आधार फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Element of a basis for a function space}} | {{Short description|Element of a basis for a function space}} | ||
गणित में, आधार फलन एक फलन स्थान के लिए विशेष [[आधार (रैखिक बीजगणित)]] का | गणित में, आधार फलन एक फलन स्थान के लिए विशेष [[आधार (रैखिक बीजगणित)]] का अवयव है। [[समारोह स्थान|फलन स्थान]] में प्रत्येक फलन (गणित) को आधार फलन के [[रैखिक संयोजन]] के रूप में दर्शाया जा सकता है, जैसे [[ सदिश स्थल |सदिश स्थान]] में प्रत्येक वेक्टर को [[आधार वैक्टर|सदिश स्थान]] के रैखिक संयोजन के रूप में दर्शाया जा सकता है। | ||
[[संख्यात्मक विश्लेषण]] और [[सन्निकटन सिद्धांत]] में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि [[प्रक्षेप]] में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर) डेटा अंक)। | [[संख्यात्मक विश्लेषण]] और [[सन्निकटन सिद्धांत]] में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि [[प्रक्षेप]] में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर डेटा अंक)। | ||
आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर डेटा अंक)। | |||
== उदाहरण == | == उदाहरण == | ||
=== | === ''C<sup>ω</sup>'' के लिए मोनोमियल आधार=== | ||
[[विश्लेषणात्मक कार्य]] | [[विश्लेषणात्मक कार्य]] के सदिश स्थान के लिए [[ एकपद |एकपद]] आधार दिया गया है | ||
<math display="block">\{x^n \mid n\in\N\}.</math> | <math display="block">\{x^n \mid n\in\N\}.</math> | ||
इस आधार का उपयोग [[टेलर श्रृंखला]] में, दूसरों के | इस आधार का उपयोग [[टेलर श्रृंखला]] में, दूसरों के मध्य में किया जाता है। | ||
=== [[बहुपद]] | === [[बहुपद|बहुपदो]] के लिए मोनोमियल आधार === | ||
मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिए आधार बनाता है। | मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिए आधार बनाता है। फलस्वरूप, हर बहुपद को <math>a_0 + a_1x^1 + a_2x^2 + \cdots + a_n x^n</math> इस रूप में लिखा जा सकता है कुछ के लिए <math>n \in \mathbb{N}</math>, जो कि मोनोमियल्स का रैखिक संयोजन है। | ||
=== | === ''L''<sup>2</sup>[0,1] लिए फूरियर आधार=== | ||
त्रिकोणमितीय | त्रिकोणमितीय फलन बंधे हुए डोमेन पर [[स्क्वायर-इंटीग्रेबल फ़ंक्शन|स्क्वायर-इंटीग्रेबल फलन]] के लिए ([[orthonormality|ऑर्थोनॉर्मलिटी]]) स्कॉडर आधार बनाते हैं। विशेष उदाहरण के रूप में संग्रह | ||
<math display="block">\{\sqrt{2}\sin(2\pi n x) \mid n \in \N \} \cup \{\sqrt{2} \cos(2\pi n x) \mid n \in \N \} \cup \{1\}</math> | <math display="block">\{\sqrt{2}\sin(2\pi n x) \mid n \in \N \} \cup \{\sqrt{2} \cos(2\pi n x) \mid n \in \N \} \cup \{1\}</math> | ||
''L''<sup>2</sup>[0,1] स्पेस के लिए आधार बनाता है | | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 31: | Line 33: | ||
* [[ऑर्थोगोनल वेवलेट]] | * [[ऑर्थोगोनल वेवलेट]] | ||
* [[बायोर्थोगोनल वेवलेट]] | * [[बायोर्थोगोनल वेवलेट]] | ||
* [[ | * [[रेडियल आधार फलन ]] <!-- shape functions in the [[Galerkin method]] and --> | ||
* परिमित तत्व विश्लेषण#एक आधार चुनना|परिमित-तत्व (आधार) | * परिमित तत्व विश्लेषण#एक आधार चुनना|परिमित-तत्व (आधार) | ||
* [[कार्यात्मक विश्लेषण]] | * [[कार्यात्मक विश्लेषण]] |
Revision as of 22:48, 31 March 2023
गणित में, आधार फलन एक फलन स्थान के लिए विशेष आधार (रैखिक बीजगणित) का अवयव है। फलन स्थान में प्रत्येक फलन (गणित) को आधार फलन के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थान में प्रत्येक वेक्टर को सदिश स्थान के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर डेटा अंक)।
आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर डेटा अंक)।
उदाहरण
Cω के लिए मोनोमियल आधार
विश्लेषणात्मक कार्य के सदिश स्थान के लिए एकपद आधार दिया गया है
बहुपदो के लिए मोनोमियल आधार
मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिए आधार बनाता है। फलस्वरूप, हर बहुपद को इस रूप में लिखा जा सकता है कुछ के लिए , जो कि मोनोमियल्स का रैखिक संयोजन है।
L2[0,1] लिए फूरियर आधार
त्रिकोणमितीय फलन बंधे हुए डोमेन पर स्क्वायर-इंटीग्रेबल फलन के लिए (ऑर्थोनॉर्मलिटी) स्कॉडर आधार बनाते हैं। विशेष उदाहरण के रूप में संग्रह
यह भी देखें
- आधार (रैखिक बीजगणित) (हैमेल आधार)
- शाउडर आधार (बनच स्थान में)
- दोहरा आधार
- बायोर्थोगोनल प्रणाली (मार्कुशेविच आधार)
- आंतरिक-उत्पाद स्थान में ऑर्थोनॉर्मल आधार
- ओर्थोगोनल बहुपद
- फूरियर विश्लेषण और फूरियर श्रृंखला
- हार्मोनिक विश्लेषण
- ऑर्थोगोनल वेवलेट
- बायोर्थोगोनल वेवलेट
- रेडियल आधार फलन
- परिमित तत्व विश्लेषण#एक आधार चुनना|परिमित-तत्व (आधार)
- कार्यात्मक विश्लेषण
- सन्निकटन सिद्धांत
- संख्यात्मक विश्लेषण
संदर्भ
- Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.