हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Certain vector fields are the sum of an irrotational and a solenoidal vector field}}
{{Short description|Certain vector fields are the sum of an irrotational and a solenoidal vector field}}
भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ प्रमेय,<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> जिसे वेक्टर कैलकुलस के मौलिक प्रमेय के रूप में भी जाना जाता है,<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />See also: [[Method of Fluxions]].</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />See also: [[Green's Theorem]].</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले [[वेक्टर क्षेत्र]] को एक [[अघूर्णन सदिश क्षेत्र]] ([[कर्ल (गणित)|कर्ल]]  -फ्री) वेक्टर क्षेत्र और [[ solenoidal |परिनालिकीय क्षेत्र]] ([[ विचलन ]]-फ्री) वेक्टर क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम [[हरमन वॉन हेल्महोल्ट्ज़]] के नाम पर रखा गया है।<ref>See:
भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />See also: [[Method of Fluxions]].</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />See also: [[Green's Theorem]].</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले [[वेक्टर क्षेत्र]] को एक [[अघूर्णन सदिश क्षेत्र]] ([[कर्ल (गणित)|कर्ल]]  -फ्री) वेक्टर क्षेत्र और [[ solenoidal |परिनालिकीय क्षेत्र]] ([[ विचलन ]]-फ्री) वेक्टर क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम [[हरमन वॉन हेल्महोल्ट्ज़]] के नाम पर रखा गया है।<ref>See:
*  H. Helmholtz (1858) [https://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25 "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25–55.  On page 38, the components of the fluid's velocity (''u'',&nbsp;''v'',&nbsp;''w'') are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential&nbsp;(''L'',&nbsp;''M'',&nbsp;''N'').
*  H. Helmholtz (1858) [https://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25 "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25–55.  On page 38, the components of the fluid's velocity (''u'',&nbsp;''v'',&nbsp;''w'') are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential&nbsp;(''L'',&nbsp;''M'',&nbsp;''N'').
*  However, Helmholtz was largely anticipated by George Stokes in his paper:  G. G. Stokes (presented: 1849; published: 1856) [https://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1 "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1–62; see pages 9–10.</ref>
*  However, Helmholtz was largely anticipated by George Stokes in his paper:  G. G. Stokes (presented: 1849; published: 1856) [https://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1 "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1–62; see pages 9–10.</ref>


जैसा कि एक अघूर्णी सदिश क्षेत्र में एक [[अदिश क्षमता]] होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित चिकनाई और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है <math>-\nabla \phi + \nabla \times \mathbf{A}</math>, कहाँ <math>\phi</math> एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और {{math|'''A'''}} एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।
जैसा कि एक अघूर्णी सदिश क्षेत्र में एक [[अदिश क्षमता]] होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है <math>-\nabla \phi + \nabla \times \mathbf{A}</math>,  


== प्रमेय का कथन ==
जहाँ <math>\phi</math> एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और {{math|'''A'''}} एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।
होने देना <math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक वेक्टर फ़ील्ड बनें <math>V\subseteq\mathbb{R}^3</math>, जो अंदर से दो बार लगातार भिन्न होता है <math>V</math>, और जाने <math>S</math> वह सतह हो जो डोमेन को घेरती है <math>V</math>. तब <math>\mathbf{F}</math> कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:<ref>{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=हेल्महोल्ट्ज प्रमेय|publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref>
 
== सिद्धांत का कथन ==
लेट <math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक वेक्टर क्षेत्र पर <math>V\subseteq\mathbb{R}^3</math>, जो अंदर से दो बार लगातार भिन्न होता है <math>V</math>, और जाने <math>S</math> वह सतह हो जो डोमेन को घेरती है <math>V</math>. तब <math>\mathbf{F}</math> कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:<ref>{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=हेल्महोल्ट्ज प्रमेय|publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref>


<math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math>
<math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math>
Line 19: Line 21:
और <math>\nabla'</math> के संबंध में नाबला संचालिका होता है <math>\mathbf{r'}</math>, नहीं <math> \mathbf{r} </math>.
और <math>\nabla'</math> के संबंध में नाबला संचालिका होता है <math>\mathbf{r'}</math>, नहीं <math> \mathbf{r} </math>.


अगर <math>V = \R^3</math> और इसलिए असीमित है, और <math>\mathbf{F}</math> कम से कम उतनी ही तेजी से गायब हो जाता है <math>1/r</math> जैसा <math>r \to \infty</math>, तो एक है<ref name="griffiths">[[David J. Griffiths]], ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>
अगर <math>V = \R^3</math> और इसलिए असीमित है, और <math>\mathbf{F}</math> कम से कम उतनी ही तेजी से लुप्‍त हो जाता है <math>1/r</math> जैसा <math>r \to \infty</math>, तो एक है<ref name="griffiths">[[David J. Griffiths]], ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 28: Line 30:


== व्युत्पत्ति ==
== व्युत्पत्ति ==
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते हैं, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और फ़ील्ड में। प्रपत्र में [[डेल्टा समारोह]] का उपयोग करके फलन लिखना
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते हैं, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और क्षेत्र में। प्रपत्र में [[डेल्टा समारोह|डेल्टा फलन]] का उपयोग करके फलन लिखना
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
कहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है
कहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है
Line 58: Line 60:
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
\end{align}</math>
\end{align}</math>
[[विचलन प्रमेय]] के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है
[[विचलन प्रमेय|विचलन  सिद्धांत]] के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 180: Line 182:
ध्यान दें कि वेक्टर क्षमता को रैंक से बदल दिया जाता है-<math>(d-2)</math> टेंसर इन <math>d</math> आयाम।
ध्यान दें कि वेक्टर क्षमता को रैंक से बदल दिया जाता है-<math>(d-2)</math> टेंसर इन <math>d</math> आयाम।


कई गुना अधिक सामान्यीकरण के लिए, [[हॉज अपघटन]] हेल्महोल्ट्ज़ अपघटन#विभेदक रूपों की चर्चा देखें।
कई गुना अधिक सामान्यीकरण के लिए, [[हॉज अपघटन]] हेल्महोल्ट्ज़ अपघटन विभेदक रूपों की चर्चा देखें।


=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
ध्यान दें कि यहां बताए गए प्रमेय में हमने यह शर्त लगाई है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, इस रूप में घोषित किया गया <math>\mathbf{G}</math>, होने की गारंटी है। हम सम्मेलन लागू करते हैं
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, रूप में दर्शाया गया है <math>\mathbf{G}</math>, के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते हैं
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।


अब निम्नलिखित अदिश और सदिश क्षेत्रों पर विचार करें:
अब निम्नलिखित अदिश और सदिश क्षेत्रों पर विचार करें:<math display="block">\begin{align}
<math display="block">\begin{align}
G_\Phi(\mathbf{k}) &= i \frac{\mathbf{k} \cdot \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2} \\
G_\Phi(\mathbf{k}) &= i \frac{\mathbf{k} \cdot \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2} \\
\mathbf{G}_\mathbf{A}(\mathbf{k}) &= i \frac{\mathbf{k} \times \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2}  \\ [8pt]
\mathbf{G}_\mathbf{A}(\mathbf{k}) &= i \frac{\mathbf{k} \times \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2}  \\ [8pt]
Line 202: Line 203:
\end{align}</math>
\end{align}</math>


=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि C एक परिनालिका सदिश क्षेत्र है और R3 पर एक अदिश क्षेत्र है जो पर्याप्त रूप से  समतल हैं और जो अनंत पर 1/r2 से अधिक तेजी से लुप्‍त हो जाते हैं। फिर एक सदिश क्षेत्र F में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
यदि अतिरिक्त वेक्टर क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />


== निर्धारित विचलन और कर्ल == के साथ फ़ील्ड
दूसरे शब्दों में, एक वेक्टर क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्‍त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। स्थिर वैद्युत विक्षेप में इस सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं
हेल्महोल्ट्ज़ प्रमेय शब्द निम्नलिखित का भी उल्लेख कर सकता है। होने देना {{math|'''C'''}} एक परिनालिका सदिश क्षेत्र हो और d एक अदिश क्षेत्र हो {{math|'''R'''<sup>3</sup>}} जो पर्याप्त रूप से चिकने होते हैं और जो तेजी से गायब हो जाते हैं {{math|1/''r''<sup>2</sup>}} अनंत पर। फिर एक सदिश क्षेत्र मौजूद है {{math|'''F'''}} ऐसा है कि
 
<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
यदि अतिरिक्त वेक्टर क्षेत्र {{math|'''F'''}} के रूप में गायब हो जाता है {{math|''r'' → ∞}}, तब {{math|'''F'''}} निराला है।<ref name="griffiths"/>
 
दूसरे शब्दों में, एक वेक्टर फ़ील्ड निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी गायब हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। [[इलेक्ट्रोस्टाटिक्स]] में इस प्रमेय का बहुत महत्व है, क्योंकि स्थिर मामले में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths"/>सबूत एक निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं


<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>
<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>
कहाँ <math>\mathcal{G}</math> न्यूटोनियन संभावित ऑपरेटर का प्रतिनिधित्व करता है। (जब सदिश क्षेत्र पर अभिनय करते हैं, जैसे {{math|∇ × '''F'''}}, इसे प्रत्येक घटक पर कार्य करने के लिए परिभाषित किया गया है।)
जहाँ <math>\mathcal{G}</math> न्यूटोनियन संभावित ऑपरेटर का प्रतिनिधित्व करता है। (जब सदिश क्षेत्र पर अभिनय करते हैं, जैसे {{math|∇ × '''F'''}}, इसे प्रत्येक घटक पर कार्य करने के लिए परिभाषित किया गया है।)


== समाधान स्थान ==
== समाधान स्थान ==
Line 222: Line 220:
:* <math> \varphi </math> कोई अदिश क्षेत्र है।
:* <math> \varphi </math> कोई अदिश क्षेत्र है।


सबूत:
प्रमाण:
सेटिंग <math>\lambda = \Phi_2 -  \Phi_1</math> और <math>{\mathbf B = A_2 - A_1}</math>, एक के अनुसार है
सेटिंग <math>\lambda = \Phi_2 -  \Phi_1</math> और <math>{\mathbf B = A_2 - A_1}</math>, एक के अनुसार है
हेल्महोल्ट्ज़ अपघटन की परिभाषा,
हेल्महोल्ट्ज़ अपघटन की परिभाषा,
Line 239: Line 237:


== विभेदक रूप ==
== विभेदक रूप ==
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर वेक्टर क्षेत्रों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह ]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन प्रमेय सख्ती से हेल्महोल्ट्ज़ प्रमेय का सामान्यीकरण नहीं है। हालांकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ प्रमेय का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर वेक्टर क्षेत्रों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह ]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। हालांकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।


== कमजोर सूत्रीकरण ==
== कमजोर सूत्रीकरण ==
Line 245: Line 243:


<math display="block">\mathbf{u}=\nabla\varphi+\nabla \times \mathbf{A}</math>
<math display="block">\mathbf{u}=\nabla\varphi+\nabla \times \mathbf{A}</math>
कहाँ {{mvar|φ}} सोबोलेव अंतरिक्ष में है {{math|''H''<sup>1</sup>(Ω)}} स्क्वायर-इंटीग्रेबल फ़ंक्शंस पर {{math|Ω}} जिसका आंशिक डेरिवेटिव [[वितरण (गणित)]] अर्थ में परिभाषित वर्ग पूर्णांक हैं, और {{math|'''A''' ∈ ''H''(curl, Ω)}}, वर्ग समाकलनीय कर्ल के साथ वर्ग समाकलनीय सदिश क्षेत्रों से युक्त सदिश क्षेत्रों का सोबोलेव स्थान।
कहाँ {{mvar|φ}} सोबोलेव अंतरिक्ष में है {{math|''H''<sup>1</sup>(Ω)}} स्क्वायर-इंटीग्रेबल फलन पर {{math|Ω}} जिसका आंशिक डेरिवेटिव [[वितरण (गणित)]] अर्थ में परिभाषित वर्ग पूर्णांक हैं, और {{math|'''A''' ∈ ''H''(curl, Ω)}}, वर्ग समाकलनीय कर्ल के साथ वर्ग समाकलनीय सदिश क्षेत्रों से युक्त सदिश क्षेत्रों का सोबोलेव स्थान।


थोड़े चिकने सदिश क्षेत्र के लिए {{math|'''u''' ∈ ''H''(curl, Ω)}}, एक समान अपघटन धारण करता है:
थोड़े समतल सदिश क्षेत्र के लिए {{math|'''u''' ∈ ''H''(curl, Ω)}}, एक समान अपघटन धारण करता है:


<math display="block">\mathbf{u}=\nabla\varphi+\mathbf{v}</math>
<math display="block">\mathbf{u}=\nabla\varphi+\mathbf{v}</math>
Line 253: Line 251:


== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
भौतिकी में अक्सर इस्तेमाल की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अनुप्रस्थ घटक के रूप में विचलन-मुक्त घटक को संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी [[फूरियर रूपांतरण]] की गणना करें <math>\hat\mathbf{F}</math> वेक्टर क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत। अब तक, हमारे पास है
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अनुप्रस्थ घटक के रूप में विचलन-मुक्त घटक को संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी [[फूरियर रूपांतरण]] की गणना करें <math>\hat\mathbf{F}</math> वेक्टर क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत। अब तक, हमारे पास है


<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
Line 269: Line 267:
<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_l=-\nabla\Phi=-\frac{1}{4\pi}\nabla\int_V\frac{\nabla'\cdot\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_l=-\nabla\Phi=-\frac{1}{4\pi}\nabla\int_V\frac{\nabla'\cdot\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>
तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन होते है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>




Line 278: Line 276:
* अदिश-वेक्टर-टेंसर अपघटन
* अदिश-वेक्टर-टेंसर अपघटन
* हेल्महोल्ट्ज़ अपघटन को सामान्य करने वाला [[हॉज सिद्धांत]]
* हेल्महोल्ट्ज़ अपघटन को सामान्य करने वाला [[हॉज सिद्धांत]]
* ध्रुवीय गुणनखंड प्रमेय
* ध्रुवीय गुणनखंड सिद्धांत
* [[लेरे प्रक्षेपण]] को परिभाषित करने के लिए हेल्महोल्ट्ज़-लेरे अपघटन का उपयोग किया गया
* [[लेरे प्रक्षेपण]] को परिभाषित करने के लिए हेल्महोल्ट्ज़-लेरे अपघटन का उपयोग किया गया



Revision as of 09:06, 11 April 2023

भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले वेक्टर क्षेत्र को एक अघूर्णन सदिश क्षेत्र (कर्ल -फ्री) वेक्टर क्षेत्र और परिनालिकीय क्षेत्र (विचलन -फ्री) वेक्टर क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है ,

जहाँ एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

सिद्धांत का कथन

लेट एक बंधे हुए डोमेन पर एक वेक्टर क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

कहाँ
और के संबंध में नाबला संचालिका होता है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्‍त हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन का।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते हैं, , और विचलन, , सीमा पर डोमेन और क्षेत्र में। प्रपत्र में डेल्टा फलन का उपयोग करके फलन लिखना

कहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम पाते हैं
विचलन सिद्धांत के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है