हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
Line 60: Line 60:
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
\end{align}</math>
\end{align}</math>
[[विचलन प्रमेय|विचलन  सिद्धांत]] के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है
[[विचलन प्रमेय|विचलन  सिद्धांत]] के लिए समीकरण को फिर से लिखा जा सकता है


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 144: Line 144:
=== उच्च आयामों के लिए सामान्यीकरण ===
=== उच्च आयामों के लिए सामान्यीकरण ===


में एक <math>d</math>-आयामी वेक्टर अंतरिक्ष के साथ <math>d\neq 3</math>, <math display="inline">-\frac{1}{4\pi\left|\mathbf{r}-\mathbf{r}'\right|}</math> उचित ग्रीन के कार्य द्वारा प्रतिस्थापित किया जाना चाहिए लाप्लासियन के लिए ग्रीन के कार्य
एक <math>d</math>-आयामी वेक्टर समष्टि के साथ <math>d\neq 3</math>, <math display="inline">-\frac{1}{4\pi\left|\mathbf{r}-\mathbf{r}'\right|}</math> उचित ग्रीन के कार्य द्वारा प्रतिस्थापित किया जाना चाहिए लाप्लासियन के लिए ग्रीन के कार्य करता है
<math display="block">
<math display="block">
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')

Revision as of 10:22, 11 April 2023

भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले सदिश क्षेत्र को एक अघूर्णन सदिश क्षेत्र (कर्ल -फ्री) सदिश क्षेत्र और परिनालिकीय क्षेत्र (विचलन -फ्री) सदिश क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है ,

जहाँ एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

सिद्धांत का कथन

लेट एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

कहाँ
और के संबंध में नाबला संचालिका होता है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्‍त हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन का।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते हैं, , और विचलन, , सीमा पर डोमेन और क्षेत्र में। प्रपत्र में डेल्टा फलन का उपयोग करके फलन लिखना

कहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम पाते हैं
विचलन सिद्धांत के लिए समीकरण को फिर से लिखा जा सकता है