माप अनिश्चितता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:
== अप्रत्यक्ष माप ==
== अप्रत्यक्ष माप ==


उपरोक्त चर्चा एक मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक कम होती है। उदाहरण के लिए, बाथरूम का पैमाना वसंत के मापे गए विस्तार को मापक के अनुमान में बदल सकता है, पैमाने पर व्यक्ति का [[ द्रव्यमान ]]विस्तार और द्रव्यमान के बीच विशेष संबंध पैमाने के [[ अंशांकन ]] द्वारा निर्धारित किया जाता है। एक माप गणितीय मॉडल एक मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।
उपरोक्त चर्चा, मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक निम्न होती है। उदाहरण के लिए, स्नानघर का माप वसंत के मापे गए विस्तार को मापक के अनुमान में परिवर्तित कर सकता है, माप पर व्यक्ति का [[ द्रव्यमान | द्रव्यमान]] विस्तार और द्रव्यमान के मध्य विशेष संबंध माप के [[ अंशांकन |अंशांकन]] द्वारा निर्धारित किया जाता है। माप गणितीय प्रारूप, मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।


अभ्यास में कई प्रकार के माप होते हैं और इसलिए कई मॉडल होते हैं। एक साधारण माप मॉडल (उदाहरण के लिए एक पैमाने के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) रोजमर्रा के घरेलू उपयोग के लिए पर्याप्त हो सकता है। वैकल्पिक रूप से, वज़न का एक अधिक परिष्कृत मॉडल, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव शामिल हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए बेहतर परिणाम देने में सक्षम है। आम तौर पर अक्सर कई अलग-अलग मात्राएं होती हैं, उदाहरण के लिए [[ तापमान ]], आर्द्रता और [[ विस्थापन (वेक्टर) ]], जो मापने की परिभाषा में योगदान देता है, और जिसे मापने की आवश्यकता होती है।
अभ्यास में अनेक प्रकार के माप होते हैं, और इसलिए अनेक प्रारूप होते हैं। साधारण माप प्रारूप (उदाहरण माप के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) प्रतिदिन के घरेलू उपयोग के लिए पर्याप्त हो सकते है। वैकल्पिक रूप से, भार का अधिक परिष्कृत प्रारूप, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव सम्मलित होते हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए उत्तम परिणाम देने में सक्षम होते है। प्रायः अनेक भिन्न-भिन्न मात्राएं होती हैं, उदाहरण के लिए [[ तापमान |तापमान,]] आर्द्रता और [[ विस्थापन (वेक्टर) |विस्थापन (सदिश)]] आदि, जो मापने की परिभाषा में योगदान देते है, और जिसे मापने की आवश्यकता होती है।


सुधार शर्तों को माप मॉडल में शामिल किया जाना चाहिए जब माप की शर्तें बिल्कुल निर्धारित नहीं होती हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप हैं। सुधार अवधि के एक अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से ठीक किया जाना चाहिए। अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि अक्सर होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूरी तरह से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। न तो उपकरण का संरेखण और न ही परिवेश का तापमान सटीक रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित जानकारी उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है और माप के समय परिवेश का तापमान अधिकतम 2 द्वारा निर्धारित से भिन्न होता है डिग्री सेल्सियस।
संशोधित नियमो को माप प्रारूप में सम्मलित किया जाना चाहिए, जब माप के नियम निर्धारित नहीं होते हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप होते हैं। संशोधन अवधि के अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से उचित की जानी चाहिए। अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि प्रायः होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूर्ण रूप से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। न तो उपकरण का संरेखण और न ही परिवेश का तापमान उचित रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित सूचना उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है, और माप के समय परिवेश का तापमान अधिकतम 2 डिग्री सेल्सियस होता है।


साथ ही मापा मूल्यों का प्रतिनिधित्व करने वाले कच्चे डेटा, डेटा का एक और रूप है जिसे मापन मॉडल में अक्सर आवश्यक होता है। कुछ ऐसे डेटा [[ भौतिक स्थिरांक ]]ों का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण सामग्री स्थिरांक हैं जैसे [[ लोचदार मापांक ]] और विशिष्ट ताप क्षमता। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में अक्सर अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें आगे की मात्रा के अनुमान के रूप में माना जाता है।
साथ ही मापा मूल्यों का प्रतिनिधित्व करने वाले कच्चे डेटा, डेटा का एक और रूप है जिसे मापन मॉडल में प्रायः आवश्यक होता है। कुछ ऐसे डेटा [[ भौतिक स्थिरांक ]]ों का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण सामग्री स्थिरांक हैं जैसे [[ लोचदार मापांक ]] और विशिष्ट ताप क्षमता। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में प्रायः अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें आगे की मात्रा के अनुमान के रूप में माना जाता है।


मापन मॉडल द्वारा मापने के लिए आवश्यक वस्तुओं को माप मॉडल में इनपुट मात्रा के रूप में जाना जाता है। मॉडल को अक्सर एक कार्यात्मक संबंध के रूप में जाना जाता है। मापन मॉडल में आउटपुट मात्रा मापक है।
मापन मॉडल द्वारा मापने के लिए आवश्यक वस्तुओं को माप मॉडल में इनपुट मात्रा के रूप में जाना जाता है। मॉडल को प्रायः एक कार्यात्मक संबंध के रूप में जाना जाता है। मापन मॉडल में आउटपुट मात्रा मापक है।


औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित <math>Y</math>, जिसके बारे में जानकारी की आवश्यकता है, अक्सर इनपुट मात्रा से संबंधित होता है, जिसे द्वारा दर्शाया जाता है <math>X_1,\ldots,X_N</math>, जिसके बारे में जानकारी एक मापन मॉडल के रूप में उपलब्ध है
औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित <math>Y</math>, जिसके बारे में जानकारी की आवश्यकता है, प्रायः इनपुट मात्रा से संबंधित होता है, जिसे द्वारा दर्शाया जाता है <math>X_1,\ldots,X_N</math>, जिसके बारे में जानकारी एक मापन मॉडल के रूप में उपलब्ध है


:<math>Y = f(X_1,\ldots,X_N),</math>
:<math>Y = f(X_1,\ldots,X_N),</math>
Line 54: Line 54:
के लिए संभाव्यता वितरण का निर्धारण <math>Y</math> इस जानकारी से वितरण के प्रसार के रूप में जाना जाता है।<ref name="JCGM 101" />
के लिए संभाव्यता वितरण का निर्धारण <math>Y</math> इस जानकारी से वितरण के प्रसार के रूप में जाना जाता है।<ref name="JCGM 101" />


नीचे दिया गया आंकड़ा एक माप मॉडल को दर्शाता है <math>Y = X_1 + X_2</math> मामले में जहां <math>X_1</math> और <math>X_2</math> प्रत्येक एक (अलग) आयताकार, या [[ समान वितरण (निरंतर) ]], संभाव्यता वितरण द्वारा विशेषता है।
नीचे दिया गया आंकड़ा एक माप मॉडल को दर्शाता है <math>Y = X_1 + X_2</math> मामले में जहां <math>X_1</math> और <math>X_2</math> प्रत्येक एक (भिन्न) आयताकार, या [[ समान वितरण (निरंतर) ]], संभाव्यता वितरण द्वारा विशेषता है।
   <math>Y</math> इस मामले में एक सममित ट्रेपोज़ाइडल संभाव्यता वितरण है।
   <math>Y</math> इस मामले में एक सममित ट्रेपोज़ाइडल संभाव्यता वितरण है।


[[/index.php?title=Special:MathShowImage&hash=0d5fa3f335333b23d4aaf795d1336587&mode=mathml|center|दो इनपुट मात्राओं के साथ एक योज्य माप फ़ंक्शन <math>X_1</math> और <math>X_2</math> आयताकार संभाव्यता वितरण द्वारा विशेषता|link=|alt=<nowiki>{\displaystyle X_{1}}</nowiki>]]एक बार इनपुट मात्रा <math>X_1,\ldots,X_N</math> उपयुक्त संभाव्यता वितरण द्वारा विशेषता दी गई है, और माप मॉडल विकसित किया गया है, मापने के लिए संभावना वितरण <math>Y</math> इस जानकारी के संदर्भ में पूरी तरह से निर्दिष्ट है। विशेष रूप से, की अपेक्षा <math>Y</math> के अनुमान के रूप में प्रयोग किया जाता है <math>Y</math>, और का मानक विचलन <math>Y</math> इस अनुमान से जुड़ी मानक अनिश्चितता के रूप में।
[[/index.php?title=Special:MathShowImage&hash=0d5fa3f335333b23d4aaf795d1336587&mode=mathml|center|दो इनपुट मात्राओं के साथ एक योज्य माप फ़ंक्शन <math>X_1</math> और <math>X_2</math> आयताकार संभाव्यता वितरण द्वारा विशेषता|link=|alt=<nowiki>{\displaystyle X_{1}}</nowiki>]]एक बार इनपुट मात्रा <math>X_1,\ldots,X_N</math> उपयुक्त संभाव्यता वितरण द्वारा विशेषता दी गई है, और माप मॉडल विकसित किया गया है, मापने के लिए संभावना वितरण <math>Y</math> इस जानकारी के संदर्भ में पूरी तरह से निर्दिष्ट है। विशेष रूप से, की अपेक्षा <math>Y</math> के अनुमान के रूप में प्रयोग किया जाता है <math>Y</math>, और का मानक विचलन <math>Y</math> इस अनुमान से जुड़ी मानक अनिश्चितता के रूप में।


अक्सर एक अंतराल युक्त <math>Y</math> एक निर्दिष्ट संभावना के साथ आवश्यक है। इस तरह के एक अंतराल, एक कवरेज अंतराल, के लिए संभाव्यता वितरण से घटाया जा सकता है <math>Y</math>. निर्दिष्ट संभावना को कवरेज संभावना के रूप में जाना जाता है। किसी दिए गए कवरेज प्रायिकता के लिए, एक से अधिक कवरेज अंतराल होते हैं। संभाव्य रूप से सममित कवरेज अंतराल एक अंतराल है जिसके लिए अंतराल के बाईं ओर और दाईं ओर के मूल्य की संभावनाएं (एक माइनस कवरेज संभावना) बराबर होती हैं। सबसे छोटा कवरेज अंतराल एक अंतराल है जिसके लिए समान कवरेज संभावना वाले सभी कवरेज अंतरालों पर लंबाई सबसे कम है।
प्रायः एक अंतराल युक्त <math>Y</math> एक निर्दिष्ट संभावना के साथ आवश्यक है। इस तरह के एक अंतराल, एक कवरेज अंतराल, के लिए संभाव्यता वितरण से घटाया जा सकता है <math>Y</math>. निर्दिष्ट संभावना को कवरेज संभावना के रूप में जाना जाता है। किसी दिए गए कवरेज प्रायिकता के लिए, एक से अधिक कवरेज अंतराल होते हैं। संभाव्य रूप से सममित कवरेज अंतराल एक अंतराल है जिसके लिए अंतराल के बाईं ओर और दाईं ओर के मूल्य की संभावनाएं (एक माइनस कवरेज संभावना) बराबर होती हैं। सबसे छोटा कवरेज अंतराल एक अंतराल है जिसके लिए समान कवरेज संभावना वाले सभी कवरेज अंतरालों पर लंबाई सबसे कम है।


आउटपुट मात्रा के सही मूल्य के बारे में पूर्व ज्ञान <math>Y</math> भी माना जा सकता है। घरेलू बाथरूम पैमाने के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह एक मोटर कार के बजाय एक व्यक्ति का द्रव्यमान है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के बारे में पूर्व ज्ञान का गठन करते हैं यह उदाहरण। इस तरह की अतिरिक्त जानकारी का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है <math>Y</math> के लिए एक छोटा मानक विचलन दे सकता है <math>Y</math> और इसलिए के अनुमान से जुड़ी एक छोटी मानक अनिश्चितता <math>Y</math>.<ref>Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20</ref><ref>{{Cite journal|doi = 10.1088/0026-1394/44/2/002|title = Calculation of uncertainty in the presence of prior knowledge|year = 2007|last1 = Elster|first1 = Clemens|journal = Metrologia|volume = 44|issue = 2|pages = 111–116|bibcode = 2007Metro..44..111E| s2cid=123445853 }}</ref><ref>[http://www.measurementuncertainty.org/guide/index.html EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement"]. Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide&#93;, 2000. Second edition.</ref>
आउटपुट मात्रा के सही मूल्य के बारे में पूर्व ज्ञान <math>Y</math> भी माना जा सकता है। घरेलू बाथरूम पैमाने के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह एक मोटर कार के बजाय एक व्यक्ति का द्रव्यमान है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के बारे में पूर्व ज्ञान का गठन करते हैं यह उदाहरण। इस तरह की अतिरिक्त जानकारी का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है <math>Y</math> के लिए एक छोटा मानक विचलन दे सकता है <math>Y</math> और इसलिए के अनुमान से जुड़ी एक छोटी मानक अनिश्चितता <math>Y</math>.<ref>Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20</ref><ref>{{Cite journal|doi = 10.1088/0026-1394/44/2/002|title = Calculation of uncertainty in the presence of prior knowledge|year = 2007|last1 = Elster|first1 = Clemens|journal = Metrologia|volume = 44|issue = 2|pages = 111–116|bibcode = 2007Metro..44..111E| s2cid=123445853 }}</ref><ref>[http://www.measurementuncertainty.org/guide/index.html EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement"]. Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide&#93;, 2000. Second edition.</ref>
Line 68: Line 68:
एक इनपुट मात्रा के बारे में ज्ञान <math>X_i</math> बार-बार मापा मूल्यों (अनिश्चितता का टाइप ए मूल्यांकन), या वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों से संबंधित अन्य जानकारी (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।
एक इनपुट मात्रा के बारे में ज्ञान <math>X_i</math> बार-बार मापा मूल्यों (अनिश्चितता का टाइप ए मूल्यांकन), या वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों से संबंधित अन्य जानकारी (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।


माप अनिश्चितता के टाइप ए मूल्यांकन में, अक्सर यह धारणा बनाई जाती है कि वितरण एक इनपुट मात्रा का सबसे अच्छा वर्णन करता है <math>X</math> इसका बार-बार मापा गया मान (स्वतंत्र रूप से प्राप्त) एक [[ सामान्य वितरण ]] है।
माप अनिश्चितता के टाइप ए मूल्यांकन में, प्रायः यह धारणा बनाई जाती है कि वितरण एक इनपुट मात्रा का सबसे अच्छा वर्णन करता है <math>X</math> इसका बार-बार मापा गया मान (स्वतंत्र रूप से प्राप्त) एक [[ सामान्य वितरण ]] है।
<math>X</math> तब औसत मापा मूल्य के बराबर अपेक्षा और औसत के मानक विचलन के बराबर मानक विचलन होता है।
<math>X</math> तब औसत मापा मूल्य के बराबर अपेक्षा और औसत के मानक विचलन के बराबर मानक विचलन होता है।
जब मापित मानों की एक छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण|टी-वितरण के रूप में लिया जा सकता है।<ref name="JCGM 104">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_104_2009_E.pdf JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents]. Joint Committee for Guides in Metrology.</ref>
जब मापित मानों की एक छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण|टी-वितरण के रूप में लिया जा सकता है।<ref name="JCGM 104">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_104_2009_E.pdf JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents]. Joint Committee for Guides in Metrology.</ref>
अन्य विचार तब लागू होते हैं जब मापा मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।
अन्य विचार तब लागू होते हैं जब मापा मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।


अनिश्चितता के टाइप बी मूल्यांकन के लिए, अक्सर केवल यही उपलब्ध जानकारी होती है <math>X</math> एक निर्दिष्ट [[ अंतराल (गणित) ]] में निहित है [<math>a, b</math>]।
अनिश्चितता के टाइप बी मूल्यांकन के लिए, प्रायः केवल यही उपलब्ध जानकारी होती है <math>X</math> एक निर्दिष्ट [[ अंतराल (गणित) ]] में निहित है [<math>a, b</math>]।
ऐसे मामले में, मात्रा का ज्ञान एक समान वितरण (निरंतर) द्वारा वर्णित किया जा सकता है<ref name="JCGM 104" />सीमा के साथ <math>a</math> और <math>b</math>.
ऐसे मामले में, मात्रा का ज्ञान एक समान वितरण (निरंतर) द्वारा वर्णित किया जा सकता है<ref name="JCGM 104" />सीमा के साथ <math>a</math> और <math>b</math>.
अगर अलग-अलग जानकारी उपलब्ध होती, तो उस जानकारी के अनुरूप एक संभाव्यता वितरण का उपयोग किया जाता।<ref>{{Cite journal|doi=10.1088/0957-0233/4/1/001|title=A Bayesian theory of measurement uncertainty|year=1993|last1=Weise|first1=K.|last2=Woger|first2=W.|journal=Measurement Science and Technology|volume=4|issue=1|pages=1–11|bibcode=1993MeScT...4....1W|s2cid=250751314 }}</ref>
अगर भिन्न-भिन्न जानकारी उपलब्ध होती, तो उस जानकारी के अनुरूप एक संभाव्यता वितरण का उपयोग किया जाता।<ref>{{Cite journal|doi=10.1088/0957-0233/4/1/001|title=A Bayesian theory of measurement uncertainty|year=1993|last1=Weise|first1=K.|last2=Woger|first2=W.|journal=Measurement Science and Technology|volume=4|issue=1|pages=1–11|bibcode=1993MeScT...4....1W|s2cid=250751314 }}</ref>




Line 93: Line 93:
जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।
जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।


जब इनपुट मात्रा <math>X_i</math> निर्भरताएँ शामिल हैं, उपरोक्त सूत्र को [[ सहप्रसरण ]] वाले शब्दों द्वारा संवर्धित किया गया है,<ref name=GUM />जो बढ़ या घट सकता है <math>u(y)</math>.
जब इनपुट मात्रा <math>X_i</math> निर्भरताएँ सम्मलित हैं, उपरोक्त सूत्र को [[ सहप्रसरण ]] वाले शब्दों द्वारा संवर्धित किया गया है,<ref name=GUM />जो बढ़ या घट सकता है <math>u(y)</math>.


== अनिश्चितता मूल्यांकन ==
== अनिश्चितता मूल्यांकन ==
{{see also|Uncertainty analysis|Quality of analytical results}}
{{see also|Uncertainty analysis|Quality of analytical results}}
अनिश्चितता के मूल्यांकन के मुख्य चरणों में सूत्रीकरण और गणना शामिल है, उत्तरार्द्ध में प्रसार और सारांश शामिल हैं।
अनिश्चितता के मूल्यांकन के मुख्य चरणों में सूत्रीकरण और गणना सम्मलित है, उत्तरार्द्ध में प्रसार और सारांश सम्मलित हैं।
सूत्रीकरण चरण बनता है
सूत्रीकरण चरण बनता है
# आउटपुट मात्रा को परिभाषित करना <math>Y</math> (माप),
# आउटपुट मात्रा को परिभाषित करना <math>Y</math> (माप),
Line 104: Line 104:
#उपलब्ध ज्ञान के आधार पर, संभाव्यता वितरण - गाऊसी, आयताकार, आदि - इनपुट मात्राओं को निर्दिष्ट करना (या उन इनपुट मात्राओं के लिए एक संयुक्त संभाव्यता वितरण जो स्वतंत्र नहीं हैं)।
#उपलब्ध ज्ञान के आधार पर, संभाव्यता वितरण - गाऊसी, आयताकार, आदि - इनपुट मात्राओं को निर्दिष्ट करना (या उन इनपुट मात्राओं के लिए एक संयुक्त संभाव्यता वितरण जो स्वतंत्र नहीं हैं)।


गणना चरण में आउटपुट मात्रा के लिए संभाव्यता वितरण प्राप्त करने के लिए माप मॉडल के माध्यम से इनपुट मात्रा के लिए संभाव्यता वितरण का प्रचार करना शामिल है। <math>Y</math>, और प्राप्त करने के लिए इस वितरण का उपयोग करके सारांशित करना
गणना चरण में आउटपुट मात्रा के लिए संभाव्यता वितरण प्राप्त करने के लिए माप मॉडल के माध्यम से इनपुट मात्रा के लिए संभाव्यता वितरण का प्रचार करना सम्मलित है। <math>Y</math>, और प्राप्त करने के लिए इस वितरण का उपयोग करके सारांशित करना
#उम्मीद <math>Y</math>, एक अनुमान के रूप में लिया गया <math>y</math> का <math>Y</math>,
#उम्मीद <math>Y</math>, एक अनुमान के रूप में लिया गया <math>y</math> का <math>Y</math>,
# का मानक विचलन <math>Y</math>, मानक अनिश्चितता के रूप में लिया गया <math>u(y)</math> के साथ जुड़े <math>y</math>, और
# का मानक विचलन <math>Y</math>, मानक अनिश्चितता के रूप में लिया गया <math>u(y)</math> के साथ जुड़े <math>y</math>, और
#a कवरेज अंतराल युक्त <math>Y</math> एक निर्दिष्ट कवरेज संभावना के साथ।
#a कवरेज अंतराल युक्त <math>Y</math> एक निर्दिष्ट कवरेज संभावना के साथ।


अनिश्चितता मूल्यांकन के प्रचार चरण को वितरण के प्रचार के रूप में जाना जाता है, जिसके लिए विभिन्न दृष्टिकोण उपलब्ध हैं, जिनमें शामिल हैं
अनिश्चितता मूल्यांकन के प्रचार चरण को वितरण के प्रचार के रूप में जाना जाता है, जिसके लिए विभिन्न दृष्टिकोण उपलब्ध हैं, जिनमें सम्मलित हैं
# जीयूएम अनिश्चितता ढांचा, अनिश्चितता के प्रसार के कानून के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन <math>Y</math> गॉसियन द्वारा या ए <math>t</math>-वितरण,
# जीयूएम अनिश्चितता ढांचा, अनिश्चितता के प्रसार के कानून के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन <math>Y</math> गॉसियन द्वारा या ए <math>t</math>-वितरण,
#विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए एक बीजगणितीय रूप प्राप्त करने के लिए किया जाता है <math>Y</math>, और
#विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए एक बीजगणितीय रूप प्राप्त करने के लिए किया जाता है <math>Y</math>, और
Line 123: Line 123:
{{see also|Confidence interval}}
{{see also|Confidence interval}}
माप अनिश्चितता का सबसे आम दृष्टिकोण अनिश्चित मात्रा के लिए गणितीय मॉडल के रूप में यादृच्छिक चर का उपयोग करता है और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल (गणित) संभाव्यता की तुलना में अनिश्चितता का एक बेहतर मॉडल हो सकता है
माप अनिश्चितता का सबसे आम दृष्टिकोण अनिश्चित मात्रा के लिए गणितीय मॉडल के रूप में यादृच्छिक चर का उपयोग करता है और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल (गणित) संभाव्यता की तुलना में अनिश्चितता का एक बेहतर मॉडल हो सकता है
वितरण। इसमें आवधिक माप, [[ डेटा बिनिंग ]] डेटा मान, [[ सेंसरिंग (सांख्यिकी) ]], जांच सीमा, या माप की प्लस-माइनस रेंज शामिल हो सकती हैं जहां कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहां कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूरी तरह से स्वतंत्र हैं।{{citation needed|date=December 2015}}
वितरण। इसमें आवधिक माप, [[ डेटा बिनिंग ]] डेटा मान, [[ सेंसरिंग (सांख्यिकी) ]], जांच सीमा, या माप की प्लस-माइनस रेंज सम्मलित हो सकती हैं जहां कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहां कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूरी तरह से स्वतंत्र हैं।{{citation needed|date=December 2015}}
ऐसे मामलों में माप अनिश्चितता का एक अधिक मजबूत सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।<ref name=Manski-2003>Manski, C.F. (2003); ''Partial Identification of Probability Distributions'', Springer Series in Statistics, Springer, New York</ref><ref name=Ferson-etal-2007>Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); [http://www.ramas.com/intstats.pdf ''Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty''], Sandia National Laboratories SAND 2007-0939</ref> एक अंतराल [ए, बी] एक समान श्रेणी पर एक आयताकार या समान संभाव्यता वितरण से अलग है जिसमें बाद वाला सुझाव देता है कि सही मूल्य श्रेणी के दाहिने आधे हिस्से के अंदर है [(ए + बी)/2, बी] संभाव्यता के साथ एक आधा, और [a, b] के किसी भी उपअंतराल के भीतर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना के साथ। अंतराल ऐसा कोई दावा नहीं करता है, सिवाय इसके कि माप अंतराल के भीतर कहीं है। इस तरह के माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में सारांशित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को शामिल करती हैं।
ऐसे मामलों में माप अनिश्चितता का एक अधिक मजबूत सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।<ref name=Manski-2003>Manski, C.F. (2003); ''Partial Identification of Probability Distributions'', Springer Series in Statistics, Springer, New York</ref><ref name=Ferson-etal-2007>Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); [http://www.ramas.com/intstats.pdf ''Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty''], Sandia National Laboratories SAND 2007-0939</ref> एक अंतराल [ए, बी] एक समान श्रेणी पर एक आयताकार या समान संभाव्यता वितरण से भिन्न है जिसमें बाद वाला सुझाव देता है कि सही मूल्य श्रेणी के दाहिने आधे हिस्से के अंदर है [(ए + बी)/2, बी] संभाव्यता के साथ एक आधा, और [a, b] के किसी भी उपअंतराल के भीतर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना के साथ। अंतराल ऐसा कोई दावा नहीं करता है, सिवाय इसके कि माप अंतराल के भीतर कहीं है। इस तरह के माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में सारांशित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को सम्मलित करती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:42, 28 March 2023

मैट्रोलोजी में माप अनिश्चितता, पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी मूल्यों के सांख्यिकीय विस्तार की अभिव्यक्ति है। सभी माप, अनिश्चितता के अधीन हैं और माप परिणाम उस स्थिति में पूर्ण होता है, जब इसके साथ संबंधित अनिश्चितता के वर्णन से होता है, जैसे कि मानक विचलन आदि I अंतर्राष्ट्रीय अनुबंध के अनुसार, इस अनिश्चितता का आधार संभाव्य होते है, और मात्रा मूल्य के अपूर्ण ज्ञान को प्रदर्शित करते है। यह अन्य-नकारात्मक पैरामीटर होते है।[1]

माप अनिश्चितता को प्रायः संभावित मूल्यों पर ज्ञान की संभावना वितरण के मानक विचलन के रूप में प्राप्त किया जाता है, जिसे पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी कहा जा सकता है। सापेक्ष अनिश्चितता, पूर्ण रूप से सुनिश्चित की गई मात्रा के मान के लिए किसी विशेष एकल विकल्प के परिमाण के सापेक्ष माप अनिश्चितता होती है, जब यह विकल्प शून्य नहीं होता है। इस विशेष एकल विकल्प को सामान्यतः मापित मूल्य कहा जाता है, जो उत्तम प्रकार से परिभाषित अर्थों में इष्टतम हो सकते है (उदाहरण के लिए, माध्य, माध्यिका या मोड (सांख्यिकी)) आदि। इस प्रकार, सापेक्ष माप अनिश्चितता मापित मूल्य के पूर्ण मूल्य से विभाजित, माप अनिश्चितता होती है, जब मापित मूल्य शून्य नहीं होता है।

पृष्ठभूमि

मापन का उद्देश्य ब्याज की मात्रा के सम्बन्ध में सूचना प्रदान करना होता है I मापक उदाहरण के लिए माप, बेलनाकार विशेषता का आकार, बर्तन का आयतन, बैटरी के टर्मिनलों के मध्य संभावित अंतर या पानी के फ्लास्क में शीशे की द्रव्यमान सांद्रता (रसायन विज्ञान) हो सकती है।

कोई माप उचित नहीं है। जब मात्रा को मापा जाता है, तो परिणाम माप प्रणाली, माप प्रक्रिया, प्रचालक के कौशल, पर्यावरण और अन्य प्रभावों पर निर्भर करता है।[2] यहां तक ​​​​कि यदि मात्रा को अनेक बार मापा जाता है, तो उसी प्रकार और समान परिस्थितियों में, सामान्य रूप से भिन्न मापित मूल्य प्रत्येक बार प्राप्त किया जाता है, यह मानते हुए कि माप प्रणाली में मूल्यों के मध्य अंतर करने के लिए पर्याप्त समाधान होता है।

मापित मूल्यों का विस्तार इस बात से संबंधित होगा कि माप को कितने उचित प्रकार से किया जाता है। औसत मात्रा के वास्तविक मूल्य का अनुमान प्रदान करेगा जो सामान्यतः व्यक्तिगत मापित मूल्य से अधिक विश्वसनीय होता है। विस्तार और मापित मूल्यों की संख्या वास्तविक मूल्य के अनुमान के रूप में औसत मूल्य से संबंधित जानकारी प्रदान करती है। चूँकि, यह जानकारी सामान्यतः पर्याप्त नहीं होती है।

मापने की प्रणाली मापित मूल्य प्रदान कर सकती है, जो वास्तविक मूल्य के सम्बन्ध में नहीं विस्तारित हुए हैं, किन्तु इसके सम्बन्ध में कुछ मूल्य शून्य में समायोजित होते हैं। घरेलू स्केल लें और मान लें कि यह शून्य दिखाने के लिए सेट नहीं है जब पैमाने पर कोई नहीं है, किन्तु शून्य से कुछ मूल्य ऑफसेट दिखाने के लिए। फिर, इससे कोई फर्क नहीं पड़ता कि व्यक्ति का द्रव्यमान कितनी बार फिर से मापा गया, इस ऑफसेट का प्रभाव स्वाभाविक रूप से मूल्यों के औसत में मौजूद होगा।

मापन में अनिश्चितता की अभिव्यक्ति के लिए मार्गदर्शिका इस विषय पर निश्चित प्रपत्र होता है। जीयूएम को सभी प्रमुख राष्ट्रीय मापन संस्थानों और अंतर्राष्ट्रीय प्रयोगशाला मान्यता मानकों जैसे आईएसओ/आईईसी 17025 परीक्षण और अंशांकन प्रयोगशालाओं की क्षमता के लिए सामान्य आवश्यकताओं द्वारा अपनाया गया है, जो अंतर्राष्ट्रीय प्रयोगशाला प्रत्यायन सहयोग के लिए आवश्यक होती है; माप विधियों और प्रौद्योगिकी पर अधिकांश आधुनिक राष्ट्रीय और अंतर्राष्ट्रीय वृत्तचित्र मानकों में कार्यरत है। मैट्रोलोजी में गाइड के लिए संयुक्त समिति देखें।

माप अनिश्चितता के अंशांकन और माप गतिविधियों के लिए महत्वपूर्ण आर्थिक परिणाम होते हैं। अंशांकन रिपोर्ट में, अनिश्चितता के परिमाण को प्रायः प्रयोगशाला की गुणवत्ता के संकेत के रूप में प्राप्त किया जाता है, और अनिश्चितता के छोटे मान सामान्यतः उच्च मूल्य और उच्च मूल्य के होते हैं। एएसएमइ ने माप अनिश्चितता के विभिन्न पहलुओं को संबोधित करते हुए मानकों का प्रारूप निर्मित किया है। उदाहरण के लिए, माप परिणाम और उत्पाद विनिर्देश के आधार पर उत्पादों को स्वीकार या अस्वीकार करते समय माप अनिश्चितता की भूमिका को संबोधित करने के लिए एएसएमइ मानकों का उपयोग किया जाता है,[3] आयामी माप अनिश्चितता के मूल्यांकन के लिए सरलीकृत दृष्टिकोण (जीयूएम के सापेक्ष) प्रदान करते है,[4] माप अनिश्चितता विवरण के परिमाण पर असहमति को का समाधान करते है,[5] या किसी भी उत्पाद की स्वीकृति या अस्वीकृति के निर्णय में सम्मलित विपत्तियों पर मार्गदर्शन प्रदान करते है।[6]

अप्रत्यक्ष माप

उपरोक्त चर्चा, मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक निम्न होती है। उदाहरण के लिए, स्नानघर का माप वसंत के मापे गए विस्तार को मापक के अनुमान में परिवर्तित कर सकता है, माप पर व्यक्ति का द्रव्यमान विस्तार और द्रव्यमान के मध्य विशेष संबंध माप के अंशांकन द्वारा निर्धारित किया जाता है। माप गणितीय प्रारूप, मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।

अभ्यास में अनेक प्रकार के माप होते हैं, और इसलिए अनेक प्रारूप होते हैं। साधारण माप प्रारूप (उदाहरण माप के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) प्रतिदिन के घरेलू उपयोग के लिए पर्याप्त हो सकते है। वैकल्पिक रूप से, भार का अधिक परिष्कृत प्रारूप, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव सम्मलित होते हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए उत्तम परिणाम देने में सक्षम होते है। प्रायः अनेक भिन्न-भिन्न मात्राएं होती हैं, उदाहरण के लिए तापमान, आर्द्रता और विस्थापन (सदिश) आदि, जो मापने की परिभाषा में योगदान देते है, और जिसे मापने की आवश्यकता होती है।

संशोधित नियमो को माप प्रारूप में सम्मलित किया जाना चाहिए, जब माप के नियम निर्धारित नहीं होते हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप होते हैं। संशोधन अवधि के अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से उचित की जानी चाहिए। अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि प्रायः होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूर्ण रूप से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। न तो उपकरण का संरेखण और न ही परिवेश का तापमान उचित रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित सूचना उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है, और माप के समय परिवेश का तापमान अधिकतम 2 डिग्री सेल्सियस होता है।

साथ ही मापा मूल्यों का प्रतिनिधित्व करने वाले कच्चे डेटा, डेटा का एक और रूप है जिसे मापन मॉडल में प्रायः आवश्यक होता है। कुछ ऐसे डेटा भौतिक स्थिरांक ों का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण सामग्री स्थिरांक हैं जैसे लोचदार मापांक और विशिष्ट ताप क्षमता। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में प्रायः अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें आगे की मात्रा के अनुमान के रूप में माना जाता है।

मापन मॉडल द्वारा मापने के लिए आवश्यक वस्तुओं को माप मॉडल में इनपुट मात्रा के रूप में जाना जाता है। मॉडल को प्रायः एक कार्यात्मक संबंध के रूप में जाना जाता है। मापन मॉडल में आउटपुट मात्रा मापक है।

औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित , जिसके बारे में जानकारी की आवश्यकता है, प्रायः इनपुट मात्रा से संबंधित होता है, जिसे द्वारा दर्शाया जाता है , जिसके बारे में जानकारी एक मापन मॉडल के रूप में उपलब्ध है

कहां माप समारोह के रूप में जाना जाता है। माप मॉडल के लिए एक सामान्य अभिव्यक्ति है

यह लिया जाता है कि गणना के लिए एक प्रक्रिया मौजूद है दिया गया , और कि इस समीकरण द्वारा विशिष्ट रूप से परिभाषित किया गया है।

वितरण का प्रचार

इनपुट मात्राओं का सही मान अज्ञात हैं। जीयूएम दृष्टिकोण में, संभाव्यता वितरण द्वारा विशेषता है और गणितीय रूप से यादृच्छिक चर के रूप में व्यवहार किया जाता है। ये वितरण विभिन्न अंतरालों में पड़े उनके वास्तविक मूल्यों की संबंधित संभावनाओं का वर्णन करते हैं, और संबंधित उपलब्ध ज्ञान के आधार पर आवंटित किए जाते हैं . कभी-कभी, कुछ या सभी परस्पर संबंधित हैं और प्रासंगिक वितरण, जिन्हें संयुक्त संभाव्यता वितरण के रूप में जाना जाता है, एक साथ ली गई इन मात्राओं पर लागू होते हैं।

अनुमानों पर विचार करें , क्रमशः, इनपुट मात्रा का , प्रमाण पत्र और रिपोर्ट, निर्माताओं के विनिर्देशों, माप डेटा का विश्लेषण, और इसी तरह से प्राप्त किया गया। संभाव्यता वितरण लक्षण वर्णन ऐसे चुने जाते हैं कि अनुमान , क्रमशः अपेक्षित मूल्य हैं[7] का . इसके अलावा, के लिए वें इनपुट मात्रा, एक तथाकथित मानक अनिश्चितता पर विचार करें, प्रतीक दिया गया है , मानक विचलन के रूप में परिभाषित[7]इनपुट मात्रा का . इस मानक अनिश्चितता को (इसी) अनुमान से जुड़ा हुआ कहा जाता है .

ब्याज की प्रत्येक मात्रा को चिह्नित करने के लिए संभाव्यता वितरण स्थापित करने के लिए उपलब्ध ज्ञान का उपयोग लागू होता है और भी . बाद के मामले में, के लिए विशेषता संभाव्यता वितरण के लिए संभाव्यता वितरण के साथ माप मॉडल द्वारा निर्धारित किया जाता है . के लिए संभाव्यता वितरण का निर्धारण इस जानकारी से वितरण के प्रसार के रूप में जाना जाता है।[7]

नीचे दिया गया आंकड़ा एक माप मॉडल को दर्शाता है मामले में जहां और प्रत्येक एक (भिन्न) आयताकार, या समान वितरण (निरंतर) , संभाव्यता वितरण द्वारा विशेषता है।

  इस मामले में एक सममित ट्रेपोज़ाइडल संभाव्यता वितरण है।

center|दो इनपुट मात्राओं के साथ एक योज्य माप फ़ंक्शन और आयताकार संभाव्यता वितरण द्वारा विशेषता|link=|alt={\displaystyle X_{1}}एक बार इनपुट मात्रा उपयुक्त संभाव्यता वितरण द्वारा विशेषता दी गई है, और माप मॉडल विकसित किया गया है, मापने के लिए संभावना वितरण इस जानकारी के संदर्भ में पूरी तरह से निर्दिष्ट है। विशेष रूप से, की अपेक्षा के अनुमान के रूप में प्रयोग किया जाता है , और का मानक विचलन इस अनुमान से जुड़ी मानक अनिश्चितता के रूप में।

प्रायः एक अंतराल युक्त एक निर्दिष्ट संभावना के साथ आवश्यक है। इस तरह के एक अंतराल, एक कवरेज अंतराल, के लिए संभाव्यता वितरण से घटाया जा सकता है . निर्दिष्ट संभावना को कवरेज संभावना के रूप में जाना जाता है। किसी दिए गए कवरेज प्रायिकता के लिए, एक से अधिक कवरेज अंतराल होते हैं। संभाव्य रूप से सममित कवरेज अंतराल एक अंतराल है जिसके लिए अंतराल के बाईं ओर और दाईं ओर के मूल्य की संभावनाएं (एक माइनस कवरेज संभावना) बराबर होती हैं। सबसे छोटा कवरेज अंतराल एक अंतराल है जिसके लिए समान कवरेज संभावना वाले सभी कवरेज अंतरालों पर लंबाई सबसे कम है।

आउटपुट मात्रा के सही मूल्य के बारे में पूर्व ज्ञान भी माना जा सकता है। घरेलू बाथरूम पैमाने के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह एक मोटर कार के बजाय एक व्यक्ति का द्रव्यमान है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के बारे में पूर्व ज्ञान का गठन करते हैं यह उदाहरण। इस तरह की अतिरिक्त जानकारी का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है के लिए एक छोटा मानक विचलन दे सकता है और इसलिए के अनुमान से जुड़ी एक छोटी मानक अनिश्चितता .[8][9][10]


टाइप ए और टाइप बी अनिश्चितता का मूल्यांकन

एक इनपुट मात्रा के बारे में ज्ञान बार-बार मापा मूल्यों (अनिश्चितता का टाइप ए मूल्यांकन), या वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों से संबंधित अन्य जानकारी (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।

माप अनिश्चितता के टाइप ए मूल्यांकन में, प्रायः यह धारणा बनाई जाती है कि वितरण एक इनपुट मात्रा का सबसे अच्छा वर्णन करता है इसका बार-बार मापा गया मान (स्वतंत्र रूप से प्राप्त) एक सामान्य वितरण है। तब औसत मापा मूल्य के बराबर अपेक्षा और औसत के मानक विचलन के बराबर मानक विचलन होता है। जब मापित मानों की एक छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण|टी-वितरण के रूप में लिया जा सकता है।[11] अन्य विचार तब लागू होते हैं जब मापा मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।

अनिश्चितता के टाइप बी मूल्यांकन के लिए, प्रायः केवल यही उपलब्ध जानकारी होती है एक निर्दिष्ट अंतराल (गणित) में निहित है []। ऐसे मामले में, मात्रा का ज्ञान एक समान वितरण (निरंतर) द्वारा वर्णित किया जा सकता है[11]सीमा के साथ और . अगर भिन्न-भिन्न जानकारी उपलब्ध होती, तो उस जानकारी के अनुरूप एक संभाव्यता वितरण का उपयोग किया जाता।[12]


संवेदनशीलता गुणांक

संवेदनशीलता गुणांक वर्णन कैसे अनुमान का अनुमानों में छोटे बदलावों से प्रभावित होंगे इनपुट मात्राओं की . माप मॉडल के लिए , संवेदनशीलता गुणांक के पहले क्रम के आंशिक व्युत्पन्न के बराबर है इसके संबंध में पर मूल्यांकन किया गया , , आदि। एक रेखीय फ़ंक्शन मापन मॉडल के लिए

साथ स्वतंत्र, में परिवर्तन के बराबर एक बदलाव देगा में यह कथन आम तौर पर माप मॉडल के लिए अनुमानित होगा . शर्तों के सापेक्ष परिमाण इनपुट मात्रा से मानक अनिश्चितता के संबंधित योगदान का आकलन करने में उपयोगी होते हैं के साथ जुड़े . मानक अनिश्चितता अनुमान से जुड़ा हुआ है आउटपुट मात्रा का के योग से नहीं दिया जाता है , किन्तु ये शब्द चतुर्भुज में संयुक्त हैं,[1] अर्थात् एक अभिव्यक्ति द्वारा जो आमतौर पर माप मॉडल के लिए अनुमानित होती है :

जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।

जब इनपुट मात्रा निर्भरताएँ सम्मलित हैं, उपरोक्त सूत्र को सहप्रसरण वाले शब्दों द्वारा संवर्धित किया गया है,[1]जो बढ़ या घट सकता है .

अनिश्चितता मूल्यांकन

अनिश्चितता के मूल्यांकन के मुख्य चरणों में सूत्रीकरण और गणना सम्मलित है, उत्तरार्द्ध में प्रसार और सारांश सम्मलित हैं। सूत्रीकरण चरण बनता है

  1. आउटपुट मात्रा को परिभाषित करना (माप),
  2. इनपुट मात्रा की पहचान करना जिस पर निर्भर करता है,
  3. संबंधित मापन मॉडल का विकास करना इनपुट मात्रा के लिए, और
  4. उपलब्ध ज्ञान के आधार पर, संभाव्यता वितरण - गाऊसी, आयताकार, आदि - इनपुट मात्राओं को निर्दिष्ट करना (या उन इनपुट मात्राओं के लिए एक संयुक्त संभाव्यता वितरण जो स्वतंत्र नहीं हैं)।

गणना चरण में आउटपुट मात्रा के लिए संभाव्यता वितरण प्राप्त करने के लिए माप मॉडल के माध्यम से इनपुट मात्रा के लिए संभाव्यता वितरण का प्रचार करना सम्मलित है। , और प्राप्त करने के लिए इस वितरण का उपयोग करके सारांशित करना

  1. उम्मीद , एक अनुमान के रूप में लिया गया का ,
  2. का मानक विचलन , मानक अनिश्चितता के रूप में लिया गया के साथ जुड़े , और
  3. a कवरेज अंतराल युक्त एक निर्दिष्ट कवरेज संभावना के साथ।

अनिश्चितता मूल्यांकन के प्रचार चरण को वितरण के प्रचार के रूप में जाना जाता है, जिसके लिए विभिन्न दृष्टिकोण उपलब्ध हैं, जिनमें सम्मलित हैं

  1. जीयूएम अनिश्चितता ढांचा, अनिश्चितता के प्रसार के कानून के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन गॉसियन द्वारा या ए -वितरण,
  2. विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए एक बीजगणितीय रूप प्राप्त करने के लिए किया जाता है , और
  3. a मोंटे कार्लो विधि ,[7]जिसमें वितरण समारोह के लिए एक सन्निकटन इनपुट मात्राओं के लिए संभाव्यता वितरण से यादृच्छिक ड्रा बनाकर और परिणामी मूल्यों पर मॉडल का मूल्यांकन करके संख्यात्मक रूप से स्थापित किया जाता है।

किसी विशेष अनिश्चितता मूल्यांकन समस्या के लिए, दृष्टिकोण 1), 2) या 3) (या कुछ अन्य दृष्टिकोण) का उपयोग किया जाता है, 1) आम तौर पर अनुमानित, 2) सटीक, और 3) एक संख्यात्मक सटीकता के साथ एक समाधान प्रदान करता है जिसे नियंत्रित किया जा सकता है।

उत्पादन मात्रा की किसी भी संख्या के साथ मॉडल

जब माप मॉडल बहुभिन्नरूपी होता है, अर्थात, इसमें किसी भी संख्या में आउटपुट मात्राएँ होती हैं, तो उपरोक्त अवधारणाओं को बढ़ाया जा सकता है।[13] आउटपुट मात्राओं को अब एक संयुक्त संभाव्यता वितरण द्वारा वर्णित किया जाता है, कवरेज अंतराल एक कवरेज क्षेत्र बन जाता है, अनिश्चितता के प्रसार के कानून में एक प्राकृतिक सामान्यीकरण होता है, और एक गणना प्रक्रिया जो एक बहुभिन्नरूपी मोंटे कार्लो पद्धति को लागू करती है, उपलब्ध है।

एक अंतराल के रूप में अनिश्चितता

माप अनिश्चितता का सबसे आम दृष्टिकोण अनिश्चित मात्रा के लिए गणितीय मॉडल के रूप में यादृच्छिक चर का उपयोग करता है और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल (गणित) संभाव्यता की तुलना में अनिश्चितता का एक बेहतर मॉडल हो सकता है वितरण। इसमें आवधिक माप, डेटा बिनिंग डेटा मान, सेंसरिंग (सांख्यिकी) , जांच सीमा, या माप की प्लस-माइनस रेंज सम्मलित हो सकती हैं जहां कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहां कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूरी तरह से स्वतंत्र हैं।[citation needed] ऐसे मामलों में माप अनिश्चितता का एक अधिक मजबूत सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।[14][15] एक अंतराल [ए, बी] एक समान श्रेणी पर एक आयताकार या समान संभाव्यता वितरण से भिन्न है जिसमें बाद वाला सुझाव देता है कि सही मूल्य श्रेणी के दाहिने आधे हिस्से के अंदर है [(ए + बी)/2, बी] संभाव्यता के साथ एक आधा, और [a, b] के किसी भी उपअंतराल के भीतर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना के साथ। अंतराल ऐसा कोई दावा नहीं करता है, सिवाय इसके कि माप अंतराल के भीतर कहीं है। इस तरह के माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में सारांशित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को सम्मलित करती हैं।

यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement, Joint Committee for Guides in Metrology.
  2. Bell, S. Measurement Good Practice Guide No. 11. A Beginner's Guide to Uncertainty of Measurement. Tech. rep., National Physical Laboratory, 1999.
  3. ASME B89.7.3.1, Guidelines for Decision Rules in Determining Conformance to Specifications
  4. ASME B89.7.3.2, Guidelines for the Evaluation of Dimensional Measurement Uncertainty
  5. ASME B89.7.3.3, Guidelines for Assessing the Reliability of Dimensional Measurement Uncertainty Statements
  6. ASME B89.7.4, Measurement Uncertainty and Conformance Testing: Risk Analysis
  7. 7.0 7.1 7.2 7.3 JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology.
  8. Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20
  9. Elster, Clemens (2007). "Calculation of uncertainty in the presence of prior knowledge". Metrologia. 44 (2): 111–116. Bibcode:2007Metro..44..111E. doi:10.1088/0026-1394/44/2/002. S2CID 123445853.
  10. EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement". Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide], 2000. Second edition.
  11. 11.0 11.1 JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents. Joint Committee for Guides in Metrology.
  12. Weise, K.; Woger, W. (1993). "A Bayesian theory of measurement uncertainty". Measurement Science and Technology. 4 (1): 1–11. Bibcode:1993MeScT...4....1W. doi:10.1088/0957-0233/4/1/001. S2CID 250751314.
  13. Joint Committee for Guides in Metrology (2011). JCGM 102: Evaluation of Measurement Data – Supplement 2 to the "Guide to the Expression of Uncertainty in Measurement" – Extension to Any Number of Output Quantities (PDF) (Technical report). JCGM. Retrieved 13 February 2013.
  14. Manski, C.F. (2003); Partial Identification of Probability Distributions, Springer Series in Statistics, Springer, New York
  15. Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty, Sandia National Laboratories SAND 2007-0939


आगे की पढाई


बाहरी कड़ियाँ