मार्गदर्शक केंद्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
== परिभ्रमण ==
== परिभ्रमण ==


यदि चुंबकीय क्षेत्र एकसमान है और अन्य सभी बल अनुपस्थित हैं, तो [[लोरेंत्ज़ बल]] कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को [[gyroradius]] के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए <math>m</math> और चार्ज करें <math>q</math> ताकत के साथ एक चुंबकीय क्षेत्र में घूमना <math>B</math>, इसकी एक आवृत्ति होती है, जिसे जाइरोफ्रीक्वेंसी या [[साइक्लोट्रॉन अनुनाद]] कहा जाता है
यदि चुंबकीय क्षेत्र एक समान है और अन्य सभी बल अनुपस्थित हैं, तो [[लोरेंत्ज़ बल]] कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को [[gyroradius|जाइरोमोशन]] के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए <math>m</math> और आवेशित करें <math>q</math> बल के साथ एक चुंबकीय क्षेत्र में घूमता है <math>B</math>, इसकी एक आवृत्ति होती है, जिसे जाइरोफ्रीक्वेंसी या [[साइक्लोट्रॉन अनुनाद|साइक्लोट्रॉन]] आवृत्ति कहा जाता है
<math display="block">\omega_{\rm c} = \frac{|q|B}{m} . </math>
<math display="block">\omega_{\rm c} = \frac{|q|B}{m} . </math>
के चुंबकीय क्षेत्र के लंबवत गति के लिए <math>v_{\perp}</math>कक्षा की त्रिज्या, जाइरोरेडियस या लार्मर त्रिज्या कहलाती है
के चुंबकीय क्षेत्र के लंबवत गति के लिए <math>v_{\perp}</math>कक्षा की त्रिज्या, जाइरोरेडियस या लार्मर त्रिज्या कहलाती है,
<math display="block">\rho_{\rm L} =\frac{ v_{\perp}}{ \omega_{\rm c}} . </math>
<math display="block">\rho_{\rm L} =\frac{ v_{\perp}}{ \omega_{\rm c}} . </math>
== समानांतर गति ==
== समानांतर गति ==


Line 33: Line 31:
=== विद्युत क्षेत्र ===
=== विद्युत क्षेत्र ===


यह बहाव, जिसे अक्सर कहा जाता है <math>\boldsymbol{E}\times\boldsymbol{B}</math> (ई-क्रॉस-बी) बहाव, एक विशेष मामला है क्योंकि एक कण पर विद्युत बल उसके आवेश पर निर्भर करता है (उदाहरण के लिए, ऊपर विचार किए गए गुरुत्वाकर्षण बल के विपरीत)। <!-- This is correct. Do not change it. The electric force on a positive charge is in the direction of the electric field. The electric force on a negative charge is in the opposite direction. --> नतीजतन, आयन (जो भी द्रव्यमान और आवेश का) और इलेक्ट्रॉन दोनों एक ही दिशा में एक ही गति से चलते हैं, इसलिए कोई शुद्ध वर्तमान नहीं है (प्लाज्मा (भौतिकी) # प्लाज्मा की प्लाज्मा क्षमता)। विशेष आपेक्षिकता के संदर्भ में इस वेग से गतिमान फ्रेम में विद्युत क्षेत्र लुप्त हो जाता है। बहाव वेग का मान किसके द्वारा दिया जाता है
यह बहाव, जिसे अक्सर कहा जाता है <math>\boldsymbol{E}\times\boldsymbol{B}</math> (ई-क्रॉस-बी) बहाव, एक विशेष मामला है क्योंकि एक कण पर विद्युत बल उसके आवेश पर निर्भर करता है (उदाहरण के लिए, ऊपर विचार किए गए गुरुत्वाकर्षण बल के विपरीत)। <!-- This is correct. Do not change it. The electric force on a positive charge is in the direction of the electric field. The electric force on a negative charge is in the opposite direction. --> नतीजतन, आयन (जो भी द्रव्यमान और आवेश का) और इलेक्ट्रॉन दोनों एक ही दिशा में एक ही गति से चलते हैं, इसलिए कोई शुद्ध वर्तमान नहीं है (प्लाज्मा (भौतिकी) # प्लाज्मा की प्लाज्मा बल)। विशेष आपेक्षिकता के संदर्भ में इस वेग से गतिमान फ्रेम में विद्युत क्षेत्र लुप्त हो जाता है। बहाव वेग का मान किसके द्वारा दिया जाता है
<math display="block">\boldsymbol{v}_E = \frac{\boldsymbol{E}\times\boldsymbol{B}}{B^2}</math>
<math display="block">\boldsymbol{v}_E = \frac{\boldsymbol{E}\times\boldsymbol{B}}{B^2}</math>


Line 45: Line 43:
== गैर वर्दी बी ==
== गैर वर्दी बी ==


गाइडिंग सेंटर ड्रिफ्ट न केवल बाहरी ताकतों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। इन बहावों को समानांतर और लंबवत [[गतिज ऊर्जा]] के रूप में व्यक्त करना सुविधाजनक है
गाइडिंग सेंटर ड्रिफ्ट न केवल बाहरी बल ों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। इन बहावों को समानांतर और लंबवत [[गतिज ऊर्जा]] के रूप में व्यक्त करना सुविधाजनक है
<math display="block">\begin{align}
<math display="block">\begin{align}
K_\| &= \tfrac{1}{2}mv_\|^2 \\[1ex]
K_\| &= \tfrac{1}{2}mv_\|^2 \\[1ex]

Revision as of 01:02, 7 April 2023

आवेशित कण एक सजातीय चुंबकीय क्षेत्र में प्रवाहित होते हैं। (ए) कोई परेशान बल नहीं (बी) एक विद्युत क्षेत्र के साथ, ई (सी) एक स्वतंत्र बल के साथ, एफ (जैसे गुरुत्वाकर्षण) (डी) एक विषम चुंबकीय क्षेत्र में, ग्रेड एच

भौतिकी में, एक चुंबकीय क्षेत्र में एक प्लाज्मा में एक इलेक्ट्रॉन या आयन जैसे विद्युत आवेशित कण की गति को एक बिंदु के चारों ओर एक अपेक्षाकृत तेज़ गोलाकार गति के सुपरपोज़िशन सिद्धांत के रूप में माना जा सकता है जिसे मार्गदर्शक केंद्र कहा जाता है और इस बिंदु का एक अपेक्षाकृत धीमा का बहाव। विभिन्न प्रजातियों के लिए बहाव की गति भिन्न हो सकती है, जो उनके चार्ज स्टेट्स, द्रव्यमान या तापमान पर निर्भर करती है, जिसके परिणामस्वरूप विद्युत धाराएं या रासायनिक पृथक्करण हो सकता है।

परिभ्रमण

यदि चुंबकीय क्षेत्र एक समान है और अन्य सभी बल अनुपस्थित हैं, तो लोरेंत्ज़ बल कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को जाइरोमोशन के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए और आवेशित करें बल के साथ एक चुंबकीय क्षेत्र में घूमता है , इसकी एक आवृत्ति होती है, जिसे जाइरोफ्रीक्वेंसी या साइक्लोट्रॉन आवृत्ति कहा जाता है

के चुंबकीय क्षेत्र के लंबवत गति के लिए कक्षा की त्रिज्या, जाइरोरेडियस या लार्मर त्रिज्या कहलाती है,

समानांतर गति

चूंकि चुंबकीय लोरेंत्ज़ बल हमेशा चुंबकीय क्षेत्र के लंबवत होता है, इसका समानांतर गति पर कोई प्रभाव (निम्नतम क्रम में) नहीं होता है। बिना किसी अतिरिक्त बल के एक समान क्षेत्र में, एक आवेशित कण अपने वेग के लंबवत घटक के अनुसार चुंबकीय क्षेत्र के चारों ओर चक्कर लगाएगा और अपने प्रारंभिक समानांतर वेग के अनुसार क्षेत्र के समानांतर बहाव करेगा, जिसके परिणामस्वरूप एक कुंडलित वक्रता कक्षा होगी। यदि समानांतर घटक के साथ कोई बल है, तो कण और उसके मार्गदर्शक केंद्र को समान रूप से त्वरित किया जाएगा।

यदि क्षेत्र में एक समानांतर ढाल है, तो परिमित Larmor त्रिज्या वाला कण भी बड़े चुंबकीय क्षेत्र से दूर दिशा में एक बल का अनुभव करेगा। इस प्रभाव को चुंबकीय दर्पण के रूप में जाना जाता है। जबकि यह अपने भौतिकी और गणित में मार्गदर्शक केंद्र के बहाव से निकटता से संबंधित है, फिर भी इसे उनसे अलग माना जाता है।

सामान्य बल का बहाव

सामान्यतया, जब कणों पर चुंबकीय क्षेत्र के लम्बवत् बल लगता है, तो वे बल और क्षेत्र दोनों के लम्बवत दिशा में बहाव करते हैं। अगर एक कण पर बल है, तो अपवाह वेग है

ये बहाव, दर्पण प्रभाव और गैर-समान बी बहाव के विपरीत, परिमित लारमोर त्रिज्या पर निर्भर नहीं होते हैं, लेकिन ठंडे प्लास्मा में भी मौजूद होते हैं। यह उल्टा लग सकता है। यदि कोई बल चालू होने पर कोई कण स्थिर होता है, तो बल के लंबवत गति कहाँ से आती है और बल स्वयं के समानांतर गति क्यों नहीं उत्पन्न करता है? उत्तर चुंबकीय क्षेत्र के साथ अन्योन्यक्रिया है। बल शुरू में खुद के समानांतर एक त्वरण में परिणत होता है, लेकिन चुंबकीय क्षेत्र बहाव की दिशा में परिणामी गति को विक्षेपित करता है। एक बार जब कण बहाव की दिशा में आगे बढ़ रहा होता है, तो चुंबकीय क्षेत्र इसे वापस बाहरी बल के विरुद्ध विक्षेपित कर देता है, जिससे बल की दिशा में औसत त्वरण शून्य हो जाता है। हालाँकि, (f/m)ω के बराबर बल की दिशा में एक बार का विस्थापन होता हैc−2, जिसे बल चालू होने के दौरान ध्रुवीकरण बहाव (नीचे देखें) का परिणाम माना जाना चाहिए। परिणामी गति एक चक्रज है। अधिक आम तौर पर, एक परिभ्रमण और एक समान लंबवत बहाव की सुपरपोजिशन एक चक्रज#संबंधित घटता है।

सभी बहावों को बल बहाव के विशेष मामलों के रूप में माना जा सकता है, हालांकि यह हमेशा उनके बारे में सोचने का सबसे उपयोगी तरीका नहीं होता है। स्पष्ट मामले विद्युत और गुरुत्वाकर्षण बल हैं। ग्रेड-बी बहाव को एक क्षेत्र प्रवणता में एक चुंबकीय द्विध्रुव पर बल के परिणाम के रूप में माना जा सकता है। वक्रता, जड़ता और ध्रुवीकरण के बहाव का परिणाम कण के त्वरण को काल्पनिक बल मानने से होता है। दाब प्रवणता के कारण प्रतिचुंबकीय बहाव को बल से प्राप्त किया जा सकता है। अंत में, अन्य बल जैसे विकिरण दबाव और टकराव भी बहाव में परिणत होते हैं।

गुरुत्वाकर्षण क्षेत्र

बल बहाव का एक सरल उदाहरण गुरुत्वाकर्षण क्षेत्र में एक प्लाज्मा है, उदा। आयनमंडल। अपवाह वेग है

बड़े पैमाने पर निर्भरता के कारण, इलेक्ट्रॉनों के गुरुत्वाकर्षण बहाव को सामान्य रूप से अनदेखा किया जा सकता है।

कण के आवेश पर निर्भरता का अर्थ है कि बहाव की दिशा आयनों के लिए इलेक्ट्रॉनों के विपरीत है, जिसके परिणामस्वरूप एक धारा उत्पन्न होती है। एक द्रव चित्र में, यह वह धारा है जो चुंबकीय क्षेत्र से पार हो जाती है जो लागू बल का प्रतिकार करने वाला बल प्रदान करती है।

विद्युत क्षेत्र

यह बहाव, जिसे अक्सर कहा जाता है (ई-क्रॉस-बी) बहाव, एक विशेष मामला है क्योंकि एक कण पर विद्युत बल उसके आवेश पर निर्भर करता है (उदाहरण के लिए, ऊपर विचार किए गए गुरुत्वाकर्षण बल के विपरीत)। नतीजतन, आयन (जो भी द्रव्यमान और आवेश का) और इलेक्ट्रॉन दोनों एक ही दिशा में एक ही गति से चलते हैं, इसलिए कोई शुद्ध वर्तमान नहीं है (प्लाज्मा (भौतिकी) # प्लाज्मा की प्लाज्मा बल)। विशेष आपेक्षिकता के संदर्भ में इस वेग से गतिमान फ्रेम में विद्युत क्षेत्र लुप्त हो जाता है। बहाव वेग का मान किसके द्वारा दिया जाता है


गैर वर्दी ई

यदि विद्युत क्षेत्र एक समान नहीं है, तो उपरोक्त सूत्र को पढ़ने के लिए संशोधित किया जाता है[1]


गैर वर्दी बी

गाइडिंग सेंटर ड्रिफ्ट न केवल बाहरी बल ों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। इन बहावों को समानांतर और लंबवत गतिज ऊर्जा के रूप में व्यक्त करना सुविधाजनक है

उस स्थिति में, स्पष्ट जन निर्भरता समाप्त हो जाती है। यदि आयनों और इलेक्ट्रॉनों का तापमान समान होता है, तो उनके समान, हालांकि विपरीत दिशा में, बहाव वेग भी होते हैं।

ग्रेड-बी बहाव

जब कोई कण एक बड़े चुंबकीय क्षेत्र में जाता है, तो उसकी कक्षा की वक्रता कड़ी हो जाती है, अन्यथा गोलाकार कक्षा को चक्रज में बदल देती है। अपवाह वेग है


वक्रता बहाव

एक आवेशित कण को ​​एक घुमावदार क्षेत्र रेखा का अनुसरण करने के लिए, आवश्यक अभिकेंद्रीय बल प्रदान करने के लिए वक्रता के तल से बहाव वेग की आवश्यकता होती है। यह वेग है

कहाँ वक्रता (गणित) की त्रिज्या है जो बाहर की ओर इंगित करती है, वृत्ताकार चाप के केंद्र से दूर जो उस बिंदु पर वक्र का सबसे अच्छा अनुमान लगाती है।
कहाँ चुंबकीय क्षेत्र की दिशा में इकाई वेक्टर है। इस बहाव को वक्रता बहाव और अवधि के योग में विघटित किया जा सकता है
स्थिर चुंबकीय क्षेत्र और कमजोर विद्युत क्षेत्र की महत्वपूर्ण सीमा में, वक्रता बहाव अवधि में जड़त्वीय बहाव का प्रभुत्व है।

घुमावदार निर्वात बहाव

छोटे प्लाज्मा दबाव की सीमा में, मैक्सवेल के समीकरण ढाल और वक्रता के बीच संबंध प्रदान करते हैं जो संबंधित बहावों को निम्नानुसार संयोजित करने की अनुमति देता है

थर्मल संतुलन में एक प्रजाति के लिए, द्वारा प्रतिस्थापित किया जा सकता है ( के लिए और के लिए ).

उपरोक्त ग्रेड-बी ड्रिफ्ट के लिए अभिव्यक्ति को मामले के लिए फिर से लिखा जा सकता है जब वक्रता के कारण होता है। यह सबसे आसानी से यह महसूस करके किया जाता है कि एक निर्वात में, एम्पीयर का नियम है

. बेलनाकार निर्देशांक में इस तरह चुना जाता है कि अज़ीमुथल दिशा चुंबकीय क्षेत्र के समानांतर होती है और रेडियल दिशा क्षेत्र के ढाल के समानांतर होती है, यह बन जाती है

तब से एक स्थिर है, इसका तात्पर्य है कि
और ग्रेड-बी बहाव वेग लिखा जा सकता है


ध्रुवीकरण बहाव

एक समय-भिन्न विद्युत क्षेत्र भी इसके द्वारा दिए गए बहाव का परिणाम है

जाहिर है कि यह बहाव दूसरों से इस मायने में अलग है कि यह अनिश्चित काल तक जारी नहीं रह सकता। आम तौर पर एक दोलनशील विद्युत क्षेत्र का परिणाम एक ध्रुवीकरण बहाव में होता है जो 90 डिग्री चरण से बाहर होता है। द्रव्यमान निर्भरता के कारण इस प्रभाव को जड़त्व बहाव भी कहा जाता है। आम तौर पर उनके अपेक्षाकृत छोटे द्रव्यमान के कारण इलेक्ट्रॉनों के लिए ध्रुवीकरण बहाव को उपेक्षित किया जा सकता है।

प्रतिचुंबकीय बहाव

प्रतिचुंबकीय बहाव वास्तव में एक मार्गदर्शक केंद्र बहाव नहीं है। दाब प्रवणता के कारण कोई एक कण अपवाहित नहीं होता है। फिर भी, द्रव वेग को एक संदर्भ क्षेत्र के माध्यम से चलने वाले कणों की गणना करके परिभाषित किया जाता है, और एक दबाव प्रवणता के परिणामस्वरूप एक दिशा में दूसरे की तुलना में अधिक कण होते हैं। द्रव का शुद्ध वेग किसके द्वारा दिया जाता है


बहाव धारा

के महत्वपूर्ण अपवाद के साथ बहाव, अलग-अलग आवेशित कणों का बहाव वेग अलग-अलग होगा। वेगों में यह अंतर वर्तमान में परिणाम देता है, जबकि बहाव वेग की सामूहिक निर्भरता के परिणामस्वरूप रासायनिक पृथक्करण हो सकता है।

यह भी देखें

संदर्भ

  1. Baumjohann, Wolfgang; Treumann, Rudolf (1997). बुनियादी अंतरिक्ष प्लाज्मा भौतिकी. ISBN 978-1-86094-079-8.