|
|
Line 64: |
Line 64: |
| जहाँ <math>\mathbf{\hat{n}}</math> एक इकाई संवाहक है जो कण से प्रेक्षक की ओर संकेतन करता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है<ref>Jackson eq (14.39)</ref> | | जहाँ <math>\mathbf{\hat{n}}</math> एक इकाई संवाहक है जो कण से प्रेक्षक की ओर संकेतन करता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है<ref>Jackson eq (14.39)</ref> |
| <math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math> | | <math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math> |
| जहाँ <math>\theta</math> पर्यवेक्षक और कण की गति के बीच का कोण है। | | जहाँ <math>\theta</math> पर्यवेक्षक और कण की गति के बीच का कोण होता है। |
| <!--==अनुप्रयोग ==
| |
| {{cleanup|section|date=May 2010}}
| |
| {{Expand section|date=May 2010}}
| |
|
| |
|
| == मुद्दे और निहितार्थ ==
| |
|
| |
| ===विकिरण प्रतिक्रिया===
| |
| आवेशित कण से निकलने वाला विकिरण ऊर्जा और संवेग वहन करता है। ऊर्जा और संवेग संरक्षण को संतुष्ट करने के लिए, आवेशित कण को उत्सर्जन के समय एक प्रतिक्षेप का अनुभव करना चाहिए। विकिरण को आवेशित कण पर अतिरिक्त बल लगाना चाहिए। इस बल को अब्राहम-लोरेंत्ज़ बल | अब्राहम-लोरेंत्ज़ बल के रूप में जाना जाता है, जबकि इसकी गैर-सापेक्षतावादी सीमा को लोरेंत्ज़ आत्म-बल के रूप में जाना जाता है और सापेक्षतावादी रूपों को लोरेंत्ज़-डिराक बल या अब्राहम-लोरेंत्ज़-डिराक बल के रूप में जाना जाता है।<ref name=":1">{{Cite web |last=Kirk |first=McDonald |date=6 May 2017 |title=विकिरण प्रतिक्रिया के इतिहास पर 1|url=http://kirkmcd.princeton.edu/examples/selfforce.pdf |url-status=live |archive-url=https://web.archive.org/web/20221017154015/http://kirkmcd.princeton.edu/examples/selfforce.pdf |archive-date=17 October 2022 |access-date=20 November 2022 |website=Princeton}}</ref>
| |
|
| |
|
| |
| === [[परमाणु भौतिकी]] ===
| |
| बोह्र मॉडल में एक नाभिक की परिक्रमा करने वाला शास्त्रीय इलेक्ट्रॉन त्वरण का अनुभव करता है और उसे विकीर्ण करना चाहिए। नतीजतन, इलेक्ट्रॉन ऊर्जा खो देता है और इलेक्ट्रॉन को अंततः नाभिक में सर्पिल होना चाहिए। शास्त्रीय यांत्रिकी के अनुसार, परमाणु अस्थिर होते हैं। स्थिर इलेक्ट्रॉन कक्षाओं के अवलोकन से इस शास्त्रीय भविष्यवाणी का उल्लंघन होता है। समस्या को परमाणु भौतिकी के क्वांटम यांत्रिकी विवरण के साथ हल किया गया है, जो शुरू में बोह्र मॉडल द्वारा प्रदान किया गया था। इलेक्ट्रॉन ऑर्बिटल्स की स्थिरता के शास्त्रीय समाधान को गैर-विकिरण स्थिति | गैर-विकिरण स्थितियों और ज्ञात भौतिक कानूनों के अनुसार प्रदर्शित किया जा सकता है।<ref>{{cite journal |author=Goedecke, G. H. |year=1964 |title=क्वांटम थ्योरी के लिए शास्त्रीय रूप से विकिरण रहित गति और संभावित प्रभाव|journal=Physical Review |volume=135 |issue=1B |pages=B281–B288 |bibcode=1964PhRv..135..281G |doi=10.1103/PhysRev.135.B281}}</ref>
| |
|
| |
|
| |
| == यह भी देखें ==
| |
| *[[आणविक सिद्धांत]]
| |
| * [[साइक्लोट्रॉन विकिरण]]
| |
| *विद्युत चुम्बकीय [[तरंग समीकरण]]
| |
| * घुमावदार स्पेसटाइम में मैक्सवेल के समीकरण
| |
| *[[विकिरण प्रतिक्रिया]]
| |
| * तरंग समीकरण
| |
| * व्हीलर-फेनमैन अवशोषक सिद्धांत
| |
|
| |
| ==टिप्पणियाँ==
| |
| {{reflist|group="note"}}
| |
|
| |
|
| |
| ==संदर्भ==
| |
| {{reflist}}
| |
|
| |
| * J. Larmor, "On a dynamical theory of the electric and luminiferous medium", ''Philosophical Transactions of the Royal Society'' '''190''', (1897) pp. 205–300 ''(Third and last in a series of papers with the same name).''
| |
| *{{cite book |author=Jackson, John D.|title=Classical Electrodynamics (3rd ed.)|publisher=Wiley|year=1998|isbn=0-471-30932-X}} (Section 14.2ff)
| |
| * {{cite book |author1=Misner, Charles |author2=Thorne, Kip S. |author3=Wheeler, John Archibald | title=Gravitation | location=San Francisco | publisher=W. H. Freeman | year=1973 | isbn=0-7167-0344-0}}
| |
| * {{cite book |author1=R. P. Feynman |author2=F. B. Moringo |author3=W. G. Wagner | title=Feynman Lectures on Gravitation |url=https://archive.org/details/feynmanlectureso0000feyn_g4q1 |url-access=registration | publisher=Addison-Wesley | year=1995 | isbn=0-201-62734-5}}
| |
|
| |
| {{DEFAULTSORT:Larmor Formula}}[[Category: एंटेना (रेडियो)]] [[Category: परमाणु भौतिकी]] [[Category: बिजली का गतिविज्ञान]] [[Category: विद्युत चुम्बकीय विकिरण]] [[Category: विद्युत चुंबकत्व]] [[Category: भौतिकी के समीकरण]]
| |
|
| |
|
| |
|
| |
| [[Category: Machine Translated Page]]
| |
| [[Category:Created On 24/03/2023]]-->
| |
| <references /> | | <references /> |
एक यागी-उदय एंटीना। एंटीना में इलेक्ट्रॉनों को गति देकर रेडियो तरंगों को एंटीना से विकीर्ण किया जा सकता है। यह एक
जुटना (भौतिकी) प्रक्रिया है, इसलिए विकीर्ण की गई कुल ऊर्जा त्वरण करने वाले इलेक्ट्रॉनों की संख्या के वर्ग के समानुपाती होती है।
Not to be confused with परमाणु चुंबकीय अनुनाद में घटना
लार्मर प्रीसेशन के रूप में जाना जाता है.
वैद्युतगतिकी में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल ऊर्जा (भौतिकी) की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,[1] प्रकाश के तरंग सिद्धांत के संदर्भ में।
जब कोई आवेशित कण (जैसे इलेक्ट्रॉन, प्रोटॉन, या आयन) त्वरित होता है, तो ऊर्जा विद्युत चुम्बकीय तरंगों के रूप में विकीर्ण होती है। एक कण के लिए जिसका वेग प्रकाश की गति के सापेक्ष छोटा है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:
जहाँ
या
— उचित त्वरण है,
- आवेशित करना होता है, और
- प्रकाश की गति है। एक सापेक्षवादी सामान्यीकरण लियानार्ड-विएचर्ट क्षमता द्वारा दिया गया है।
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक इलेक्ट्रॉन त्रिज्या और इलेक्ट्रॉन द्रव्यमान के रूप में व्यक्त किया जा सकता है:
एक निहितार्थ यह है कि
बोहर मॉडल के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खोनी चाहिए, नाभिक में गिरना चाहिए और परमाणु को ढह जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक
क्वांटम यांत्रिकी प्रस्तुत नहीं की गई थी।
व्युत्पत्ति
व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके)
हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)
और
जहाँ
आवेशित वेग से विभाजित है
,
आवेश का त्वरण है जिसे c से विभाजित किया जाता है,
में एक इकाई सदिश होती है
दिशा,
का परिमाण है
,
आवेशित स्थान होता है, और
. दाईं ओर की शर्तों का मूल्यांकन
मंद समय पर किया जाता है
दाहिनी ओर आवेशित कण के वेग और त्वरण से जुड़े विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है और और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है , और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है , जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधि करता है और अधिकांश ऊर्जा को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है।
हम इसके पॉयंटिंग संवाहक की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं:
जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन
और सरलीकरण बना देता है
[note 1]
यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें
, और त्वरण का प्रस्तुत करते हैं
, तो प्रति इकाई
ठोस कोण से निकलने वाली ऊर्जा होती है
इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है
और
). यह देता है
जो गैर-सापेक्ष त्वरित आवेशित के लिए लार्मर परिणाम होते है। यह कण द्वारा विकरित ऊर्जा को उसके त्वरण से संबंधित होता है। यह स्पष्ट रूप से दर्शाता है कि आवेशित जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर करता है।
सापेक्षवादी सामान्यीकरण
सहपरिवर्ती रूप
संवेग के संदर्भ में लिखा गया है, p, असापेक्षतावादी लार्मर सूत्र है (CGS इकाइयों में)[2]
ऊर्जा
P को
लोरेंत्ज़ अपरिवर्तनीय दिखाया जा सकता है।
[2] लार्मर सूत्र के किसी भी सापेक्षवादी सामान्यीकरण
P को कुछ मात्रा में लोरेंत्ज़ अपरिवर्तनीय मात्रा से संबंधित होना चाहिए ।
गैर-सापेक्षवादी सूत्र में प्रकट होने से पता चलता है कि सापेक्षतावादी रूप से सही सूत्र में
चार-त्वरण aμ = dpμ/dτ के आंतरिक गुणनफल को लेकर पाया गया लोरेंत्ज़ अदिश सम्मलित होना चाहिए स्वयं [यहाँ
pμ = (γmc, γmv) चार-संवेग होते है]। लार्मर सूत्र का सही आपेक्षिक सामान्यीकरण होता है (CGS इकाइयों में)
[2]
यह दिखाया जा सकता है कि यह आंतरिक गुणन किसके द्वारा दिया गया है[2]
और इसलिए
β ≪ 1,की सीमा में, यह कम हो जाता है
, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त, सापेक्षतावादी लार्मर ऊर्जा है (सीजीएस में अभी भी)
गैर-सहसंयोजक रूप
उपरोक्त आंतरिक गुणनफल β और इसका समय व्युत्पन्न को इसके संदर्भ में भी लिखा जा सकता है। फिर लार्मर सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)[2]
यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। h> का अर्थ है कि जब लोरेंत्ज़ कारक शून्य के बहुत समीप है (अर्थात ) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना होती है। चूँकि, जैसा विकिरण की तरह बढ़ता है चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अतिरिक्त, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है , अर्थात् कारक हो जाता है . गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।
विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
कोणीय वितरण
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है[3]
जहाँ
एक इकाई संवाहक है जो कण से प्रेक्षक की ओर संकेतन करता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है
[4]
जहाँ
पर्यवेक्षक और कण की गति के बीच का कोण होता है।
Cite error: <ref>
tags exist for a group named "note", but no corresponding <references group="note"/>
tag was found