचान (1)(2)(3)(4) है। इस क्रमचय समूह को सार समूह के रूप में संदर्भित है, क्रम 8 के डायहेड्रल समूह के रूप में।
समूह क्रियाएं
एक वर्ग के समरूपता समूह के उपरोक्त उदाहरण में, क्रमपरिवर्तन समरूपता के समूह द्वारा प्रेरित वर्ग के शीर्षों की गति का वर्णन करता है। यह कहना सामान्य है कि ये समूह तत्व वर्ग के शीर्षों के समुच्चय पर कार्य कर रहे हैं। समूह क्रिया को औपचारिक रूप से परिभाषित करके इस विचार को सटीक बनाया जा सकता है।[12]
G को एक समूह (गणित) और M को एक गैर-खाली समुच्चय (गणित) होने दें। M पर G की एक 'क्रिया' एक फलन f: G × M → M ऐसा है कि
- f(1, x) = x, M में सभी x के लिए (1 समूह G का पहचान तत्व (तटस्थ) तत्व है), और
- f(g, f(h, x)) = f(gh, x), G में सभी g,h और M में सभी x के लिए।
शर्तों की इस जोड़ी को यह कहते हुए भी व्यक्त किया जा सकता है कि क्रिया G से Sym(M) में एक समूह समरूपता को प्रेरित करती है।[12]ऐसी किसी भी समाकारिता को M पर G का (क्रमपरिवर्तन) निरूपण कहा जाता है।
किसी क्रमचय समूह के लिए, जो क्रिया (g, x) → g(x) भेजती है, उसे M पर G की 'प्राकृतिक क्रिया' कहा जाता है।[12]वर्ग के समरूपता समूह के उदाहरण में, शिखरों के समुच्चय पर समूह की क्रिया प्राकृतिक क्रिया है। हालाँकि, यह समूह वर्ग में चार त्रिकोणों के समुच्चय पर भी एक क्रिया को प्रेरित करता है, जो हैं: t1 = 234, t2 = 134, t3 = 124 and t4 = 123. यह दो विकर्णों पर भी कार्य करता है: d1 = 13 और d2 = 24.
समूह तत्व | त्रिकोण पर क्रिया | विकर्णों पर क्रिया |
---|---|---|
(1) | (1) | (1) |
(1234) | (t1 t2 t3 t4) | (d1 d2) |
(13)(24) | (t1 t3)(t2 t4) | (1) |
(1432) | (t1 t4 t3 t2) | (d1 d2) |
(12)(34) | (t1 t2)(t3 t4) | (d1 d2) |
(14)(23) | (t1 t4)(t2 t3) | (d1 d2) |
(13) | (t1 t3) | (1) |
(24) | (t2 t4) | (1) |
सकर्मक क्रियाएं
समुच्चय M पर समूह G की क्रिया को सकर्मक कहा जाता है, यदि M के प्रत्येक दो तत्वों s, t के लिए, कुछ समूह तत्व g ऐसा हो कि g(s) = t। समान रूप से, समुच्चय M, G की क्रिया के अंतर्गत एकल कक्षा (समूह सिद्धांत) बनाता है।[13] उदाहरणों में से, {1, 2, 3, 4} के क्रमपरिवर्तन का समूह {e, (1 2), (3 4), (1 2)(3 4)} सकर्मक नहीं है (कोई समूह तत्व नहीं लेता है 1 से 3) परन्तु एक वर्ग की सममितियों का समूह शीर्षों पर सकर्मक होता है।
आदिम क्रियाएं
एक अरिक्त परिमित समुच्चय M पर सकर्मक रूप से कार्य करने वाला एक क्रमपरिवर्तन समूह G अभेद्य है यदि M का कुछ गैर-तुच्छ समुच्चय विभाजन है जो G की क्रिया द्वारा संरक्षित है, जहां गैर-तुच्छ का अर्थ है कि विभाजन सिंगलटन समुच्चय में विभाजन नहीं है और न ही विभाजन केवल एक भाग के साथ। अन्यथा, यदि G सकर्मक है, परन्तु M के किसी भी गैर-तुच्छ विभाजन को संरक्षित नहीं करता है, तो समूह G आदिम है।
उदाहरण के लिए, किसी वर्ग की सममितियों का समूह शीर्षों पर अपरिमेय होता है: यदि उन्हें चक्रीय क्रम में 1, 2, 3, 4 क्रमांकित किया जाता है, तो विभाजन {{1, 3}, {2, 4}} विपरीत जोड़े में प्रत्येक समूह तत्व द्वारा संरक्षित किया जाता है। द्वितीय ओर, समुच्चय एम पर पूर्ण सममित समूह सदैव आदिम होता है।
केली प्रमेय
कोई भी समूह G स्वयं पर कार्य कर सकता है (समूह के तत्वों को समुच्चय M के रूप में माना जाता है) कई तरीकों से। विशेष रूप से, समूह में (बाएं) गुणन द्वारा दी गई एक नियमित समूह क्रिया होती है। अर्थात, G में सभी g और x के लिए f(g, x) = gx। प्रत्येक नियत g के लिए, फलन fg(x) = gx, G पर एक आक्षेप है और इसलिए G के तत्वों के समुच्चय का एक क्रमचय है। G के प्रत्येक तत्व को इस प्रकार एक क्रमचय के रूप में माना जा सकता है और इसलिए G एक क्रमचय समूह के लिए समरूप है; यह केली के प्रमेय की सामग्री है।
उदाहरण के लिए, समूह जी पर विचार करें1 ऊपर दिए गए समुच्चय {1, 2, 3, 4} पर कार्य करना। मान लीजिए कि इस समूह के तत्वों को e, a, b और c = ab = ba द्वारा निरूपित किया जाता है। जी. की क्रिया1 स्वयं केली के प्रमेय में वर्णित निम्नलिखित क्रमचय प्रतिनिधित्व देता है:
- fe ↦ (e)(a)(b)(c)
- fa ↦ (ea)(bc)
- fb ↦ (eb)(ac)
- fc ↦ (ec)(ab)
क्रमचय समूहों की समरूपता
यदि G और H क्रिया f के साथ समुच्चय X और Y पर दो क्रमचय समूह हैं1 और एफ2 क्रमशः, तो हम कहते हैं कि जी और एच क्रमचय आइसोमोर्फिक हैं (या क्रमपरिवर्तन समूहों के रूप में समाकृतिकता ) यदि कोई आक्षेप उपस्थित है λ : X → Y और एक समूह समरूपता ψ : G → H ऐसा है कि
- λ(f1(g, x)) = f2(ψ(g), λ(x)) G में सभी g और X में x के लिए।[14]
यदि X = Y यह G और H के समान है जो कि Sym(X) के उपसमूहों के रूप में संयुग्मित है।[15] विशेष स्थिति जहां G = H और ψ एक पहचान मानचित्र है जो एक समूह की समतुल्य क्रियाओं की अवधारणा को जन्म देता है।[16]
ऊपर दिए गए वर्ग के समरूपता के उदाहरण में, समुच्चय {1,2,3,4} पर प्राकृतिक क्रिया त्रिकोण पर क्रिया के समान है। समुच्चय के मध्य की आपत्ति λ द्वारा दी गई है i ↦ ti. समूह जी की प्राकृतिक क्रिया1 ऊपर और स्वयं पर इसकी क्रिया (बाएं गुणन के माध्यम से) समतुल्य नहीं है क्योंकि प्राकृतिक क्रिया के निश्चित बिंदु होते हैं और द्वितीय क्रिया नहीं होती है।
अल्परूपी समूह
जब एक समूह G एक समुच्चय S पर कार्य करता है, तो S के कार्तीय उत्पाद Sn के लिए क्रिया स्वाभाविक रूप से तक विस्तारित हो सकती है, जिसमें S के तत्वों के n-टुपल्स सम्मिलित हैं: n-ट्यूपल (s1, ..., sn) पर एक तत्व g की क्रिया द्वारा दिया गया है;
- g(s1, ..., sn) = (g(s1), ..., g(sn))
समूह G को ओलिगोमोर्फिक कहा जाता है यदि Sn पर क्रिया होमें प्रत्येक धनात्मक पूर्णांक n के लिए केवल परिमित रूप से कई कक्षाएँ होती हैं।[17][18] (यदि S परिमित है तो यह स्वत: है, इसलिए S अनंत होने पर यह शब्द विशेष रूप से रुचिकर है।)
अल्परूपी समूहों में रुचि आंशिक रूप से प्रतिरूप सिद्धांत के लिए उनके आवेदन पर आधारित है, उदाहरण के लिए जब स्वचालित रूप से श्रेणीबद्ध सिद्धांत में स्वसमाकृतिकता पर विचार किया जाता है।[19]
इतिहास
समूह (गणित) का अध्ययन मूल रूप से क्रमचय समूहों की समझ से विकसित हुआ।[20] बहुपद समीकरणों के बीजगणितीय समाधानों पर अपने काम में 1770 में Lagrange द्वारा क्रमचय का गहन अध्ययन किया गया था। यह विषय फला-फूला और 19वीं शताब्दी के मध्य तक क्रमचय समूहों का एक सुविकसित सिद्धांत उपस्थित था, जिसे केमिली जॉर्डन ने अपनी पुस्तक ट्रेटे डेस सबस्टिट्यूशंस एट डेस समीकरण बीजगणित ऑफ 1870 में संहिताबद्ध किया। बदले में, जॉर्डन की पुस्तक बचे हुए कागजात पर आधारित थी। 1832 में Évariste Galois द्वारा।
जब आर्थर केली ने एक सार समूह की अवधारणा प्रस्तुत की, तो यह तुरंत स्पष्ट नहीं था कि यह ज्ञात क्रमपरिवर्तन समूहों (जिसकी परिभाषा आधुनिक से भिन्न थी) की तुलना में वस्तुओं का एक बड़ा संग्रह था या नहीं। केली ने सिद्ध किया कि केली के प्रमेय में दो अवधारणाएं समान थीं।[21]
क्रमपरिवर्तन समूहों पर कई अध्यायों वाला एक अन्य शास्त्रीय पाठ 1911 के विलियम बर्नसाइड के परिमित आदेश के समूहों का सिद्धांत है।[22] बीसवीं शताब्दी की प्रथम छमाही सामान्य रूप से समूह सिद्धांत के अध्ययन में एक परती अवधि थी, परन्तु 1950 के दशक में एच. वीलैंड्ट द्वारा क्रमपरिवर्तन समूहों में रुचि को पुनर्जीवित किया गया था, जिनके जर्मन व्याख्यान टिप्पणी को 1964 में परिमित क्रमपरिवर्तन समूह के रूप में पुनर्मुद्रित किया गया था।[23]
यह भी देखें
- 2-सकर्मक समूह
- क्रम 3 क्रमचय समूह
- मैथ्यू समूह
टिप्पणियाँ
- ↑ The notations SM and SM are also used.
- ↑ Rotman 2006, p. 148, Definition of subgroup
- ↑ Rotman 2006, p. 149, Proposition 2.69
- ↑ Wussing, Hans (2007), The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory, Courier Dover Publications, p. 94, ISBN 9780486458687,
Cauchy used his permutation notation—in which the arrangements are written one below the other and both are enclosed in parentheses—for the first time in 1815.
- ↑ especially when the algebraic properties of the permutation are of interest.
- ↑ Biggs, Norman L.; White, A. T. (1979). Permutation groups and combinatorial structures. Cambridge University Press. ISBN 0-521-22287-7.
- ↑ Rotman 2006, p. 107 – note especially the footnote on this page.
- ↑ Dixon & Mortimer 1996, p. 3 – see the comment following Example 1.2.2
- ↑ Cameron, Peter J. (1999). Permutation groups. Cambridge University Press. ISBN 0-521-65302-9.
- ↑ Jerrum, M. (1986). "A compact representation of permutation groups". J. Algorithms. 7 (1): 60–78. doi:10.1016/0196-6774(86)90038-6.
- ↑ Rotman 2006, p. 108
- ↑ 12.0 12.1 12.2 Dixon & Mortimer 1996, p. 5
- ↑ Artin 1991, p. 177
- ↑ Dixon & Mortimer 1996, p. 17
- ↑ Dixon & Mortimer 1996, p. 18
- ↑ Cameron 1994, p. 228
- ↑ Cameron, Peter J. (1990). ओलिगोमॉर्फिक क्रमपरिवर्तन समूह. London Mathematical Society Lecture Note Series. Vol. 152. Cambridge: Cambridge University Press. ISBN 0-521-38836-8. Zbl 0813.20002.
- ↑ Oligomorphic permutation groups - Isaac Newton Institute preprint, Peter J. Cameron
- ↑ Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.; Neumann, Peter M. (1998). अनंत क्रमपरिवर्तन समूहों पर नोट्स. Lecture Notes in Mathematics. Vol. 1698. Berlin: Springer-Verlag. p. 83. ISBN 3-540-64965-4. Zbl 0916.20002.
- ↑ Dixon & Mortimer 1996, p. 28
- ↑ Cameron 1994, p. 226
- ↑ Burnside, William (1955) [1911], Theory of Groups of Finite Order (2nd ed.), Dover
- ↑ Wielandt, H. (1964), Finite Permutation Groups, Academic Press
संदर्भ
- Artin, Michael (1991), Algebra, Prentice-Hall, ISBN 0-13-004763-5
- Cameron, Peter J. (1994), Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, ISBN 0-521-45761-0
- Dixon, John D.; Mortimer, Brian (1996), Permutation Groups, Graduate Texts in Mathematics 163), Springer-Verlag, ISBN 0-387-94599-7
- Rotman, Joseph J. (2006), A First Course in Abstract Algebra with Applications (3rd ed.), Pearson Prentice-Hall, ISBN 0-13-186267-7
अग्रिम पठन
- Akos Seress. Permutation group algorithms. Cambridge Tracts in Mathematics, 152. Cambridge University Press, Cambridge, 2003.
- Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller and Peter M. Neumann. Notes on Infinite Permutation Groups. Number 1698 in Lecture Notes in Mathematics. Springer-Verlag, 1998.
- Peter J. Cameron. Permutation Groups. LMS Student Text 45. Cambridge University Press, Cambridge, 1999.
- Peter J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, Cambridge, 1990.
बाहरी संबंध
- "Permutation group", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Alexander Hulpke. GAP Data Library "Transitive Permutation Groups".