सम्मिलन डिवाइस: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{More footnotes|date=January 2009}} | {{More footnotes|date=January 2009}} | ||
[[File:APS - Canted insertion device.jpg|thumb|[[उन्नत फोटॉन स्रोत]], [[Argonne राष्ट्रीय प्रयोगशाला]] में | [[File:APS - Canted insertion device.jpg|thumb|[[उन्नत फोटॉन स्रोत]], [[Argonne राष्ट्रीय प्रयोगशाला|आर्गनोन राष्ट्रीय प्रयोगशाला]] में बंद कर दिया गया सम्मिलन डिवाइस।]]एक सम्मिलन उपकरण (आईडी) आधुनिक [[सिंक्रोट्रॉन प्रकाश स्रोत]]ों में एक घटक है, इसलिए कहा जाता है क्योंकि वे त्वरक ट्रैक में डाले जाते हैं। वे आवधिक चुंबकीय संरचनाएं हैं जो अत्यधिक सिंक्रोट्रॉन प्रकाश स्रोत # दीप्ति को उत्तेजित करती हैं, एक संग्रहीत आवेशित कण बीम को विगल्स, या अनड्यूलेशन करने के लिए विवश करके अग्र-निर्देशित [[सिंक्रोट्रॉन विकिरण]] उत्सर्जन करती हैं, क्योंकि वे डिवाइस से निकलती हैं। यह गति [[लोरेंत्ज़ बल]] के कारण होती है, और यह इस दोलनशील गति से है कि हमें डिवाइस के दो वर्गों के नाम मिलते हैं, जिन्हें [[विगलर (सिंक्रोट्रॉन)]] और लहरदार के रूप में जाना जाता है। | ||
तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके। '''तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके।''' | तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके। '''तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके।''' | ||
Revision as of 00:40, 12 April 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (January 2009) (Learn how and when to remove this template message) |
एक सम्मिलन उपकरण (आईडी) आधुनिक सिंक्रोट्रॉन प्रकाश स्रोतों में एक घटक है, इसलिए कहा जाता है क्योंकि वे त्वरक ट्रैक में डाले जाते हैं। वे आवधिक चुंबकीय संरचनाएं हैं जो अत्यधिक सिंक्रोट्रॉन प्रकाश स्रोत # दीप्ति को उत्तेजित करती हैं, एक संग्रहीत आवेशित कण बीम को विगल्स, या अनड्यूलेशन करने के लिए विवश करके अग्र-निर्देशित सिंक्रोट्रॉन विकिरण उत्सर्जन करती हैं, क्योंकि वे डिवाइस से निकलती हैं। यह गति लोरेंत्ज़ बल के कारण होती है, और यह इस दोलनशील गति से है कि हमें डिवाइस के दो वर्गों के नाम मिलते हैं, जिन्हें विगलर (सिंक्रोट्रॉन) और लहरदार के रूप में जाना जाता है।
तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके। तेज रोशनी उत्पन करने के साथ-साथ, कुछ सम्मिलन उपकरण प्रकाश की ट्यूनिंग को सक्षम करते हैं ताकि विभिन्न अनुप्रयोगों के लिए अलग-अलग आवृत्तियों को उत्पन्न किया जा सके।
इतिहास
लहरदारों के पीछे का सिद्धांत सोवियत संघ में विटाली गिन्ज़बर्ग द्वारा विकसित किया गया था। चुकीं मोत्ज़ और उनकी टीम ने 1953 में स्टैनफोर्ड में एक लिनैक में पहला तरंगक स्थापित किया, इसका उपयोग दृश्यमान प्रकाश के माध्यम से मिलीमीटर तरंग विकिरण उत्पन्न करने के लिए किया।[1]
1970 के दशक तक ऐसा नहीं था कि सिंक्रोट्रॉन विकिरण उत्पन्न करने के लिए इलेक्ट्रॉन भंडारण रिंगों में तरंगिकाएं स्थापित की गई थीं। इन उपकरणों को लेने वाले पहले संस्थान मास्को में लेबेदेव भौतिक संस्थान और टॉम्स्क पॉलिटेक्निक विश्वविद्यालय थे। इन स्थापनाओं ने लहरदारों के व्यवहार के पूर्ण लक्षण वर्णन की अनुमति दी।
1981 में जब लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला (एलबीएनएल), स्टैनफोर्ड सिंक्रोट्रॉन विकिरण प्रयोगशाला (एसएसआरएल) और रूस में बुडकर इंस्टीट्यूट ऑफ न्यूक्लियर फिजिक्स (बीआईएनपी) की टीमों ने स्थायी चुंबकीय सरणियों का विकास किया, तो तरंगक केवल 1981 में सिंक्रोट्रॉन प्रकाश स्रोतों में सम्मिलन के लिए व्यावहारिक उपकरण बन गए। , जिसे हैलबैक सरणियों के रूप में जाना जाता है, जिसने विद्युत चुम्बकीय कुंडल या अतिचालक चुंबक के साथ अप्राप्य छोटी अवधि की पुनरावृत्ति की अनुमति दी।
उनके समान कार्य के अतिरिक्त, बीमलाइन # सिंक्रोट्रॉन विकिरण बीमलाइन के लिए सिंक्रोट्रॉन विकिरण उत्पन्न करने के लिए उपयोग किए जाने से पहले एक दशक से अधिक समय तक विग्लगर्स का उपयोग संचायक वलय में किया जाता था। विग्लर्स का संचायक वलय पर विकिरण डंपिंग प्रभाव होता है, जो कि वह कार्य है जिसे उन्होंने पहली बार 1966 में मैसाचुसेट्स में कैम्ब्रिज इलेक्ट्रॉन त्वरक में रखा था। सिंक्रोट्रॉन विकिरण की पीढ़ी के लिए प्रयोग किया जाने वाला पहला विगलर 1979 में एसएसआरएल में स्थापित 7 पोल विगलर था।
चूंकि ये पहली प्रविष्टि दुनिया भर में सिंक्रोट्रॉन विकिरण सुविधाओं की सूची में लहरदारों और विगलरों की संख्या में वृद्धि हुई है और वे अगली पीढ़ी के प्रकाश स्रोतों, मुक्त इलेक्ट्रॉन लेजर के पीछे ड्राइविंग तकनीकों में से एक हैं।
ऑपरेशन
सम्मिलन उपकरणों को पारंपरिक रूप से संचायक वलय के सीधे खंडों में डाला जाता है (इसलिए उनका नाम)। संग्रहीत कण बीम के रूप में, सामान्यतः इलेक्ट्रॉन, आईडी के माध्यम से निकलते हैं, कणों द्वारा अनुभव किए गए वैकल्पिक चुंबकीय क्षेत्र उनके प्रक्षेपवक्र को अनुप्रस्थ दोलन से निकलते हैं। इस चाल से जुड़ा त्वरण सिंक्रोट्रॉन विकिरण के उत्सर्जन को उत्तेजित करता है।
विगलर्स और लहरदार के बीच बहुत कम यांत्रिक अंतर होता है और सामान्यतः उनके बीच अंतर करने के लिए प्रयोग की जाने वाली कसौटी k-फैक्टर है। K- कारक एक आयामहीन स्थिरांक है जिसे इस प्रकार परिभाषित किया गया है:
जहाँ q, ID से गुजरने वाले कण का आवेश है, B, ID का शिखर चुंबकीय क्षेत्र है,आईडी की अवधि है,गति, या कण की ऊर्जा से संबंधित है, m त्वरित कण का द्रव्यमान है, और c प्रकाश की गति है।
विग्लर्स के पास K>>1 और लहरदार्स के पास K<1 माना जाता है।
K-फैक्टर उत्पादित विकिरण की ऊर्जा को निर्धारित करता है, और ऐसी स्थितियों में जहां ऊर्जा की एक श्रृंखला की आवश्यकता होती है, डिवाइस के चुंबकीय क्षेत्र की ताकत को बदलकर K-नंबर को संशोधित किया जा सकता है। स्थायी चुंबक उपकरणों में यह सामान्यतः चुंबक सरणियों के बीच के अंतर को बढ़ाकर किया जाता है। विद्युत चुम्बकीय उपकरणों में चुंबक कॉइल में करंट को बदलकर चुंबकीय क्षेत्र को बदल दिया जाता है।
एक विग्लर (सिंक्रोट्रॉन) में चुंबकीय क्षेत्र की अवधि और ताकत इलेक्ट्रॉनों द्वारा उत्पादित विकिरण की आवृत्ति के अनुरूप नहीं होती है। इस प्रकार एक गुच्छा में प्रत्येक इलेक्ट्रॉन स्वतंत्र रूप से विकिरण करता है, और परिणामी बैंडविड्थ (सिग्नल प्रोसेसिंग) व्यापक है। एक विगलर को एक साथ जुड़े हुए झुकने वाले चुम्बकों की श्रृंखला माना जा सकता है, और इसकी विकिरण तीव्रता विगलर में चुंबकीय ध्रुवों की संख्या के रूप में मापी जाती है।
एक लहरदार स्रोत में दोलन करने वाले इलेक्ट्रॉनों द्वारा उत्पन्न विकिरण अन्य इलेक्ट्रॉनों की गति के साथ रचनात्मक रूप से हस्तक्षेप करता है, जिससे विकिरण स्पेक्ट्रम में अपेक्षाकृत संकीर्ण बैंडविड्थ होता है। विकिरण पैमाने की तीव्रता के रूप में , कहाँ चुंबक सरणी में ध्रुवों की संख्या है।
संदर्भ
- ↑ Robinson, Arthur L. "X-Ray Data Booklet: History of Synchrotron Radiation". Retrieved 4 September 2011.