यादृच्छिक कुंडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:


: <math>P(r) = 4 \pi r^2 \left(\frac{3}{2\; \pi \langle r^2\rangle}\right)^{3/2} \;e^{-\,\frac{3r^2}{2\langle r^2\rangle}}</math>
: <math>P(r) = 4 \pi r^2 \left(\frac{3}{2\; \pi \langle r^2\rangle}\right)^{3/2} \;e^{-\,\frac{3r^2}{2\langle r^2\rangle}}</math>
श्रृंखला के लिए औसत (मूल माध्य वर्ग) अंत-से-अंत दूरी, <math>\scriptstyle \sqrt{\langle r^2\rangle}</math>, N के वर्गमूल का <math>\scriptstyle\ell</math> गुना हो जाता है — दूसरे शब्दों में, औसत दूरी N<sup>0.5</sup> से मापी जाती है।
श्रृंखला के लिए औसत (मूल माध्य वर्ग) आद्यांत संचरण दूरी, <math>\scriptstyle \sqrt{\langle r^2\rangle}</math>, N के वर्गमूल का <math>\scriptstyle\ell</math> गुना हो जाता है — दूसरे शब्दों में, औसत दूरी N<sup>0.5</sup> से मापी जाती है।


ध्यान दें कि यद्यपि इस मॉडल को गॉसियन श्रृंखला कहा जाता है, वितरण फलन गाऊसी [[सामान्य वितरण|(सामान्य) वितरण]] नहीं है। गॉसियन श्रृंखला का अंत-से-अंत दूरी संभावना वितरण फलन केवल r > 0 के लिए गैर-शून्य है।<ref>In fact, the Gaussian chain's distribution function is also unphysical for real chains, because it has a non-zero probability for lengths that are larger than the extended chain.  This comes from the fact that, in strict terms, the formula is only valid for the limiting case of an infinite long chain.  However, it is not problematic since the probabilities are very small.</ref>
ध्यान दें कि यद्यपि इस मॉडल को गॉसियन श्रृंखला कहा जाता है, वितरण फलन गाऊसी [[सामान्य वितरण|(सामान्य) वितरण]] नहीं है। गॉसियन श्रृंखला का आद्यांत संचरण दूरी संभावना वितरण फलन केवल r > 0 के लिए गैर-शून्य है।<ref>In fact, the Gaussian chain's distribution function is also unphysical for real chains, because it has a non-zero probability for lengths that are larger than the extended chain.  This comes from the fact that, in strict terms, the formula is only valid for the limiting case of an infinite long chain.  However, it is not problematic since the probabilities are very small.</ref>




== रियल पॉलिमर ==
== रियल बहुलक ==


एक वास्तविक बहुलक स्वतंत्र रूप से संयुक्त नहीं होता है। ए-सी-सी- एकल रासायनिक बंधन में एक निश्चित अल्केन # आण्विक ज्यामिति कोण 109.5 डिग्री है। एल का मान पूरी तरह से विस्तारित पॉलीथीन या [[नायलॉन]] के लिए अच्छी तरह से परिभाषित है, लेकिन ज़िग-ज़ैग बैकबोन के कारण यह एन एक्स एल से कम है। हालाँकि, कई श्रृंखला बंधनों के बारे में मुक्त रोटेशन है। उपरोक्त मॉडल को बढ़ाया जा सकता है। एक लंबी, प्रभावी इकाई लंबाई को इस तरह परिभाषित किया जा सकता है कि श्रृंखला को एक छोटे एन के साथ स्वतंत्र रूप से जुड़ा हुआ माना जा सकता है, जैसे कि बाधा एल = एन एक्स एल अभी भी पालन किया जाता है। यह भी गॉसियन वितरण देता है। हालाँकि, विशिष्ट मामलों की भी सटीक गणना की जा सकती है। फ्री-रोटेटिंग (स्वतंत्र रूप से संयुक्त नहीं) [[POLYETHYLENE]] (प्रत्येक -सी-सी- को उपइकाइयां के रूप में माना जाता है) के लिए औसत एंड-टू-एंड दूरी 2N के वर्गमूल का l गुना है, लगभग 1.4 के कारक की वृद्धि। एक यादृच्छिक चलने की गणना में ग्रहण किए गए शून्य मात्रा के विपरीत, सभी वास्तविक पॉलिमर के खंड उनके परमाणुओं के [[वैन डेर वाल्स त्रिज्या]] के कारण स्थान पर कब्जा कर लेते हैं, जिसमें [[स्टेरिक प्रभाव]] शामिल हैं जो [[आणविक ज्यामिति]] में हस्तक्षेप करते हैं। इसे गणना में भी ध्यान में रखा जा सकता है। इस तरह के सभी प्रभाव औसत एंड-टू-एंड दूरी को बढ़ाते हैं।
एक वास्तविक बहुलक स्वतंत्र रूप से संयुक्त नहीं होता है। ए-सी-सी- एकल रासायनिक बंधन में एक निश्चित एल्केन आण्विक ज्यामिति कोण 109.5 डिग्री है। एल का मान पूरी तरह से विस्तारित पॉलीथीन या [[नायलॉन]] के लिए अच्छी तरह से परिभाषित है, लेकिन ज़िग-ज़ैग बैकबोन के कारण यह एन एक्स एल से कम है। चूँकि, कई श्रृंखला बंधनों के बारे में मुक्त रोटेशन है। उपरोक्त मॉडल को बढ़ाया जा सकता है। एक लंबी, प्रभावी इकाई लंबाई को इस तरह परिभाषित किया जा सकता है कि श्रृंखला को एक छोटे एन के साथ स्वतंत्र रूप से जुड़ा हुआ माना जा सकता है, जैसे कि बाधा एल = एन एक्स एल अभी भी पालन किया जाता है। यह भी गॉसियन वितरण देता है। चूँकि, विशिष्ट स्थितियों की भी त्रुटिहीन गणना की जा सकती है। फ्री-रोटेटिंग (स्वतंत्र रूप से संयुक्त नहीं) [[POLYETHYLENE|पॉलीमेथिलीन]] (प्रत्येक -सी-सी- को उपइकाइयां के रूप में माना जाता है) के लिए औसत आद्यांत संचरण दूरी 2N के वर्गमूल का l गुना है, लगभग 1.4 के कारक की वृद्धि। एक यादृच्छिक चलने की गणना में ग्रहण किए गए शून्य मात्रा के विपरीत, सभी वास्तविक बहुलक के खंड उनके परमाणुओं के [[वैन डेर वाल्स त्रिज्या]] के कारण स्थान पर कब्जा कर लेते हैं, जिसमें [[स्टेरिक प्रभाव]] शामिल हैं जो [[आणविक ज्यामिति]] में हस्तक्षेप करते हैं। इसे गणना में भी ध्यान में रखा जा सकता है। इस तरह के सभी प्रभाव औसत आद्यांत संचरण दूरी को बढ़ाते हैं।


क्योंकि उनका पोलीमराइजेशन [[ स्टोकेस्टिक |स्टोकेस्टिक]] रूप से संचालित होता है, [[रासायनिक संश्लेषण]] पॉलिमर की किसी भी वास्तविक आबादी में श्रृंखला की लंबाई एक सांख्यिकीय वितरण का पालन करेगी। उस स्थिति में, हमें N को एक औसत मान लेना चाहिए। साथ ही, कई पॉलिमर में यादृच्छिक शाखाएँ होती हैं।
क्योंकि उनका पोलीमराइजेशन [[ स्टोकेस्टिक |स्टोकेस्टिक]] रूप से संचालित होता है, [[रासायनिक संश्लेषण]] बहुलक की किसी भी वास्तविक आबादी में श्रृंखला की लंबाई एक सांख्यिकीय वितरण का पालन करेगी। उस स्थिति में, हमें N को एक औसत मान लेना चाहिए। साथ ही, कई बहुलक में यादृच्छिक शाखाएँ होती हैं।


यहां तक ​​कि स्थानीय बाधाओं के लिए सुधार के साथ, रैंडम वॉक मॉडल श्रृंखलाों के बीच और एक ही श्रृंखला के बाहर के हिस्सों के बीच स्टेरिक हस्तक्षेप की उपेक्षा करता है। एक शृंखला अक्सर किसी दिए गए संरूपण से एक छोटे से विस्थापन द्वारा निकट से संबंधित संरूपण में नहीं जा सकती है क्योंकि इसके एक भाग को दूसरे भाग से, या किसी पड़ोसी के माध्यम से गुजरना होगा। हम अभी भी उम्मीद कर सकते हैं कि आदर्श-श्रृंखला, यादृच्छिक-कुंडली मॉडल कम से कम समाधान (रसायन विज्ञान) में वास्तविक पॉलिमर के आकार और आयामों का गुणात्मक संकेत होगा, और अनाकार अवस्था में, जब तक कि केवल कमजोर अंतर-आणविक बल हो मोनोमर्स के बीच। यह मॉडल, और [[फ्लोरी-हगिंस सॉल्यूशन थ्योरी|फ्लोरी-हगिंस विलयन थ्योरी]],<ref>Flory, P.J. (1953) ''Principles of Polymer Chemistry'', Cornell Univ. Press, {{ISBN|0-8014-0134-8}}</ref><ref>Flory, P.J. (1969) ''Statistical Mechanics of Chain Molecules'', Wiley, {{ISBN|0-470-26495-0}}; reissued 1989, {{ISBN|1-56990-019-1}}</ref> जिसके लिए [[पॉल फ्लोरी]] को 1974 में [[रसायन विज्ञान में नोबेल पुरस्कार]] प्राप्त हुआ था, केवल आदर्श समाधान के लिए ही लागू होता है | आदर्श, पतला समाधान। लेकिन विश्वास करने का कारण है (उदाहरण के लिए, [[न्यूट्रॉन विवर्तन]] अध्ययन) कि त्रिविम प्रभाव रद्द हो सकता है, जिससे, कुछ शर्तों के तहत, अनाकार पॉलिमर में श्रृंखला आयाम लगभग आदर्श, परिकलित आकार हों <ref>"Conformations, Solutions, and Molecular Weight" from "Polymer Science & Technology"  courtesy of Prentice Hall Professional publications [http://www.informit.com/content/images/chap3_0130181684/elementLinks/chap3_0130181684.pdf]</ref>
यहां तक ​​कि स्थानीय बाधाओं के लिए सुधार के साथ, रैंडम वॉक मॉडल श्रृंखलाों के बीच और एक ही श्रृंखला के बाहर के हिस्सों के बीच स्टेरिक हस्तक्षेप की उपेक्षा करता है। एक शृंखला अक्सर किसी दिए गए संरूपण से एक छोटे से विस्थापन द्वारा निकट से संबंधित संरूपण में नहीं जा सकती है क्योंकि इसके एक भाग को दूसरे भाग से, या किसी पड़ोसी के माध्यम से गुजरना होगा। हम अभी भी उम्मीद कर सकते हैं कि आदर्श-श्रृंखला, यादृच्छिक-कुंडली मॉडल कम से कम समाधान (रसायन विज्ञान) में वास्तविक बहुलक के आकार और आयामों का गुणात्मक संकेत होगा, और अनाकार अवस्था में, जब तक कि केवल कमजोर अंतर-आणविक बल हो मोनोमर्स के बीच। यह मॉडल, और [[फ्लोरी-हगिंस सॉल्यूशन थ्योरी|फ्लोरी-हगिंस विलयन थ्योरी]],<ref>Flory, P.J. (1953) ''Principles of Polymer Chemistry'', Cornell Univ. Press, {{ISBN|0-8014-0134-8}}</ref><ref>Flory, P.J. (1969) ''Statistical Mechanics of Chain Molecules'', Wiley, {{ISBN|0-470-26495-0}}; reissued 1989, {{ISBN|1-56990-019-1}}</ref> जिसके लिए [[पॉल फ्लोरी]] को 1974 में [[रसायन विज्ञान में नोबेल पुरस्कार]] प्राप्त हुआ था, केवल आदर्श समाधान के लिए ही लागू होता है | आदर्श, पतला समाधान। लेकिन विश्वास करने का कारण है (उदाहरण के लिए, [[न्यूट्रॉन विवर्तन]] अध्ययन) कि त्रिविम प्रभाव रद्द हो सकता है, जिससे, कुछ शर्तों के तहत, अनाकार बहुलक में श्रृंखला आयाम लगभग आदर्श, परिकलित आकार हों <ref>"Conformations, Solutions, and Molecular Weight" from "Polymer Science & Technology"  courtesy of Prentice Hall Professional publications [http://www.informit.com/content/images/chap3_0130181684/elementLinks/chap3_0130181684.pdf]</ref>
जब अलग-अलग श्रृंखलाएं सहकारी रूप से परस्पर क्रिया करती हैं, जैसा कि [[ठोस]] [[थर्माप्लास्टिक]] में [[क्रिस्टल]]ीय क्षेत्र बनाने में, एक अलग गणितीय दृष्टिकोण का उपयोग किया जाना चाहिए।


[[अल्फा हेलिक्स]] पॉली[[पेप्टाइड]]्स, [[केवलर]], और डबल-स्ट्रैंडेड [[डीएनए]] जैसे कठोर पॉलिमर को वर्म-जैसी चेन मॉडल द्वारा इलाज किया जा सकता है।
जब अलग-अलग श्रृंखलाएं सहकारी रूप से परस्पर क्रिया करती हैं, जैसा कि [[ठोस]] [[थर्माप्लास्टिक]] में [[क्रिस्टल|क्रिस्टलीय]] क्षेत्र बनाने में, एक अलग गणितीय दृष्टिकोण का उपयोग किया जाना चाहिए।


यहां तक ​​कि असमान [[लंबाई]] के [[मोनोमर]]्स वाले [[copolymer]] भी रैंडम कुंडल्स में वितरित होंगे यदि उपइकाइयां्स में कोई विशिष्ट इंटरैक्शन नहीं है। शाखित पॉलिमर के हिस्से भी यादृच्छिक कुंडल ग्रहण कर सकते हैं।
[[अल्फा हेलिक्स]] पॉली[[पेप्टाइड]]्स, [[केवलर]], और डबल-स्ट्रैंडेड [[डीएनए]] जैसे कठोर बहुलक को वर्म-जैसी चेन मॉडल द्वारा इलाज किया जा सकता है।


उनके पिघलने के तापमान के नीचे, अधिकांश थर्माप्लास्टिक पॉलिमर (पॉलीइथाइलीन, नायलॉन, आदि) में [[अनाकार ठोस]] क्षेत्र होते हैं, जिसमें श्रृंखलाएं लगभग यादृच्छिक कुंडल होती हैं, जो क्रिस्टलीय क्षेत्रों के साथ वैकल्पिक होती हैं। अनाकार क्षेत्र [[लोच (भौतिकी)]] में योगदान करते हैं और क्रिस्टलीय क्षेत्र शक्ति और [[कठोरता]] में योगदान करते हैं।
यहां तक ​​कि असमान [[लंबाई]] के [[मोनोमर]]्स वाले [[copolymer]] भी रैंडम कुंडल्स में वितरित होंगे यदि उपइकाइयां्स में कोई विशिष्ट इंटरैक्शन नहीं है। शाखित बहुलक के हिस्से भी यादृच्छिक कुंडल ग्रहण कर सकते हैं।


[[प्रोटीन]] जैसे अधिक जटिल पॉलिमर, उनकी रीढ़ की हड्डी से जुड़े विभिन्न अंतःक्रियात्मक रासायनिक समूहों के साथ, [[आणविक स्व-विधानसभा]] | अच्छी तरह से परिभाषित संरचनाओं में आत्म-इकट्ठा। लेकिन प्रोटीन के खंड, और पेप्टाइड जिसमें द्वितीयक संरचना की कमी होती है, अक्सर एक यादृच्छिक-कुंडल संरचना प्रदर्शित करने के लिए माना जाता है जिसमें एकमात्र निश्चित संबंध [[पेप्टाइड बंधन]] द्वारा आसन्न [[ एमिनो एसिड |एमिनो एसिड]] अवशेषों (रसायन विज्ञान) में शामिल होना है। यह वास्तव में मामला नहीं है, क्योंकि अमीनो एसिड [[पक्ष श्रृंखला]] | साइड-चेन के बीच बातचीत के कारण सांख्यिकीय पहनावा (गणितीय भौतिकी) [[ऊर्जा]] भारित होगा, जिसमें कम-ऊर्जा अनुरूपता अधिक बार मौजूद होती है। इसके अलावा, अमीनो एसिड के मनमाना अनुक्रम भी कुछ [[हाइड्रोजन बंध]]न और [[माध्यमिक संरचना]] प्रदर्शित करते हैं। इस कारण से, सांख्यिकीय कुंडल शब्द को कभी-कभी पसंद किया जाता है। रैंडम-कुंडल की कंफॉर्मल एन्ट्रॉपी अनफोल्डेड प्रोटीन स्टेट को स्थिर करती है और मुख्य फ्री एनर्जी योगदान का प्रतिनिधित्व करती है जो [[ प्रोटीन की तह |प्रोटीन की तह]] का विरोध करती है।
उनके पिघलने के तापमान के नीचे, अधिकांश थर्माप्लास्टिक बहुलक (पॉलीइथाइलीन, नायलॉन, आदि) में [[अनाकार ठोस]] क्षेत्र होते हैं, जिसमें श्रृंखलाएं लगभग यादृच्छिक कुंडल होती हैं, जो क्रिस्टलीय क्षेत्रों के साथ वैकल्पिक होती हैं। अनाकार क्षेत्र [[लोच (भौतिकी)]] में योगदान करते हैं और क्रिस्टलीय क्षेत्र शक्ति और [[कठोरता]] में योगदान करते हैं।
 
[[प्रोटीन]] जैसे अधिक जटिल बहुलक, उनकी रीढ़ की हड्डी से जुड़े विभिन्न अंतःक्रियात्मक रासायनिक समूहों के साथ, [[आणविक स्व-विधानसभा]] | अच्छी तरह से परिभाषित संरचनाओं में आत्म-इकट्ठा। लेकिन प्रोटीन के खंड, और पेप्टाइड जिसमें द्वितीयक संरचना की कमी होती है, अक्सर एक यादृच्छिक-कुंडल संरचना प्रदर्शित करने के लिए माना जाता है जिसमें एकमात्र निश्चित संबंध [[पेप्टाइड बंधन]] द्वारा आसन्न [[ एमिनो एसिड |एमिनो एसिड]] अवशेषों (रसायन विज्ञान) में शामिल होना है। यह वास्तव में मामला नहीं है, क्योंकि अमीनो एसिड [[पक्ष श्रृंखला]] | साइड-चेन के बीच बातचीत के कारण सांख्यिकीय पहनावा (गणितीय भौतिकी) [[ऊर्जा]] भारित होगा, जिसमें कम-ऊर्जा अनुरूपता अधिक बार मौजूद होती है। इसके अलावा, अमीनो एसिड के मनमाना अनुक्रम भी कुछ [[हाइड्रोजन बंध]]न और [[माध्यमिक संरचना]] प्रदर्शित करते हैं। इस कारण से, सांख्यिकीय कुंडल शब्द को कभी-कभी पसंद किया जाता है। रैंडम-कुंडल की कंफॉर्मल एन्ट्रॉपी अनफोल्डेड प्रोटीन स्टेट को स्थिर करती है और मुख्य फ्री एनर्जी योगदान का प्रतिनिधित्व करती है जो [[ प्रोटीन की तह |प्रोटीन की तह]] का विरोध करती है।


== स्पेक्ट्रोस्कोपी ==
== स्पेक्ट्रोस्कोपी ==
स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके एक यादृच्छिक-कुंडल रचना का पता लगाया जा सकता है। प्लैनर एमाइड बॉन्ड की व्यवस्था के परिणामस्वरूप वृत्ताकार द्वैतवाद में एक विशिष्ट संकेत मिलता है। [[प्रोटीन एनएमआर]] (एनएमआर) में रैंडम-कुंडल कंफॉर्मेशन में अमीनो एसिड का रासायनिक बदलाव अच्छी तरह से जाना जाता है। इन हस्ताक्षरों से विचलन अक्सर पूर्ण यादृच्छिक कुंडल के बजाय कुछ माध्यमिक संरचना की उपस्थिति का संकेत देता है। इसके अलावा, बहुआयामी एनएमआर प्रयोगों में संकेत हैं जो इंगित करते हैं कि स्थिर, गैर-स्थानीय अमीनो एसिड इंटरैक्शन पॉलीपेप्टाइड्स के लिए एक यादृच्छिक-कुंडली रचना में अनुपस्थित हैं। इसी तरह, [[ एक्स - रे क्रिस्टलोग्राफी |एक्स - रे क्रिस्टलोग्राफी]] प्रयोगों द्वारा निर्मित छवियों में, रैंडम कुंडल के सेगमेंट का परिणाम इलेक्ट्रॉन घनत्व या कंट्रास्ट में कमी के रूप में होता है। किसी भी पॉलीपेप्टाइड श्रृंखला के लिए एक यादृच्छिक विधि से कुंडलित अवस्था [[विकृतीकरण (जैव रसायन)]] प्रणाली द्वारा प्राप्त की जा सकती है। हालाँकि, इस बात के प्रमाण हैं कि प्रोटीन कभी भी वास्तव में यादृच्छिक कुंडल नहीं होते हैं, तब भी जब विकृत (शॉर्टल और एकरमैन) होते हैं।
स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके एक यादृच्छिक-कुंडल रचना का पता लगाया जा सकता है। प्लैनर एमाइड बॉन्ड की व्यवस्था के परिणामस्वरूप वृत्ताकार द्वैतवाद में एक विशिष्ट संकेत मिलता है। [[प्रोटीन एनएमआर]] (एनएमआर) में रैंडम-कुंडल कंफॉर्मेशन में अमीनो एसिड का रासायनिक बदलाव अच्छी तरह से जाना जाता है। इन हस्ताक्षरों से विचलन अक्सर पूर्ण यादृच्छिक कुंडल के बजाय कुछ माध्यमिक संरचना की उपस्थिति का संकेत देता है। इसके अलावा, बहुआयामी एनएमआर प्रयोगों में संकेत हैं जो इंगित करते हैं कि स्थिर, गैर-स्थानीय अमीनो एसिड इंटरैक्शन पॉलीपेप्टाइड्स के लिए एक यादृच्छिक-कुंडली रचना में अनुपस्थित हैं। इसी तरह, [[ एक्स - रे क्रिस्टलोग्राफी |एक्स - रे क्रिस्टलोग्राफी]] प्रयोगों द्वारा निर्मित छवियों में, रैंडम कुंडल के सेगमेंट का परिणाम इलेक्ट्रॉन घनत्व या कंट्रास्ट में कमी के रूप में होता है। किसी भी पॉलीपेप्टाइड श्रृंखला के लिए एक यादृच्छिक विधि से कुंडलित अवस्था [[विकृतीकरण (जैव रसायन)]] प्रणाली द्वारा प्राप्त की जा सकती है। चूँकि, इस बात के प्रमाण हैं कि प्रोटीन कभी भी वास्तव में यादृच्छिक कुंडल नहीं होते हैं, तब भी जब विकृत (शॉर्टल और एकरमैन) होते हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 05:14, 28 March 2023

बहुलक रसायन विज्ञान में, एक यादृच्छिक कुंडल बहुलक की एक रासायनिक संरचना है जहां मोनोमर उपइकाइयां यादृच्छिक विधि से उन्मुख होते हैं जबकि अभी भी आसन्न इकाइयों के लिए रासायनिक बंधन होते हैं। यह एक विशिष्ट आकार नहीं है, किन्तु मैक्रो मोलेक्यूल की आबादी में सभी श्रृंखलाओं के लिए आकृतियों का सांख्यिकीय वितरण है। संरूपण का नाम इस विचार से लिया गया है कि, विशिष्ट, स्थिर अंतःक्रियाओं के अभाव में, एक बहुलक बैकबोन यादृच्छिक रूप से सभी संभावित संरूपणों का नमूना लेगा। विलयन (रसायन विज्ञान) में कई अशाखित (बहुलक रसायन), रैखिक समबहुलक, या उनके पिघलने के तापमान से ऊपर (अनुमानित) यादृच्छिक कॉइल मान लेते हैं।

रैंडम वॉक मॉडल: गॉसियन चेन

लघु आदर्श श्रृंखला

लुडविग बोल्ट्जमैन की एक विशाल संख्या है जिसमें एक श्रृंखला को अपेक्षाकृत कॉम्पैक्ट आकार में चारों ओर घुमाया जा सकता है, जैसे कि बहुत खुली स्थान के साथ सुतली की एक अनसुलझी गेंद, और तुलनात्मक रूप से कुछ तरीकों से इसे कम या ज्यादा बढ़ाया जा सकता है। इसलिए, यदि प्रत्येक रचना में एक समान संभावना या सांख्यिकी भार है, तो श्रृंखलाों के गेंद की तरह होने की संभावना अधिक होती है, क्योंकि उन्हें विशुद्ध रूप से एन्ट्रापी प्रभाव को विस्तारित किया जाना चाहिए। श्रृंखलाों के एक सांख्यिकीय समेकन (गणितीय भौतिकी) में, इसलिए, उनमें से अधिकांश ढीले क्षेत्र होंगे। यह उस प्रकार का आकार है जो उनमें से किसी एक के पास अधिकांश समय होगा।

एक रेखीय बहुलक को N उपइकाइयों के साथ एक स्वतंत्र रूप से संयुक्त श्रृंखला होने पर विचार करें, प्रत्येक लंबाई , जो 0 (संख्या) मात्रा पर कब्जा कर लेता है, जिससे श्रृंखला का कोई भी भाग किसी अन्य स्थान से बाहर न हो। कोई भी इस प्रकार की श्रृंखला के खंडों को तीन आयामों में एक यादृच्छिक चलना (या यादृच्छिक उड़ान) के प्रदर्शन के रूप में देख सकता है, केवल इस बाधा से सीमित है कि प्रत्येक खंड अपने पड़ोसियों से जुड़ा होना चाहिए। यह आदर्श श्रृंखला गणितीय मॉडल है। यह स्पष्ट है कि श्रृंखला की अधिकतम, पूरी तरह से विस्तारित लंबाई L है। यदि हम मानते हैं कि प्रत्येक संभावित श्रृंखला रचना का एक समान सांख्यिकीय भार है, तो यह आदर्श श्रृंखला हो सकती है कि सांख्यिकीय आबादी में एक बहुलक श्रृंखला की संभावना P(r) सिरों के बीच की दूरी r सूत्र द्वारा वर्णित एक विशेषता वितरण का पालन करेगी

श्रृंखला के लिए औसत (मूल माध्य वर्ग) आद्यांत संचरण दूरी, , N के वर्गमूल का गुना हो जाता है — दूसरे शब्दों में, औसत दूरी N0.5 से मापी जाती है।

ध्यान दें कि यद्यपि इस मॉडल को गॉसियन श्रृंखला कहा जाता है, वितरण फलन गाऊसी (सामान्य) वितरण नहीं है। गॉसियन श्रृंखला का आद्यांत संचरण दूरी संभावना वितरण फलन केवल r > 0 के लिए गैर-शून्य है।[1]


रियल बहुलक

एक वास्तविक बहुलक स्वतंत्र रूप से संयुक्त नहीं होता है। ए-सी-सी- एकल रासायनिक बंधन में एक निश्चित एल्केन आण्विक ज्यामिति कोण 109.5 डिग्री है। एल का मान पूरी तरह से विस्तारित पॉलीथीन या नायलॉन के लिए अच्छी तरह से परिभाषित है, लेकिन ज़िग-ज़ैग बैकबोन के कारण यह एन एक्स एल से कम है। चूँकि, कई श्रृंखला बंधनों के बारे में मुक्त रोटेशन है। उपरोक्त मॉडल को बढ़ाया जा सकता है। एक लंबी, प्रभावी इकाई लंबाई को इस तरह परिभाषित किया जा सकता है कि श्रृंखला को एक छोटे एन के साथ स्वतंत्र रूप से जुड़ा हुआ माना जा सकता है, जैसे कि बाधा एल = एन एक्स एल अभी भी पालन किया जाता है। यह भी गॉसियन वितरण देता है। चूँकि, विशिष्ट स्थितियों की भी त्रुटिहीन गणना की जा सकती है। फ्री-रोटेटिंग (स्वतंत्र रूप से संयुक्त नहीं) पॉलीमेथिलीन (प्रत्येक -सी-सी- को उपइकाइयां के रूप में माना जाता है) के लिए औसत आद्यांत संचरण दूरी 2N के वर्गमूल का l गुना है, लगभग 1.4 के कारक की वृद्धि। एक यादृच्छिक चलने की गणना में ग्रहण किए गए शून्य मात्रा के विपरीत, सभी वास्तविक बहुलक के खंड उनके परमाणुओं के वैन डेर वाल्स त्रिज्या के कारण स्थान पर कब्जा कर लेते हैं, जिसमें स्टेरिक प्रभाव शामिल हैं जो आणविक ज्यामिति में हस्तक्षेप करते हैं। इसे गणना में भी ध्यान में रखा जा सकता है। इस तरह के सभी प्रभाव औसत आद्यांत संचरण दूरी को बढ़ाते हैं।

क्योंकि उनका पोलीमराइजेशन स्टोकेस्टिक रूप से संचालित होता है, रासायनिक संश्लेषण बहुलक की किसी भी वास्तविक आबादी में श्रृंखला की लंबाई एक सांख्यिकीय वितरण का पालन करेगी। उस स्थिति में, हमें N को एक औसत मान लेना चाहिए। साथ ही, कई बहुलक में यादृच्छिक शाखाएँ होती हैं।

यहां तक ​​कि स्थानीय बाधाओं के लिए सुधार के साथ, रैंडम वॉक मॉडल श्रृंखलाों के बीच और एक ही श्रृंखला के बाहर के हिस्सों के बीच स्टेरिक हस्तक्षेप की उपेक्षा करता है। एक शृंखला अक्सर किसी दिए गए संरूपण से एक छोटे से विस्थापन द्वारा निकट से संबंधित संरूपण में नहीं जा सकती है क्योंकि इसके एक भाग को दूसरे भाग से, या किसी पड़ोसी के माध्यम से गुजरना होगा। हम अभी भी उम्मीद कर सकते हैं कि आदर्श-श्रृंखला, यादृच्छिक-कुंडली मॉडल कम से कम समाधान (रसायन विज्ञान) में वास्तविक बहुलक के आकार और आयामों का गुणात्मक संकेत होगा, और अनाकार अवस्था में, जब तक कि केवल कमजोर अंतर-आणविक बल हो मोनोमर्स के बीच। यह मॉडल, और फ्लोरी-हगिंस विलयन थ्योरी,[2][3] जिसके लिए पॉल फ्लोरी को 1974 में रसायन विज्ञान में नोबेल पुरस्कार प्राप्त हुआ था, केवल आदर्श समाधान के लिए ही लागू होता है | आदर्श, पतला समाधान। लेकिन विश्वास करने का कारण है (उदाहरण के लिए, न्यूट्रॉन विवर्तन अध्ययन) कि त्रिविम प्रभाव रद्द हो सकता है, जिससे, कुछ शर्तों के तहत, अनाकार बहुलक में श्रृंखला आयाम लगभग आदर्श, परिकलित आकार हों [4]

जब अलग-अलग श्रृंखलाएं सहकारी रूप से परस्पर क्रिया करती हैं, जैसा कि ठोस थर्माप्लास्टिक में क्रिस्टलीय क्षेत्र बनाने में, एक अलग गणितीय दृष्टिकोण का उपयोग किया जाना चाहिए।

अल्फा हेलिक्स पॉलीपेप्टाइड्स, केवलर, और डबल-स्ट्रैंडेड डीएनए जैसे कठोर बहुलक को वर्म-जैसी चेन मॉडल द्वारा इलाज किया जा सकता है।

यहां तक ​​कि असमान लंबाई के मोनोमर्स वाले copolymer भी रैंडम कुंडल्स में वितरित होंगे यदि उपइकाइयां्स में कोई विशिष्ट इंटरैक्शन नहीं है। शाखित बहुलक के हिस्से भी यादृच्छिक कुंडल ग्रहण कर सकते हैं।

उनके पिघलने के तापमान के नीचे, अधिकांश थर्माप्लास्टिक बहुलक (पॉलीइथाइलीन, नायलॉन, आदि) में अनाकार ठोस क्षेत्र होते हैं, जिसमें श्रृंखलाएं लगभग यादृच्छिक कुंडल होती हैं, जो क्रिस्टलीय क्षेत्रों के साथ वैकल्पिक होती हैं। अनाकार क्षेत्र लोच (भौतिकी) में योगदान करते हैं और क्रिस्टलीय क्षेत्र शक्ति और कठोरता में योगदान करते हैं।

प्रोटीन जैसे अधिक जटिल बहुलक, उनकी रीढ़ की हड्डी से जुड़े विभिन्न अंतःक्रियात्मक रासायनिक समूहों के साथ, आणविक स्व-विधानसभा | अच्छी तरह से परिभाषित संरचनाओं में आत्म-इकट्ठा। लेकिन प्रोटीन के खंड, और पेप्टाइड जिसमें द्वितीयक संरचना की कमी होती है, अक्सर एक यादृच्छिक-कुंडल संरचना प्रदर्शित करने के लिए माना जाता है जिसमें एकमात्र निश्चित संबंध पेप्टाइड बंधन द्वारा आसन्न एमिनो एसिड अवशेषों (रसायन विज्ञान) में शामिल होना है। यह वास्तव में मामला नहीं है, क्योंकि अमीनो एसिड पक्ष श्रृंखला | साइड-चेन के बीच बातचीत के कारण सांख्यिकीय पहनावा (गणितीय भौतिकी) ऊर्जा भारित होगा, जिसमें कम-ऊर्जा अनुरूपता अधिक बार मौजूद होती है। इसके अलावा, अमीनो एसिड के मनमाना अनुक्रम भी कुछ हाइड्रोजन बंधन और माध्यमिक संरचना प्रदर्शित करते हैं। इस कारण से, सांख्यिकीय कुंडल शब्द को कभी-कभी पसंद किया जाता है। रैंडम-कुंडल की कंफॉर्मल एन्ट्रॉपी अनफोल्डेड प्रोटीन स्टेट को स्थिर करती है और मुख्य फ्री एनर्जी योगदान का प्रतिनिधित्व करती है जो प्रोटीन की तह का विरोध करती है।

स्पेक्ट्रोस्कोपी

स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके एक यादृच्छिक-कुंडल रचना का पता लगाया जा सकता है। प्लैनर एमाइड बॉन्ड की व्यवस्था के परिणामस्वरूप वृत्ताकार द्वैतवाद में एक विशिष्ट संकेत मिलता है। प्रोटीन एनएमआर (एनएमआर) में रैंडम-कुंडल कंफॉर्मेशन में अमीनो एसिड का रासायनिक बदलाव अच्छी तरह से जाना जाता है। इन हस्ताक्षरों से विचलन अक्सर पूर्ण यादृच्छिक कुंडल के बजाय कुछ माध्यमिक संरचना की उपस्थिति का संकेत देता है। इसके अलावा, बहुआयामी एनएमआर प्रयोगों में संकेत हैं जो इंगित करते हैं कि स्थिर, गैर-स्थानीय अमीनो एसिड इंटरैक्शन पॉलीपेप्टाइड्स के लिए एक यादृच्छिक-कुंडली रचना में अनुपस्थित हैं। इसी तरह, एक्स - रे क्रिस्टलोग्राफी प्रयोगों द्वारा निर्मित छवियों में, रैंडम कुंडल के सेगमेंट का परिणाम इलेक्ट्रॉन घनत्व या कंट्रास्ट में कमी के रूप में होता है। किसी भी पॉलीपेप्टाइड श्रृंखला के लिए एक यादृच्छिक विधि से कुंडलित अवस्था विकृतीकरण (जैव रसायन) प्रणाली द्वारा प्राप्त की जा सकती है। चूँकि, इस बात के प्रमाण हैं कि प्रोटीन कभी भी वास्तव में यादृच्छिक कुंडल नहीं होते हैं, तब भी जब विकृत (शॉर्टल और एकरमैन) होते हैं।

यह भी देखें

संदर्भ

  1. In fact, the Gaussian chain's distribution function is also unphysical for real chains, because it has a non-zero probability for lengths that are larger than the extended chain. This comes from the fact that, in strict terms, the formula is only valid for the limiting case of an infinite long chain. However, it is not problematic since the probabilities are very small.
  2. Flory, P.J. (1953) Principles of Polymer Chemistry, Cornell Univ. Press, ISBN 0-8014-0134-8
  3. Flory, P.J. (1969) Statistical Mechanics of Chain Molecules, Wiley, ISBN 0-470-26495-0; reissued 1989, ISBN 1-56990-019-1
  4. "Conformations, Solutions, and Molecular Weight" from "Polymer Science & Technology" courtesy of Prentice Hall Professional publications [1]


बाहरी संबंध