बलयुग्म (यांत्रिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
एक उत्कृष्ठ शब्द बल बलयुग्म या शुद्ध क्षण है। इसका प्रभाव कोणीय [[गति]] प्रदान करना है। किन्तु कोई रैखिक गति नहीं है। [[कठोर शरीर की गतिशीलता]] में बलयुग्म 'मुक्त [[सदिश स्थल]]' हैं। जिसका अर्थ है कि शरीर पर उनके प्रभाव आवेदन के बिंदु से स्वतंत्र हैं।
एक उत्कृष्ठ शब्द बल बलयुग्म या शुद्ध क्षण है। इसका प्रभाव कोणीय [[गति]] प्रदान करना है। किन्तु कोई रैखिक गति नहीं है। [[कठोर शरीर की गतिशीलता]] में बलयुग्म 'मुक्त [[सदिश स्थल]]' हैं। जिसका अर्थ है कि शरीर पर उनके प्रभाव आवेदन के बिंदु से स्वतंत्र हैं।


एक जोड़े का परिणामी क्षण पल का एक ''विशेष मामला'' होता है। एक जोड़े के पास संपत्ति है कि वह संदर्भ बिंदु से स्वतंत्र है।
बलयुग्म का परिणामी क्षण एक स्थिति  होती है। बलयुग्म के पास गुण है कि वह संदर्भ बिंदु से स्वतंत्र है।


== साधारण बलयुग्म ==
== साधारण बलयुग्म ==

Revision as of 23:21, 24 March 2023

यांत्रिकी में बलयुग्म परिणामी बल (या शुद्ध बल या योग) बलाघूर्ण के साथ बलों की प्रणाली है। किन्तु कोई परिणामी बल नहीं है।[1]

एक उत्कृष्ठ शब्द बल बलयुग्म या शुद्ध क्षण है। इसका प्रभाव कोणीय गति प्रदान करना है। किन्तु कोई रैखिक गति नहीं है। कठोर शरीर की गतिशीलता में बलयुग्म 'मुक्त सदिश स्थल' हैं। जिसका अर्थ है कि शरीर पर उनके प्रभाव आवेदन के बिंदु से स्वतंत्र हैं।

बलयुग्म का परिणामी क्षण एक स्थिति होती है। बलयुग्म के पास गुण है कि वह संदर्भ बिंदु से स्वतंत्र है।

साधारण बलयुग्म

परिभाषा

एक जोड़ी बलों की एक जोड़ी है, परिमाण में बराबर, विपरीत दिशा में निर्देशित, और लंबवत दूरी या पल से विस्थापित।

सबसे सरल प्रकार के बलयुग्म में दो समान और विपरीत बल होते हैं जिनकी क्रिया रेखा मेल नहीं खाती। इसे कहते हैं सिंपल कपल।[1] बलों का एक मोड़ प्रभाव या क्षण होता है जिसे अक्ष के बारे में एक टोक़ कहा जाता है जो बलों के विमान के लिए सामान्य (ज्यामिति) (लंबवत) होता है। बलयुग्म के बलाघूर्ण के लिए SI इकाई न्यूटन मीटर है।

यदि दो बल हैं F और F, तो टॉर्क का यूक्लिडियन वेक्टर निम्न सूत्र द्वारा दिया जाता है:

कहाँ

  • बलयुग्म का क्षण है
  • F बल का परिमाण है
  • d दो समानांतर बलों के बीच लंबवत दूरी (आघूर्ण) है

टॉर्क का परिमाण बराबर है Fd, इकाई वेक्टर द्वारा दिए गए टॉर्क की दिशा के साथ , जो दो बलों वाले विमान के लंबवत है और धनात्मक एक वामावर्त बलयुग्म है। कब d बलों की कार्रवाई के बिंदुओं के बीच एक सदिश के रूप में लिया जाता है, तो टोक़ का क्रॉस उत्पाद है d और F, अर्थात।


संदर्भ बिंदु की स्वतंत्रता

किसी बल के क्षण को केवल एक निश्चित बिंदु के संबंध में परिभाषित किया जाता है P (यह पल के बारे में कहा जाता है P ) और, सामान्य तौर पर, जब P बदल जाता है, पल बदल जाता है। हालाँकि, बलयुग्म का क्षण (टोक़) संदर्भ बिंदु से स्वतंत्र है P: कोई भी बिंदु वही क्षण देगा।[1]दूसरे शब्दों में, एक बलयुग्म, किसी भी अधिक सामान्य क्षणों के विपरीत, एक मुक्त सदिश है। (इस तथ्य को पियरे वैरिग्नन का सेकंड मोमेंट प्रमेय कहा जाता है।)[2] इस दावे का प्रमाण इस प्रकार है: मान लीजिए बल सदिशों का एक समुच्चय है F1, F2, आदि जो एक जोड़ी बनाते हैं, स्थिति वैक्टर के साथ (कुछ मूल के बारे में P), r1, r2, आदि, क्रमशः। के बारे में क्षण P है

अब हम एक नया संदर्भ बिंदु चुनते हैं P' से भिन्न है P वेक्टर द्वारा r. नया क्षण है

अब क्रॉस उत्पाद की वितरण संपत्ति का तात्पर्य है

हालाँकि, एक बल बलयुग्म की परिभाषा का अर्थ है

इसलिए,

यह साबित करता है कि क्षण संदर्भ बिंदु से स्वतंत्र है, जो इस बात का प्रमाण है कि बलयुग्म एक मुक्त सदिश है।

बल और बलयुग्म

Force and couple.PNG

द्रव्यमान के केंद्र से दूरी d पर एक कठोर शरीर पर लगाए गए बल F का वही प्रभाव होता है जो समान बल सीधे द्रव्यमान के केंद्र पर लागू होता है और एक जोड़े Cℓ = Fd। बलयुग्म जोड़े के तल पर समकोण पर कठोर शरीर का कोणीय त्वरण उत्पन्न करता है।[3] द्रव्यमान के केंद्र में बल बल की दिशा में बल की दिशा में अभिविन्यास में बदलाव के बिना शरीर को गति देता है। सामान्य प्रमेय हैं:[3]: एक कठोर पिंड के किसी भी बिंदु O' पर कार्य करने वाला एक बल किसी भी बिंदु O पर समान और समानांतर बल F द्वारा प्रतिस्थापित किया जा सकता है और F के समानांतर बलों वाला एक बलयुग्म जिसका क्षण M = Fd है, d का पृथक्करण है ओ और ओ'। इसके विपरीत, बलयुग्म के तल में एक बलयुग्म और एक बल को उचित रूप से स्थित एक बल द्वारा प्रतिस्थापित किया जा सकता है।

किसी भी जोड़े को एक ही दिशा और क्षण के समान विमान में किसी भी वांछित बल या किसी वांछित भुजा के द्वारा प्रतिस्थापित किया जा सकता है।[3]


अनुप्रयोग

मैकेनिकल इंजीनियरिंग और भौतिक विज्ञान में जोड़े बहुत महत्वपूर्ण हैं। कुछ उदाहरण हैं:

  • किसी के हाथ से पेचकस पर लगने वाला बल
  • पेचकश की नोक द्वारा पेंच के सिर पर लगाया गया बल
  • कताई प्रोपेलर पर कार्य करने वाले बलों को खींचें
  • एक समान विद्युत क्षेत्र में विद्युत द्विध्रुव पर बल।
  • एक अंतरिक्ष यान पर प्रतिक्रिया नियंत्रण प्रणाली
  • स्टीयरिंग व्हील पर हाथों द्वारा लगाया गया बल।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Dynamics, Theory and Applications by T.R. Kane and D.A. Levinson, 1985, pp. 90-99: Free download
  2. Engineering Mechanics: Equilibrium, by C. Hartsuijker, J. W. Welleman, page 64 Web link
  3. 3.0 3.1 3.2 Augustus Jay Du Bois (1902). इंजीनियरिंग के यांत्रिकी, खंड 1. Wiley. p. 186.
  • H.F. Girvin (1938) Applied Mechanics, §28 Couples, pp 33,4, Scranton Pennsylvania: International Textbook Company.