रोटेशन ऑपरेटर (क्वांटम यांत्रिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{Quantum mechanics}} | {{Quantum mechanics}} | ||
यह आलेख [[ ROTATION ]] [[ऑपरेटर (भौतिकी)]] से संबंधित है, क्योंकि यह [[क्वांटम यांत्रिकी]] में प्रकट होता है। | यह आलेख [[ ROTATION |ROTATION]] [[ऑपरेटर (भौतिकी)]] से संबंधित है, क्योंकि यह [[क्वांटम यांत्रिकी]] में प्रकट होता है। | ||
'''यह आलेख [[ ROTATION | ROTATION]] [[ऑपरेटर (भौतिकी)]] से संबंधित है, क्योंकि यह [[क्वांटम यांत्रिकी]] | '''यह आलेख [[ ROTATION |ROTATION]] [[ऑपरेटर (भौतिकी)]] से संबंधित है, क्योंकि यह [[क्वांटम यांत्रिकी]]''' | ||
== क्वांटम यांत्रिक घुमाव == | == क्वांटम यांत्रिक घुमाव == | ||
हर भौतिक घुमाव के साथ <math>R</math>, हम | हर भौतिक घुमाव के साथ <math>R</math>, हम क्वांटम मैकेनिकल रोटेशन ऑपरेटर को पोस्ट करते हैं <math>D(R)</math> जो क्वांटम यांत्रिक अवस्थाओं को घुमाता है। | ||
<math display="block">| \alpha \rangle_R = D(R) |\alpha \rangle</math> | <math display="block">| \alpha \rangle_R = D(R) |\alpha \rangle</math> | ||
रोटेशन के जनरेटर के संदर्भ में, | रोटेशन के जनरेटर के संदर्भ में, | ||
Line 16: | Line 16: | ||
== अनुवाद ऑपरेटर == | == अनुवाद ऑपरेटर == | ||
{{Main|अनुवाद संचालिका (क्वांटम यांत्रिकी)}} | {{Main|अनुवाद संचालिका (क्वांटम यांत्रिकी)}} | ||
रोटेशन ऑपरेटर (भौतिकी) <math>\operatorname{R}(z, \theta)</math>, पहले तर्क के साथ <math>z</math> रोटेशन [[कार्तीय समन्वय प्रणाली]] का संकेत और दूसरा <math>\theta</math> रोटेशन कोण, [[विस्थापन ऑपरेटर]] के माध्यम से काम कर सकता है <math>\operatorname{T}(a)</math> जैसा कि नीचे समझाया गया है, असीम घुमावों के लिए। यही कारण है कि, यह पहली बार दिखाया गया है कि ट्रांसलेशन ऑपरेटर स्थिति x पर | रोटेशन ऑपरेटर (भौतिकी) <math>\operatorname{R}(z, \theta)</math>, पहले तर्क के साथ <math>z</math> रोटेशन [[कार्तीय समन्वय प्रणाली]] का संकेत और दूसरा <math>\theta</math> रोटेशन कोण, [[विस्थापन ऑपरेटर]] के माध्यम से काम कर सकता है <math>\operatorname{T}(a)</math> जैसा कि नीचे समझाया गया है, असीम घुमावों के लिए। यही कारण है कि, यह पहली बार दिखाया गया है कि ट्रांसलेशन ऑपरेटर स्थिति x पर कण पर कैसे कार्य कर रहा है (कण तब [[कितना राज्य]] में है) <math>|x\rangle</math> [[क्वांटम यांत्रिकी]] के अनुसार)। | ||
स्थिति पर कण का अनुवाद <math>x</math> ठीक जगह लेना <math>x + a</math>: <math>\operatorname{T}(a)|x\rangle = |x + a\rangle</math> क्योंकि 0 का अनुवाद कण की स्थिति को नहीं बदलता है, हमारे पास (1 अर्थ के साथ पहचान कार्य, जो कुछ भी नहीं करता है): | स्थिति पर कण का अनुवाद <math>x</math> ठीक जगह लेना <math>x + a</math>: <math>\operatorname{T}(a)|x\rangle = |x + a\rangle</math> क्योंकि 0 का अनुवाद कण की स्थिति को नहीं बदलता है, हमारे पास (1 अर्थ के साथ पहचान कार्य, जो कुछ भी नहीं करता है): | ||
Line 32: | Line 32: | ||
== कक्षीय कोणीय गति के संबंध में == | == कक्षीय कोणीय गति के संबंध में == | ||
{{Further|बलोच क्षेत्र या घूर्णन}} शास्त्रीय रूप से हमारे पास कोणीय गति है <math>\mathbf L = \mathbf r \times \mathbf p.</math> क्वांटम यांत्रिकी पर विचार करने में यह वही है <math>\mathbf r</math> और <math>\mathbf p</math> ऑपरेटरों के रूप में। शास्त्रीय रूप से, | {{Further|बलोच क्षेत्र या घूर्णन}} शास्त्रीय रूप से हमारे पास कोणीय गति है <math>\mathbf L = \mathbf r \times \mathbf p.</math> क्वांटम यांत्रिकी पर विचार करने में यह वही है <math>\mathbf r</math> और <math>\mathbf p</math> ऑपरेटरों के रूप में। शास्त्रीय रूप से, असीम घूर्णन <math>dt</math> वेक्टर का <math>\mathbf r = (x,y,z)</math> के बारे में <math>z</math>-अक्ष को <math>\mathbf r' = (x',y',z)</math> छोड़कर <math>z</math> अपरिवर्तित को निम्नलिखित अपरिमेय अनुवादों (टेलर श्रृंखला का उपयोग करके) द्वारा व्यक्त किया जा सकता है: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
x' &= r \cos(t + dt) = x - y \, dt + \cdots \\ | x' &= r \cos(t + dt) = x - y \, dt + \cdots \\ | ||
Line 45: | Line 45: | ||
ऊपर से साथ <math>k = x,y</math> और टेलर विस्तार हमें मिलता है: | ऊपर से साथ <math>k = x,y</math> और टेलर विस्तार हमें मिलता है: | ||
<math display="block">\operatorname{R}(z,dt)=\exp\left[-\frac{i}{\hbar} \left(x p_y - y p_x\right) dt\right] = \exp\left(-\frac{i}{\hbar} L_z dt\right) = 1-\frac{i}{\hbar}L_z dt + \cdots</math> | <math display="block">\operatorname{R}(z,dt)=\exp\left[-\frac{i}{\hbar} \left(x p_y - y p_x\right) dt\right] = \exp\left(-\frac{i}{\hbar} L_z dt\right) = 1-\frac{i}{\hbar}L_z dt + \cdots</math> | ||
साथ <math>L_z = x p_y - y p_x</math> | साथ <math>L_z = x p_y - y p_x</math> <math>z</math>शास्त्रीय क्रॉस उत्पाद के अनुसार कोणीय गति का घटक। | ||
कोण के लिए रोटेशन प्राप्त करने के लिए <math>t</math>, हम स्थिति का उपयोग करके निम्नलिखित अंतर समीकरण का निर्माण करते हैं <math>\operatorname{R}(z, 0) = 1 </math>: | कोण के लिए रोटेशन प्राप्त करने के लिए <math>t</math>, हम स्थिति का उपयोग करके निम्नलिखित अंतर समीकरण का निर्माण करते हैं <math>\operatorname{R}(z, 0) = 1 </math>: | ||
Line 63: | Line 63: | ||
{{Main|स्पिन (भौतिकी) या घूर्णन}} | {{Main|स्पिन (भौतिकी) या घूर्णन}} | ||
{{see also|रोटेशन ग्रुप एसओ (3) या झूठ बीजगणित पर एक नोट|आधार परिवर्तन या एंडोमोर्फिज्म}} | {{see also|रोटेशन ग्रुप एसओ (3) या झूठ बीजगणित पर एक नोट|आधार परिवर्तन या एंडोमोर्फिज्म}} | ||
ऑपरेटरों को [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जा सकता है। रैखिक बीजगणित से कोई जानता है कि | ऑपरेटरों को [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जा सकता है। रैखिक बीजगणित से कोई जानता है कि निश्चित मैट्रिक्स <math>A</math> परिवर्तन के माध्यम से दूसरे [[आधार (रैखिक बीजगणित)]] में प्रदर्शित किया जा सकता है | ||
<math display="block">A' = P A P^{-1}</math> | <math display="block">A' = P A P^{-1}</math> | ||
कहाँ <math>P</math> आधार परिवर्तन मैट्रिक्स है। यदि वैक्टर <math>b</math> क्रमश: <math>c</math> z-अक्ष क्रमशः | कहाँ <math>P</math> आधार परिवर्तन मैट्रिक्स है। यदि वैक्टर <math>b</math> क्रमश: <math>c</math> z-अक्ष क्रमशः आधार पर दूसरे आधार पर हैं, वे निश्चित कोण के साथ y-अक्ष के लंबवत हैं <math>t</math> उन दोनों के बीच। स्पिन ऑपरेटर <math>S_b</math> पहले आधार में फिर स्पिन ऑपरेटर में तब्दील किया जा सकता है <math>S_c</math> अन्य आधार के निम्नलिखित परिवर्तन के माध्यम से: | ||
<math display="block">S_c = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t)</math> | <math display="block">S_c = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t)</math> | ||
मानक क्वांटम यांत्रिकी से हमारे पास ज्ञात परिणाम हैं <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> और <math display="inline">S_c |c+\rangle = \frac{\hbar}{2} |c+\rangle</math> कहाँ | मानक क्वांटम यांत्रिकी से हमारे पास ज्ञात परिणाम हैं <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> और <math display="inline">S_c |c+\rangle = \frac{\hbar}{2} |c+\rangle</math> कहाँ <math>|b+\rangle</math> और <math>|c+\rangle</math> उनके संबंधित आधारों में शीर्ष स्पिन हैं। तो हमारे पास: | ||
<math display="block">\frac{\hbar}{2} |c+\rangle = S_c |c+\rangle = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t) |c+\rangle \Rightarrow</math> | <math display="block">\frac{\hbar}{2} |c+\rangle = S_c |c+\rangle = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t) |c+\rangle \Rightarrow</math> | ||
<math display="block">S_b \operatorname{D}^{-1}(y, t) |c+\rangle = \frac{\hbar}{2} \operatorname{D}^{-1}(y, t) |c+\rangle</math> | <math display="block">S_b \operatorname{D}^{-1}(y, t) |c+\rangle = \frac{\hbar}{2} \operatorname{D}^{-1}(y, t) |c+\rangle</math> | ||
इसके साथ तुलना <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> पैदावार <math>|b+\rangle = D^{-1}(y, t) |c+\rangle</math>. | इसके साथ तुलना <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> पैदावार <math>|b+\rangle = D^{-1}(y, t) |c+\rangle</math>. | ||
इसका अर्थ है कि यदि राज्य <math>|c+\rangle</math> के बारे में घुमाया जाता है <math>y</math>-अक्ष | इसका अर्थ है कि यदि राज्य <math>|c+\rangle</math> के बारे में घुमाया जाता है <math>y</math>-अक्ष कोण से <math>t</math>, यह राज्य बन जाता है <math>|b+\rangle</math>, परिणाम जिसे मनमाना अक्षों के लिए सामान्यीकृत किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 15:54, 10 April 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
यह आलेख ROTATION ऑपरेटर (भौतिकी) से संबंधित है, क्योंकि यह क्वांटम यांत्रिकी में प्रकट होता है।
यह आलेख ROTATION ऑपरेटर (भौतिकी) से संबंधित है, क्योंकि यह क्वांटम यांत्रिकी
क्वांटम यांत्रिक घुमाव
हर भौतिक घुमाव के साथ , हम क्वांटम मैकेनिकल रोटेशन ऑपरेटर को पोस्ट करते हैं जो क्वांटम यांत्रिक अवस्थाओं को घुमाता है।
अनुवाद ऑपरेटर
रोटेशन ऑपरेटर (भौतिकी) , पहले तर्क के साथ रोटेशन कार्तीय समन्वय प्रणाली का संकेत और दूसरा रोटेशन कोण, विस्थापन ऑपरेटर के माध्यम से काम कर सकता है जैसा कि नीचे समझाया गया है, असीम घुमावों के लिए। यही कारण है कि, यह पहली बार दिखाया गया है कि ट्रांसलेशन ऑपरेटर स्थिति x पर कण पर कैसे कार्य कर रहा है (कण तब कितना राज्य में है) क्वांटम यांत्रिकी के अनुसार)।
स्थिति पर कण का अनुवाद ठीक जगह लेना : क्योंकि 0 का अनुवाद कण की स्थिति को नहीं बदलता है, हमारे पास (1 अर्थ के साथ पहचान कार्य, जो कुछ भी नहीं करता है):
इसके अतिरिक्त, हैमिल्टन के समीकरण मान लीजिए से स्वतंत्र है पद। क्योंकि अनुवाद ऑपरेटर के संदर्भ में लिखा जा सकता है , और , हम वह जानते हैं इस परिणाम का अर्थ है कि सिस्टम के लिए रैखिक गति संरक्षित है।
कक्षीय कोणीय गति के संबंध में
शास्त्रीय रूप से हमारे पास कोणीय गति है क्वांटम यांत्रिकी पर विचार करने में यह वही है और ऑपरेटरों के रूप में। शास्त्रीय रूप से, असीम घूर्णन वेक्टर का के बारे में -अक्ष को छोड़कर अपरिवर्तित को निम्नलिखित अपरिमेय अनुवादों (टेलर श्रृंखला का उपयोग करके) द्वारा व्यक्त किया जा सकता है:
ऊपर से साथ और टेलर विस्तार हमें मिलता है:
कोण के लिए रोटेशन प्राप्त करने के लिए , हम स्थिति का उपयोग करके निम्नलिखित अंतर समीकरण का निर्माण करते हैं :
स्पिन कोणीय गति के बारे में उदाहरण के लिए -अक्ष हम अभी बदलते हैं साथ (कहाँ पॉल मैट्रिसेस है) और हमें स्पिन (भौतिकी) रोटेशन ऑपरेटर मिलता है
स्पिन ऑपरेटर और क्वांटम राज्यों पर प्रभाव
ऑपरेटरों को मैट्रिक्स (गणित) द्वारा दर्शाया जा सकता है। रैखिक बीजगणित से कोई जानता है कि निश्चित मैट्रिक्स परिवर्तन के माध्यम से दूसरे आधार (रैखिक बीजगणित) में प्रदर्शित किया जा सकता है
इसका अर्थ है कि यदि राज्य के बारे में घुमाया जाता है -अक्ष कोण से , यह राज्य बन जाता है , परिणाम जिसे मनमाना अक्षों के लिए सामान्यीकृत किया जा सकता है।
यह भी देखें
- क्वांटम यांत्रिकी में समरूपता
- गोलाकार आधार
- ऑप्टिकल चरण अंतरिक्ष
संदर्भ
- L.D. Landau and E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, 1985
- P.A.M. Dirac: The Principles of Quantum Mechanics, Oxford University Press, 1958
- R.P. Feynman, R.B. Leighton and M. Sands: The Feynman Lectures on Physics, Addison-Wesley, 1965