हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
Line 204: Line 204:


=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि C एक परिनालिका सदिश क्षेत्र है और R3 पर एक अदिश क्षेत्र है जो पर्याप्त रूप से  समतल हैं और जो अनंत पर 1/r2 से अधिक तेजी से लुप्‍त हो जाते हैं। फिर एक सदिश क्षेत्र F में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से  समतल हैं और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्‍त हो जाते हैं। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
यदि अतिरिक्त वेक्टर क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />
यदि अतिरिक्त वेक्टर क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />


दूसरे शब्दों में, एक वेक्टर क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्‍त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है।  स्थिर वैद्युत विक्षेप में इस  सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं
दूसरे शब्दों में, एक वेक्टर क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्‍त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है।  स्थिर वैद्युत विक्षेप में इस  सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं।


<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>
<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>

Revision as of 09:09, 11 April 2023

भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले वेक्टर क्षेत्र को एक अघूर्णन सदिश क्षेत्र (कर्ल -फ्री) वेक्टर क्षेत्र और परिनालिकीय क्षेत्र (विचलन -फ्री) वेक्टर क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है ,

जहाँ एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

सिद्धांत का कथन

लेट एक बंधे हुए डोमेन पर एक वेक्टर क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

कहाँ
और के संबंध में नाबला संचालिका होता है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्‍त हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन का।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते हैं, , और विचलन, , सीमा पर डोमेन और क्षेत्र में। प्रपत्र में डेल्टा फलन का उपयोग करके फलन लिखना

कहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम पाते हैं
विचलन सिद्धांत के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है