लारमोर फॉर्मूला: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
<math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math> | <math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math> | ||
और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> कहाँ <math>\boldsymbol{\beta}</math> | और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> कहाँ <math>\boldsymbol{\beta}</math> आवेशित वेग से विभाजित है <math>c</math>, <math>\dot{\boldsymbol{\beta}}</math> आवेशित त्वरण से विभाजित होता है {{math|''c''}}, <math>\mathbf{n}</math> में एक इकाई वेक्टर है <math> \mathbf{r} - \mathbf{r}_0 </math> दिशा, <math>R</math> का परिमाण है <math>\mathbf{r} - \mathbf{r}_0</math>, <math>\mathbf{r}_0</math> आवेशित का स्थान है, और <math> \gamma = (1 - \beta^2 )^{-1/2} </math>. दाईं ओर की शर्तों का मूल्यांकन [[मंद समय]] पर किया जाता है <math>t_\text{r} = t - R/c</math>. | ||
दाहिनी ओर आवेशित कण के वेग और त्वरण से जुड़े विद्युत क्षेत्रों का योग है। वेग क्षेत्र केवल पर निर्भर करता है <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध। चूंकि वेग क्षेत्र आनुपातिक है <math>1/R^2</math>, यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधि है और अधिकांश [[ऊर्जा]] को | दाहिनी ओर आवेशित कण के वेग और त्वरण से जुड़े विद्युत क्षेत्रों का योग है। वेग क्षेत्र केवल पर निर्भर करता है <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध। चूंकि वेग क्षेत्र आनुपातिक है <math>1/R^2</math>, यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधि है और अधिकांश [[ऊर्जा]] को आवेशित से दूर ले जाने के लिए जिम्मेदार है। | ||
हम इसके [[पॉयंटिंग वेक्टर]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व पा सकते हैं: | हम इसके [[पॉयंटिंग वेक्टर]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व पा सकते हैं: | ||
Line 31: | Line 31: | ||
इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है <math>\theta</math> और <math>\phi</math>). यह देता है | इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है <math>\theta</math> और <math>\phi</math>). यह देता है | ||
<math display="block">P = \frac{2}{3}\frac{q^2 a^2}{c^3},</math> | <math display="block">P = \frac{2}{3}\frac{q^2 a^2}{c^3},</math> | ||
जो गैर-सापेक्ष त्वरित | जो गैर-सापेक्ष त्वरित आवेशित के लिए Larmor परिणाम है। यह कण द्वारा विकरित ऊर्जा को उसके त्वरण से संबंधित करता है। यह स्पष्ट रूप से दर्शाता है कि आवेशित जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर है। | ||
== सापेक्षवादी सामान्यीकरण == | == सापेक्षवादी सामान्यीकरण == |
Revision as of 22:51, 8 April 2023
वैद्युतगतिकी में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल ऊर्जा (भौतिकी) की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,[1] प्रकाश के तरंग सिद्धांत के संदर्भ में।
जब कोई आवेशित कण (जैसे इलेक्ट्रॉन, प्रोटॉन, या आयन) त्वरित होता है, तो ऊर्जा विद्युत चुम्बकीय तरंगों के रूप में विकीर्ण होती है। एक कण के लिए जिसका वेग प्रकाश की गति के सापेक्ष छोटा है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक इलेक्ट्रॉन त्रिज्या और इलेक्ट्रॉन द्रव्यमान के रूप में व्यक्त किया जा सकता है:
व्युत्पत्ति
व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके)
हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)
दाहिनी ओर आवेशित कण के वेग और त्वरण से जुड़े विद्युत क्षेत्रों का योग है। वेग क्षेत्र केवल पर निर्भर करता है जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है और और दोनों के बीच कोणीय संबंध। चूंकि वेग क्षेत्र आनुपातिक है , यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक है , जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधि है और अधिकांश ऊर्जा को आवेशित से दूर ले जाने के लिए जिम्मेदार है।
हम इसके पॉयंटिंग वेक्टर की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व पा सकते हैं:
सापेक्षवादी सामान्यीकरण
सहपरिवर्ती रूप
गति के संदर्भ में लिखा गया है, p, असापेक्षतावादी Larmor सूत्र है (CGS इकाइयों में)[2]
यह दिखाया जा सकता है कि यह आंतरिक उत्पाद किसके द्वारा दिया गया है[2]
गैर-सहसंयोजक रूप
उपरोक्त आंतरिक गुणनफल को के संदर्भ में भी लिखा जा सकता है β और इसका समय व्युत्पन्न। फिर Larmor सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)[2]
यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। h> का अर्थ है कि जब लोरेंत्ज़ कारक शून्य के बहुत करीब है (यानी ) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना है। हालाँकि, जैसा विकिरण की तरह बढ़ता है चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अलावा, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है , अर्थात् कारक बन जाता है . गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।
विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
कोणीय वितरण
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है[3]
- ↑ Larmor J (1897). "LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions". Philosophical Magazine. 5. 44 (271): 503–512. doi:10.1080/14786449708621095. Formula is mentioned in the text on the last page.
- ↑ 2.0 2.1 2.2 2.3 2.4 Jackson, J.D., Classical Electrodynamics (3rd ed.), pp. 665–8
- ↑ Jackson eq (14.38)
- ↑ Jackson eq (14.39)
Cite error: <ref>
tags exist for a group named "note", but no corresponding <references group="note"/>
tag was found