नवीन मूल: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है। | न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है। | ||
== टाइप | == टाइप सिद्धांत टीएसटी == | ||
रसेलियन अप्रकाशित टाइप किए गए समुच्चय | रसेलियन अप्रकाशित टाइप किए गए समुच्चय सिद्धांत टीएसटी के प्राचीन विधेय समानता (=) और सदस्यता (∈) के रूप में होता है। टीएसटी में एक प्रकार का रेखीय पदानुक्रम होता है, जिसे टाइप 0 में वैयक्तिक का समावेश अनिर्धारित होता है प्रत्येक (मेटा-) [[प्राकृतिक संख्या]] के लिए n टाइप n+1 ऑब्जेक्ट्स टाइप n ऑब्जेक्ट्स के समुच्चय के रूप में होते हैं, टाइप n के समुच्चय में टाइप n-1 के सदस्य होते हैं। पहचान से जुड़ी वस्तुओं का प्रकार समान होना चाहिए। | ||
टीएसटी जैसे बहु-वर्गीकृत सिद्धांत में सूत्र लिखते समय, कुछ टिप्पणी सामान्यता उनके प्रकारों को निरूपित करने के लिए चर में जोड़े जाते हैं। टीएसटी में टाइप इंडेक्स को सुपरस्क्रिप्ट के रूप में लिखने का चलन है क्योंकि सुपरस्क्रिप्ट xn टाइप n के एक चर को दर्शाता है। इस प्रकार निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियम <math>x^{n} = y^{n}\!</math> और <math>x^{n} \in y^{n+1}</math>का सफलतापूर्वक वर्णन करते हैं। क्विनियन समुच्चय सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है। | |||
टीएसटी के एक्सिओम्स हैं, | |||
* [[विस्तार की स्वच्छता]]: एक ही सदस्यों के साथ समान सकारात्मक प्रकार के समुच्चय समान रूप में होते है, | |||
* एक्सिओम्स स्कीमा व्यापकार्थ के रूप में होते है, | |||
::यदि <math>\phi(x^n)</math> एक सूत्र है, फिर समुच्चय <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> के रूप में उपस्थित होते है। | |||
: दूसरे शब्दों में, किसी भी सूत्र को देखते हुए <math>\phi(x^n)\!</math>, सूत्र <math>\exists A^{n+1} \forall x^n [ x^n \in A^{n+1} \leftrightarrow \phi(x^n) ]</math> एक एक्सिओम्स के रूप में उपस्थित होते है, जहां <math>A^{n+1}\!</math> समुच्चय का प्रतिनिधित्व करता है <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> और <math>\phi(x^n)</math> [[मुक्त चर और बाध्य चर]] के रूप में नहीं होते है। | |||
इस प्रकार का सिद्धांत प्रिन्सिपिया मैथेमेटिका में पहले दिए गए सिद्धांत की तुलना में बहुत कम जटिल रूप में है, जिसमें उन [[संबंधों]] [[संबंध (गणित)|(गणित)]] के प्रकार के रूप में सम्मलित होते है, जिनके तर्क आवश्यक रूप में नहीं थे कि सभी एक ही प्रकार के हों। 1914 में, [[नॉर्बर्ट वीनर]] ने दिखाया कि समुच्चय के एक सेट के रूप में ऑर्डर किए गए जोड़े को कैसे कोडित किया जाए, जिससे यहां वर्णित समुच्चयो के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को समाप्त करना संभव हो सके। | |||
== क्विनियन समुच्चय थ्योरी == | == क्विनियन समुच्चय थ्योरी == | ||
Line 32: | Line 34: | ||
=== आदेश जोड़े === | === आदेश जोड़े === | ||
संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के समुच्चय के रूप में | संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के समुच्चय के रूप में टीएसटी (और एनएफ और एनएफयू में) में परिभाषित किया गया है।ऑर्डर की गई जोड़ी की सामान्य परिभाषा, पहली बार 1921 में [[संग्रहाध्यक्ष]] द्वारा प्रस्तावित, एनएफ और संबंधित सिद्धांतों के लिए एक गंभीर दोष है: परिणामस्वरूप ऑर्डर की गई जोड़ी आवश्यक रूप से इसके तर्कों के प्रकार की तुलना में एक प्रकार दो अधिक है (यह बाएं और सही प्रक्षेपण है (गणित))एस)।इसलिए स्तरीकरण का निर्धारण करने के प्रयोजनों के लिए, एक फ़ंक्शन इसके क्षेत्र के सदस्यों की तुलना में तीन प्रकार अधिक है। | ||
यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय '' ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत सामान्यतः [[विलार्ड वैन ओरमन क्वीन]] की ऑर्डर की गई जोड़ी की समुच्चय -थ्योरिटिक परिभाषा को नियोजित करते हैं, जो एक ऑर्डर की गई जोड़ी#क्वीन-रॉसर परिभाषा की पैप्रमाणित र करता है। टाइप-लेवल ऑर्डर की गई जोड़ी।होम्स (1998) ऑर्डर की गई जोड़ी और उसके बाएं और दाएं [[प्रक्षेपण (गणित)]] को | यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय '' ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत सामान्यतः [[विलार्ड वैन ओरमन क्वीन]] की ऑर्डर की गई जोड़ी की समुच्चय -थ्योरिटिक परिभाषा को नियोजित करते हैं, जो एक ऑर्डर की गई जोड़ी#क्वीन-रॉसर परिभाषा की पैप्रमाणित र करता है। टाइप-लेवल ऑर्डर की गई जोड़ी।होम्स (1998) ऑर्डर की गई जोड़ी और उसके बाएं और दाएं [[प्रक्षेपण (गणित)]] को प्राचीन के रूप में लेता है।सौभाग्य से, क्या ऑर्डर की गई जोड़ी परिभाषा के अनुसार प्रकार-स्तरीय है या धारणा द्वारा (अर्थात , प्राचीन के रूप में लिया गया) सामान्यतः कोई फर्क नहीं पड़ता।'' | ||
एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है '' [[अनंतता]] '', और एनएफयू + '' इन्फिनिटी '' एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे बहुत समान सिद्धांत नहीं हैं, लेकिन अंतर अयोग्य हैं)।इसके विपरीत, एनएफयू + '' इन्फिनिटी '' + '' चॉइस '' एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी के अस्तित्व को सिद्ध करता है।{{Citation needed|date=July 2020|reason=I searched for quite a while and was unable to find a source for this statement. It is repeated in several online sources, but without proof or reference.}} | एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है '' [[अनंतता]] '', और एनएफयू + '' इन्फिनिटी '' एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे बहुत समान सिद्धांत नहीं हैं, लेकिन अंतर अयोग्य हैं)।इसके विपरीत, एनएफयू + '' इन्फिनिटी '' + '' चॉइस '' एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी के अस्तित्व को सिद्ध करता है।{{Citation needed|date=July 2020|reason=I searched for quite a while and was unable to find a source for this statement. It is repeated in several online sources, but without proof or reference.}} | ||
Line 53: | Line 55: | ||
== स्थिरता की समस्या और संबंधित आंशिक परिणाम == | == स्थिरता की समस्या और संबंधित आंशिक परिणाम == | ||
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है ([[रोनाल्ड जेन्सेन]], 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप | कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है ([[रोनाल्ड जेन्सेन]], 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप सिद्धांत के समान स्थिरता की ताकत होती है।(एनएफयू एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में [[urelement]]s हैं, न कि केवल एक खाली समुच्चय ।) एनएफ के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं। | ||
एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है। | एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है। | ||
[[अर्नस्ट स्पेकर]] ने दिखाया है कि एनएफ | [[अर्नस्ट स्पेकर]] ने दिखाया है कि एनएफ टीएसटी + AMB के साथ [[समानता]] है, जहां AMB 'विशिष्ट अस्पष्टता' की एक्सिओम्स योजना है जो प्रमाणित करता है <math>\phi \leftrightarrow \phi^+</math> किसी भी सूत्र के लिए <math>\phi</math>, <math>\phi^+</math> हर प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते <math>\phi</math> एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो समझ के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं। | ||
उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ <math>NF_3</math> एक जैसा। <math>NF_3</math> पूर्ण विस्तार (कोई urelements) और समझ के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक आदेशित जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, <math>NF_3</math> बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे हर मॉडल के लिए, का एक मॉडल है <math>NF_3</math> एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: <math>NF_4</math> एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है। | उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ <math>NF_3</math> एक जैसा। <math>NF_3</math> पूर्ण विस्तार (कोई urelements) और समझ के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक आदेशित जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, <math>NF_3</math> बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे हर मॉडल के लिए, का एक मॉडल है <math>NF_3</math> एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: <math>NF_4</math> एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है। | ||
Line 93: | Line 95: | ||
== एनएफयू के मॉडल == | == एनएफयू के मॉडल == | ||
जहां Zermelo-Fraenkel समुच्चय | जहां Zermelo-Fraenkel समुच्चय सिद्धांत के [[मेटामेथेमाटिक्स]] के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel समुच्चय सिद्धांत [[संचयी पदानुक्रम]] का आसान-से-रूपांतरण अंतर्ज्ञान है, एनएफ और एनएफयू की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित समुच्चय ों से एक चरण में समुच्चय बनाने के अंतर्ज्ञान को सभी संभावित समुच्चय ों से मिलकर एक चरण में समुच्चय बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित समुच्चय , समुच्चय के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।<ref>Forster (2008).</ref> | ||
थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।[[मॉडल सिद्धांत]] की प्रसिद्ध तकनीकों का उपयोग करते हुए, कोई व्यक्ति [[ज़रमेलो सेट सिद्धांत|ज़रमेलो समुच्चय सिद्धांत]] के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल तकनीक के लिए पूर्ण ZFC के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है <math>V_{\alpha}</math> समुच्चय के संचयी [[पदानुक्रम]] की।हम सामान्यता के नुकसान के बिना मान सकते हैं <math>j(\alpha)<\alpha</math>।हम [[स्वचालितता]] के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है। | थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।[[मॉडल सिद्धांत]] की प्रसिद्ध तकनीकों का उपयोग करते हुए, कोई व्यक्ति [[ज़रमेलो सेट सिद्धांत|ज़रमेलो समुच्चय सिद्धांत]] के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल तकनीक के लिए पूर्ण ZFC के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है <math>V_{\alpha}</math> समुच्चय के संचयी [[पदानुक्रम]] की।हम सामान्यता के नुकसान के बिना मान सकते हैं <math>j(\alpha)<\alpha</math>।हम [[स्वचालितता]] के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है। | ||
Line 112: | Line 114: | ||
=== एनएफयू में गणितीय नींव की आत्मनिर्भरता === | === एनएफयू में गणितीय नींव की आत्मनिर्भरता === | ||
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो ZFC सही है।यह | दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो ZFC सही है।यह टीएसटी (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप सिद्धांत TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के समुच्चय मॉडल के सिद्धांत पर विचार करें (ये मॉडल समुच्चय के अनुक्रम होंगे <math>T_i</math> (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ <math>P(T_i)</math> में <math>P_1(T_{i+1})</math> के पावर समुच्चय के कोडिंग एम्बेडिंग <math>T_i</math> में <math>T_{i+1}</math> एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए <math>T_0</math> में <math>T_1</math> (आधार प्रकार के सबसमुच्चय के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है <math>T_{\alpha}</math> देखभाल के साथ। | ||
ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है <math>\beth_{\omega}</math>, जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ <math>T_{\alpha}</math>'के स्थान पर उपयोग किया जा रहा है <math>V_{\alpha}</math> सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं। | ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है <math>\beth_{\omega}</math>, जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ <math>T_{\alpha}</math>'के स्थान पर उपयोग किया जा रहा है <math>V_{\alpha}</math> सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं। | ||
Line 122: | Line 124: | ||
== अनंत के प्रबल स्वयंसिद्ध == | == अनंत के प्रबल स्वयंसिद्ध == | ||
इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल स्वयंसिद्धों को जोड़ने के लिए माना जाता है।यह आधार सिद्धांत, जिसे सुसंगत जाना जाता है, में | इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल स्वयंसिद्धों को जोड़ने के लिए माना जाता है।यह आधार सिद्धांत, जिसे सुसंगत जाना जाता है, में टीएसटी + INFINITY, या Zermelo समुच्चय सिद्धांत के रूप में समान ताकत है, जो बाध्य सूत्र (मैक लेन समुच्चय सिद्धांत) तक सीमित है। | ||
कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के प्रबल स्वयंसिद्धों को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल उपस्थित है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चय ों के बारे में जोर देने के लिए यह अधिक स्वाभाविक है।इस तरह के दावे न केवल सामान्य प्रकार के [[बड़े कार्डिनल]] में लाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर प्रबल करते हैं। | कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के प्रबल स्वयंसिद्धों को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल उपस्थित है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चय ों के बारे में जोर देने के लिए यह अधिक स्वाभाविक है।इस तरह के दावे न केवल सामान्य प्रकार के [[बड़े कार्डिनल]] में लाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर प्रबल करते हैं। | ||
Line 177: | Line 179: | ||
ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करेगा यदि '' J '' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय का चौराहा है। | ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करेगा यदि '' J '' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय का चौराहा है। | ||
यहां तक कि प्रबल सिद्धांत एनएफयू m = एनएफयू + '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '।यह मोर्स-केली समुच्चय | यहां तक कि प्रबल सिद्धांत एनएफयू m = एनएफयू + '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '।यह मोर्स-केली समुच्चय सिद्धांत के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक [[अल्ट्राफिल्टर]] है;वास्तव में, यह मोर्स -केली समुच्चय सिद्धांत है + उचित वर्ग ऑर्डिनल एक औसत अंकित े का कार्डिनल है!'' | ||
यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत प्रबल स्वयंसिद्धों के लिए शक्ति के बराबर हो जाते हैं।यह तथ्य एनएफयू के मॉडल के अस्तित्व के बीच संबंध से संबंधित है, जो ऊपर वर्णित है और इन स्वयंसिद्धों को संतुष्ट करता है, और विशेष गुणों वाले ऑटोमोर्फिज्म के साथ ZFC के मॉडल के अस्तित्व को संतुष्ट करता है। | यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत प्रबल स्वयंसिद्धों के लिए शक्ति के बराबर हो जाते हैं।यह तथ्य एनएफयू के मॉडल के अस्तित्व के बीच संबंध से संबंधित है, जो ऊपर वर्णित है और इन स्वयंसिद्धों को संतुष्ट करता है, और विशेष गुणों वाले ऑटोमोर्फिज्म के साथ ZFC के मॉडल के अस्तित्व को संतुष्ट करता है। |
Revision as of 23:13, 6 April 2023
गणितीय तर्क में न्यू फ़ाउंडेशन (एनएफ) एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जिसकी कल्पना विलार्ड वैन ओरमन क्वीन ने प्रिंसिपिया मैथेमेटिका के प्रकार के सिद्धांत के सरलीकरण के रूप में की है। क्विन ने पहली बार अपने 1937 के लेख न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक के रूप में नाम में एनएफ प्रस्तावित किया। इस प्रविष्टि में से अधिकांश जेन्सन [1] और होम्स (1998) द्वारा स्पष्ट किए जाने के कारण एनएफ के एक महत्वपूर्ण संस्करण यूरेलेमेंट्स एनएफयू के साथ एनएफ पर चर्चा करते हैं। 1940 में और 1951 में एक संशोधन में क्वीन ने एनएफ का एक विस्तार प्रस्तुत किया गया जिसे कभी-कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग समुच्चय सिद्धांत के साथ -साथ समुच्चय (गणित) भी सम्मलित होता है।
न्यू फ़ाउंडेशन में एक सार्वभौमिक समुच्चय के रूप में होता है, इसलिए यह एक गैर-स्थापित समुच्चय सिद्धांत के रूप में है।[2] कहने का तात्पर्य यह है कि, यह एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जो सदस्यता की अनंत अवरोही श्रृंखलाओं जैसे xn ∈ xn-1 ∈ … ∈ x2 ∈ x1 की अनुमति देता है, यह केवल स्तरीकरण (गणित) की अनुमति देकर रसेल के विरोधाभास से बचता है। एक विशिष्ट समुच्चय सिद्धांत अच्छी तरह से गठित सूत्र को विनिर्देश के एक्सिओम्स स्कीमा का उपयोग करके परिभाषित किया जाना है। उदाहरण के लिए, x ∈ y एक स्तरीकृत सूत्र है, लेकिन x ∈ x नहीं है।
न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है।
टाइप सिद्धांत टीएसटी
रसेलियन अप्रकाशित टाइप किए गए समुच्चय सिद्धांत टीएसटी के प्राचीन विधेय समानता (=) और सदस्यता (∈) के रूप में होता है। टीएसटी में एक प्रकार का रेखीय पदानुक्रम होता है, जिसे टाइप 0 में वैयक्तिक का समावेश अनिर्धारित होता है प्रत्येक (मेटा-) प्राकृतिक संख्या के लिए n टाइप n+1 ऑब्जेक्ट्स टाइप n ऑब्जेक्ट्स के समुच्चय के रूप में होते हैं, टाइप n के समुच्चय में टाइप n-1 के सदस्य होते हैं। पहचान से जुड़ी वस्तुओं का प्रकार समान होना चाहिए।
टीएसटी जैसे बहु-वर्गीकृत सिद्धांत में सूत्र लिखते समय, कुछ टिप्पणी सामान्यता उनके प्रकारों को निरूपित करने के लिए चर में जोड़े जाते हैं। टीएसटी में टाइप इंडेक्स को सुपरस्क्रिप्ट के रूप में लिखने का चलन है क्योंकि सुपरस्क्रिप्ट xn टाइप n के एक चर को दर्शाता है। इस प्रकार निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियम और का सफलतापूर्वक वर्णन करते हैं। क्विनियन समुच्चय सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है।
टीएसटी के एक्सिओम्स हैं,
- विस्तार की स्वच्छता: एक ही सदस्यों के साथ समान सकारात्मक प्रकार के समुच्चय समान रूप में होते है,
- एक्सिओम्स स्कीमा व्यापकार्थ के रूप में होते है,
- यदि एक सूत्र है, फिर समुच्चय के रूप में उपस्थित होते है।
- दूसरे शब्दों में, किसी भी सूत्र को देखते हुए , सूत्र एक एक्सिओम्स के रूप में उपस्थित होते है, जहां समुच्चय का प्रतिनिधित्व करता है और मुक्त चर और बाध्य चर के रूप में नहीं होते है।
इस प्रकार का सिद्धांत प्रिन्सिपिया मैथेमेटिका में पहले दिए गए सिद्धांत की तुलना में बहुत कम जटिल रूप में है, जिसमें उन संबंधों (गणित) के प्रकार के रूप में सम्मलित होते है, जिनके तर्क आवश्यक रूप में नहीं थे कि सभी एक ही प्रकार के हों। 1914 में, नॉर्बर्ट वीनर ने दिखाया कि समुच्चय के एक सेट के रूप में ऑर्डर किए गए जोड़े को कैसे कोडित किया जाए, जिससे यहां वर्णित समुच्चयो के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को समाप्त करना संभव हो सके।
क्विनियन समुच्चय थ्योरी
एक्सिओम्स और स्तरीकरण
न्यू फ़ाउंडेशन (एनएफ) के अच्छी तरह से गठित सूत्र टीएसटी के अच्छी तरह से गठित सूत्रों के समान हैं, लेकिन प्रकार के एनोटेशन के साथ मिट जाते हैं।एनएफ के एक्सिओम्स हैं:
- विस्तार: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट हैं;
- पृथक्करण का एक स्वयंसिद्ध: टीएसटी समझ के सभी उदाहरण लेकिन प्रकार के साथ, सूचकांकों को गिरा दिया गया (और चर के बीच नई पहचान प्रस्तुत किए बिना)।
कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के एक्सिओम्स को स्तरीकृत सूत्र की अवधारणा का उपयोग करके कहा गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं है।एक सूत्र कहा जाता है कि स्तरीकृत सूत्र है यदि वहाँ एक फ़ंक्शन (गणित) के टुकड़ों से उपस्थित है प्राकृतिक संख्याओं के लिए सिंटैक्स, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए का हमारे पास f (y) = f (x) + 1 है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए का , हमारे पास f (x) = f (y) है।समझ तब बन जाती है:
- प्रत्येक स्तरीकृत सूत्र के लिए उपस्थित है ।
यहां तक कि स्तरीकरण (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जा सकता थियोडोर हेल्परिन ने 1944 में दिखाया कि समझ इसके उदाहरणों के एक परिमित संयोजन के बराबर है,[3] जिससे कि एनएफ को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से एक्सिओम्स किया जा सके।
समझ में आने वाले सिद्धांत में उन लोगों के समान समस्याओं से दूर चलने के लिए लग सकता है, लेकिन यह स्थिति ा नहीं है।उदाहरण के लिए, असंभव रसेल के विरोधाभास का अस्तित्व एनएफ का एक्सिओम्स नहीं है, क्योंकि स्तरीकृत नहीं किया जा सकता है।
आदेश जोड़े
संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के समुच्चय के रूप में टीएसटी (और एनएफ और एनएफयू में) में परिभाषित किया गया है।ऑर्डर की गई जोड़ी की सामान्य परिभाषा, पहली बार 1921 में संग्रहाध्यक्ष द्वारा प्रस्तावित, एनएफ और संबंधित सिद्धांतों के लिए एक गंभीर दोष है: परिणामस्वरूप ऑर्डर की गई जोड़ी आवश्यक रूप से इसके तर्कों के प्रकार की तुलना में एक प्रकार दो अधिक है (यह बाएं और सही प्रक्षेपण है (गणित))एस)।इसलिए स्तरीकरण का निर्धारण करने के प्रयोजनों के लिए, एक फ़ंक्शन इसके क्षेत्र के सदस्यों की तुलना में तीन प्रकार अधिक है।
यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत सामान्यतः विलार्ड वैन ओरमन क्वीन की ऑर्डर की गई जोड़ी की समुच्चय -थ्योरिटिक परिभाषा को नियोजित करते हैं, जो एक ऑर्डर की गई जोड़ी#क्वीन-रॉसर परिभाषा की पैप्रमाणित र करता है। टाइप-लेवल ऑर्डर की गई जोड़ी।होम्स (1998) ऑर्डर की गई जोड़ी और उसके बाएं और दाएं प्रक्षेपण (गणित) को प्राचीन के रूप में लेता है।सौभाग्य से, क्या ऑर्डर की गई जोड़ी परिभाषा के अनुसार प्रकार-स्तरीय है या धारणा द्वारा (अर्थात , प्राचीन के रूप में लिया गया) सामान्यतः कोई फर्क नहीं पड़ता।
एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है अनंतता , और एनएफयू + इन्फिनिटी एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे बहुत समान सिद्धांत नहीं हैं, लेकिन अंतर अयोग्य हैं)।इसके विपरीत, एनएफयू + इन्फिनिटी + चॉइस एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी के अस्तित्व को सिद्ध करता है।[citation needed]
उपयोगी बड़े समुच्चय ों की स्वीकार्यता
एनएफ (और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत) दो प्रकार के समुच्चय ों के निर्माण की अनुमति देते हैं जो कि ZFC और इसके उचित एक्सटेंशन अस्वीकृत हैं क्योंकि वे बहुत बड़े हैं (कुछ समुच्चय सिद्धांत उचित वर्गों के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं):
- यूनिवर्सल समुच्चय वी। एक स्तरीकृत सूत्र है, सार्वभौमिक समुच्चय v = {x |x = x} समझ से उपस्थित है।एक तत्काल परिणाम यह है कि सभी समुच्चय ों में पूरक (समुच्चय सिद्धांत) होते हैं, और एनएफ के अनुसार पूरे समुच्चय -थ्योरिटिक ब्रह्मांड में एक बूलियन बीजगणित (संरचना) संरचना होती है।
- मौलिक संख्या और क्रमसूचक संख्या नंबर।एनएफ (और टीएसटी) में, एन तत्वों वाले सभी समुच्चय ों का समुच्चय (यहां का परिपत्र तर्क केवल स्पष्ट है) उपस्थित है।इसलिए कार्डिनल नंबरों की फ्रेज की परिभाषा एनएफ और एनएफयू में काम करती है: एक कार्डिनल नंबर विषमता के संबंध (गणित) के अनुसार समुच्चय ों की एक समानता वर्ग है: समुच्चय ए और बी विषम हैं यदि उनके बीच एक द्विभाजन उपस्थित है, तो हम जिस स्थिति में हैंलिखना ।इसी तरह, एक ऑर्डिनल नंबर अच्छी तरह से ऑर्डर करने का एक समानता वर्ग है। अच्छी तरह से आदेशित समुच्चय ।
परिमित Axiomatizability
न्यू फ़ाउंडेशन Axiom स्कीमा#परिमित स्वयंसिद्धता हो सकती है।[4][5]
कार्टेशियन क्लोजर
श्रेणी जिसकी वस्तुएं एनएफ के समुच्चय हैं और जिनके तीर उन समुच्चय ों के बीच के कार्य हैं, कार्टेशियन बंद श्रेणी नहीं है;[6] चूंकि एनएफ में कार्टेशियन बंद होने का अभाव है, इसलिए हर फ़ंक्शन को न्यूरिंग नहीं किया जा सकता है क्योंकि कोई भी सहज रूप से उम्मीद कर सकता है, और एनएफ एक Topos नहीं है।
स्थिरता की समस्या और संबंधित आंशिक परिणाम
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है (रोनाल्ड जेन्सेन, 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप सिद्धांत के समान स्थिरता की ताकत होती है।(एनएफयू एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में urelements हैं, न कि केवल एक खाली समुच्चय ।) एनएफ के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं।
एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है।
अर्नस्ट स्पेकर ने दिखाया है कि एनएफ टीएसटी + AMB के साथ समानता है, जहां AMB 'विशिष्ट अस्पष्टता' की एक्सिओम्स योजना है जो प्रमाणित करता है किसी भी सूत्र के लिए , हर प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो समझ के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं।
उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ एक जैसा। पूर्ण विस्तार (कोई urelements) और समझ के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक आदेशित जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे हर मॉडल के लिए, का एक मॉडल है एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है।
1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके एक्सिओम्स अप्रतिबंधित विस्तार हैं और समझ के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो समुच्चय की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के समुच्चय को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक समुच्चय ों के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक समुच्चय उसी प्रकार के होते हैं जैसे समुच्चय समुच्चय के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को समझ के एक उदाहरण द्वारा उपस्थित समुच्चय के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है [date missing] दिखाया गया है कि एनएफपी में समानता के स्वयंसिद्धता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की ताकत है।
2015 के बाद से, ZF के सापेक्ष एनएफ की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटीλ - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटीλ ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है।
कैसे एनएफ (u) समुच्चय -सिद्धांतवादी विरोधाभासों से बचता है
एनएफ समुच्चय सिद्धांत के तीन प्रसिद्ध विरोधाभासों से स्पष्ट है।वह एनएफयू, एक स्थिरता (मीनो अंकगणित के सापेक्ष) सिद्धांत, भी विरोधाभासों से बचता है इस तथ्य में किसी का विश्वास बढ़ा सकता है।
रसेल का विरोधाभास: एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व समझ के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया।
सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक समुच्चय का शोषण करता है।कैंटर का प्रमेय कहता है (ZFC को देखते हुए) कि सत्ता स्थापित किसी भी समुच्चय की से बड़ा है (से कोई इंजेक्टिव फ़ंक्शन (एक-से-एक मानचित्र) नहीं हो सकता है में )।अब निश्चित रूप से एक इंजेक्शन कार्य है में , यदि सार्वभौमिक समुच्चय है!संकल्प के लिए आवश्यक है कि कोई यह देखता है प्रकार के सिद्धांत में कोई मतलब नहीं है: का प्रकार के प्रकार से अधिक है ।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल समुच्चय सिद्धांत में काम करता है) , कहाँ एक-तत्व सबसमुच्चय का समुच्चय है ।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है : समुच्चय की तुलना में कम एक-तत्व समुच्चय हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व समुच्चय , यदि हम एनएफयू में हैं)।स्पष्ट द्विभाजन ब्रह्मांड से एक-तत्व समुच्चय तक एक समुच्चय नहीं है;यह एक समुच्चय नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि एनएफयू के सभी ज्ञात मॉडल में यह स्थिति ा है ;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं और ।
अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक समुच्चय जो सहज रूप से अपील को संतुष्ट करता है कहा जाता है कि कैंटोरियन: एक कैंटोरियन समुच्चय कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक समुच्चय जो आगे की स्थिति को संतुष्ट करता है , सिंगलटन (गणित) मानचित्र का प्रतिबंध (गणित), एक समुच्चय न केवल कैंटोरियन समुच्चय है, बल्कि 'दृढ़ता से कैंटोरियन' है।
सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले समुच्चय सिद्धांत के बाद) ऑर्डिनल को समाकृतिकता के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से आदेश है ।यह सिद्ध करने के लिए सीधा है (ट्रांसफ़िनाइट इंडक्शन द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार है अपने आप।लेकिन इसका मतलब है कि ऑर्डर का ऑर्डर प्रकार है और इसलिए सभी ऑर्डिनल्स के ऑर्डर प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, अपने आप!
एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि ऑर्डर के ऑर्डर प्रकार से कम से कम की तुलना में एक उच्च प्रकार का है ।इसलिए एक प्रकार का स्तर ऑर्डर की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक ऑर्डर किया है।किसी भी आदेश प्रकार के लिए , हम एक ऑर्डर प्रकार को परिभाषित कर सकते हैं एक प्रकार अधिक: यदि , तब ऑर्डर का ऑर्डर प्रकार है ।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से मोनोटोनिक कार्य (ऑर्डर-प्रेशरिंग) ऑपरेशन है।
अब ऑर्डर प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार है या इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि ऑर्डर टाइप ऑर्डिनल्स पर है , और इस तरह ।इसलिए टी ऑपरेशन एक फ़ंक्शन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन समुच्चय मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है , ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक समुच्चय नहीं हो सकता है।
कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से आदेश नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी समुच्चय मॉडल में गैर-अच्छी तरह से ऑर्डर किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक समुच्चय होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है।
एनएफयू में गणित के एक और विकास के लिए, ZFC में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें।
सिस्टम एमएल (गणितीय तर्क)
एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ समुच्चय भी सम्मलित हैं। विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के समुच्चय सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल समुच्चय सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित समझ का एक एक्सिओम्स स्कीमा सम्मलित किया।चूँकि J. Barkley Rosser (1942) यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। Hao Wang (1950) इस समस्या से बचने के लिए एमएल के लिए क्वीन के स्वयंसिद्धों में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी स्वयंसिद्धता को सम्मलित किया।
वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं।
एनएफयू के मॉडल
जहां Zermelo-Fraenkel समुच्चय सिद्धांत के मेटामेथेमाटिक्स के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel समुच्चय सिद्धांत संचयी पदानुक्रम का आसान-से-रूपांतरण अंतर्ज्ञान है, एनएफ और एनएफयू की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित समुच्चय ों से एक चरण में समुच्चय बनाने के अंतर्ज्ञान को सभी संभावित समुच्चय ों से मिलकर एक चरण में समुच्चय बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित समुच्चय , समुच्चय के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।[7] थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।मॉडल सिद्धांत की प्रसिद्ध तकनीकों का उपयोग करते हुए, कोई व्यक्ति ज़रमेलो समुच्चय सिद्धांत के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल तकनीक के लिए पूर्ण ZFC के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है समुच्चय के संचयी पदानुक्रम की।हम सामान्यता के नुकसान के बिना मान सकते हैं ।हम स्वचालितता के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है।
एनएफयू के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा ।एनएफयू के मॉडल की सदस्यता संबंध होगा
अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना एनएफयू की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें।
सूत्र का विस्तार करें एक सूत्र में एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो समुच्चय सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके सत्य मूल्य को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक परमाणु सूत्र में ऐसा आवेदन करें इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य प्रपत्र में परिवर्तित किया जा सकता है (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को हर जगह ले जाएं और एक सूत्र प्राप्त करें जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है।
किसी भी मुक्त चर y को चुनें निर्दिष्ट प्रकार i।आवेदन करना एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है , और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं एनएफयू के मॉडल में। एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत समझ एनएफयू के मॉडल में है।
यह देखने के लिए कि कमजोर एक्सटेंशनलिटी होल्ड सीधी है: प्रत्येक गैर -रिक्त तत्व का नॉन -स्टैंडर्ड मॉडल से एक अद्वितीय विस्तार विरासत में मिला, खाली समुच्चय अपने सामान्य विस्तार को भी विरासत में मिला है, और अन्य सभी ऑब्जेक्ट्स urelements हैं।
मूल विचार यह है कि ऑटोमोर्फिज्म j पावर समुच्चय को कोड करता है हमारे ब्रह्मांड का इसकी बाहरी आइसोमॉर्फिक कॉपी में हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसमुच्चय को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है।
यदि एक प्राकृतिक संख्या n है, एक को एनएफयू का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि अनंत है और पसंद का एक्सिओम्स ZFC के गैर -मानक मॉडल में धारण करता है, एक एनएफयू + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है।
एनएफयू में गणितीय नींव की आत्मनिर्भरता
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो ZFC सही है।यह टीएसटी (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप सिद्धांत TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के समुच्चय मॉडल के सिद्धांत पर विचार करें (ये मॉडल समुच्चय के अनुक्रम होंगे (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ में के पावर समुच्चय के कोडिंग एम्बेडिंग में एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए में (आधार प्रकार के सबसमुच्चय के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है देखभाल के साथ।
ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है , जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ 'के स्थान पर उपयोग किया जा रहा है सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं।
ऑटोमोर्फिज्म के बारे में तथ्य j
इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक संचालन से निकटता से संबंधित है।उदाहरण के लिए, यदि डब्ल्यू नॉन-स्टैंडर्ड मॉडल में एक अच्छी तरह से ऑर्डरिंग है (हम यहां मानते हैं कि हम ऑर्डर की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक सहमत होगी) जो एनएफयू में एक अच्छी तरह से आदेश भी है (सभी)एनएफयू के सुव्यवस्थित Zermelo समुच्चय सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से आदेश हैं, लेकिन इसके विपरीत नहीं, मॉडल के निर्माण में urelements के गठन के कारण), और W में एनएफयू में टाइप α है, फिर J (W)एनएफयू में टाइप T (α) का एक अच्छी तरह से आदेश होगा।
वास्तव में, J को एनएफयू के मॉडल में एक फ़ंक्शन द्वारा कोडित किया जाता है।गैर -मानक मॉडल में कार्य जो किसी भी तत्व के सिंगलटन को भेजता है इसके एकमात्र तत्व के लिए, एनएफयू में एक फ़ंक्शन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को।इस फ़ंक्शन को कॉल करें एंडो और इसे निम्नलिखित गुण दें: एंडो सिंगलटन के समुच्चय से समुच्चय के समुच्चय में एक इंजेक्टिव फ़ंक्शन है, उस संपत्ति के साथ जो एंडो ({x}) = {एंडो ({y}) |प्रत्येक समुच्चय x के लिए yx}।यह फ़ंक्शन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है।
अनंत के प्रबल स्वयंसिद्ध
इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल स्वयंसिद्धों को जोड़ने के लिए माना जाता है।यह आधार सिद्धांत, जिसे सुसंगत जाना जाता है, में टीएसटी + INFINITY, या Zermelo समुच्चय सिद्धांत के रूप में समान ताकत है, जो बाध्य सूत्र (मैक लेन समुच्चय सिद्धांत) तक सीमित है।
कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के प्रबल स्वयंसिद्धों को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल उपस्थित है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चय ों के बारे में जोर देने के लिए यह अधिक स्वाभाविक है।इस तरह के दावे न केवल सामान्य प्रकार के बड़े कार्डिनल में लाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर प्रबल करते हैं।
सामान्य प्रबल सिद्धांतों में सबसे कमजोर है:
- 'रोसेर की गिनती का स्वयंसिद्ध'।प्राकृतिक संख्याओं का समुच्चय एक दृढ़ता से कैंटोरियन समुच्चय है।
यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, प्राकृतिक संख्याओं की समुच्चय -सिद्धांतीय परिभाषा देखें।Rosser द्वारा दिए गए इस एक्सिओम्स का मूल रूप समुच्चय {m | 1 them mmingn} था, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं।यह सहज स्पष्ट रूप से स्पष्ट रूप से स्पष्ट है: एनएफयू में जो सिद्ध होता है वह समुच्चय है {m | 1 themmingn} है सदस्य (जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है ;यह एक कार्डिनल के प्रकार को बढ़ाता है)।किसी भी कार्डिनल नंबर (प्राकृतिक संख्याओं सहित) के लिए जोर देने के लिए यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के समुच्चय ए कैंटोरियन हैं (भाषा के सामान्य दुरुपयोग से, हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं)।यह दिखाना सीधा है कि प्रत्येक प्राकृतिक संख्या कैंटोरियन है, यह प्रमाणित इस बात के बराबर है कि सभी प्राकृतिक संख्याओं का समुच्चय दृढ़ता से कैंटोरियन है।
गिनती एनएफयू के अनुरूप है, लेकिन इसकी निरंतरता की ताकत बढ़ जाती है;नहीं, जैसा कि कोई उम्मीद करेगा, अंकगणित के क्षेत्र में, लेकिन उच्च समुच्चय सिद्धांत में।एनएफयू + अनंतता सिद्ध करती है कि प्रत्येक उपस्थित है, लेकिन ऐसा नहीं है उपस्थित ;एनएफयू + काउंटिंग (आसानी से) अनंत सिद्ध होता है, और आगे अस्तित्व को सिद्ध करता है प्रत्येक n के लिए, लेकिन का अस्तित्व नहीं ।(बेथ नंबर देखें)।
गिनती का तात्पर्य तुरंत है कि किसी को समुच्चय पर प्रतिबंधित चर को प्रकारों को असाइन करने की आवश्यकता नहीं है स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्या;यह एक प्रमेय है कि एक दृढ़ता से कैंटोरियन समुच्चय का पावर समुच्चय दृढ़ता से कैंटोरियन है, इसलिए यह आवश्यक नहीं है कि वे प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति समुच्चय पर प्रतिबंधित चर को या वास्तविक संख्याओं के समुच्चय के रूप में इस तरह के परिचित समुच्चय ों को निर्दिष्ट करना आवश्यक नहीं है।, रियल से रियल के कार्यों का समुच्चय , और आगे।गिनती की समुच्चय -सैद्धांतिक शक्ति व्यवहार में कम महत्वपूर्ण है, जो कि सिंगलटन ब्रैकेट के साथ प्राकृतिक संख्या मान (या संबंधित प्रकार के मूल्यों) के लिए ज्ञात चर को एनोटेट नहीं करने की सुविधा से कम महत्वपूर्ण है, या स्तरीकृत समुच्चय प्राप्त करने के लिए टी ऑपरेशन को लागू करने के लिएपरिभाषाएँ।
गिनती का तात्पर्य अनंत है;नीचे दिए गए स्वयंसिद्धों में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता है;अली केयर ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ स्वयंसिद्धों की ताकत की जांच की है।
ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म J Zermelo समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है।
अगला प्रबल एक्सिओम्स हम मानते हैं
- 'दृढ़ता से कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी दृढ़ता से कैंटोरियन समुच्चय ए और किसी भी सूत्र के लिए (आवश्यक नहीं कि स्तरीकृत!) समुच्चय उपस्थित ।
तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण सम्मलित हैं (जो गिनती का परिणाम नहीं है; कई लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण नहीं हैं।
यह एक्सिओम्स आश्चर्यजनक रूप से प्रबल है।रॉबर्ट सोलोवे के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति एनएफयू * = एनएफयू + गिनती + दृढ़ता से कैंटोरियन पृथक्करण Zermelo समुच्चय सिद्धांत + के समान है प्रतिस्थापन।
यह एक्सिओम्स ऊपर निर्मित (पसंद के साथ) के एक मॉडल में है, यदि ऑर्डिनल जो J द्वारा तय किए गए हैं और Jermelo समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए केवल ऑर्डिनल पर हावी हैं, और ऐसे किसी भी क्रम के पावर समुच्चय हैं।मॉडल में भी मानक है।यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।
अगला है
- 'कैंटोरियन समुच्चय ्स का स्वयंसिद्ध': हर कैंटोरियन समुच्चय दृढ़ता से कैंटोरियन है।
यह बहुत ही सरल प्रमाणित बेसीमा प्रबल है।सोलोवे ने सिद्धांत की निरंतरता शक्ति के यथार्थ समानता को दिखाया है, एनएफयू a = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय के साथ ZFC + एक स्कीमा के साथ प्रत्येक कंक्रीट प्राकृतिक संख्या n के लिए एक n-mahlo कार्डिनल के अस्तित्व का प्रमाणित करता है।अली एनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारात्मक संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत (जो ZFC के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है) सीधे एन-महलो कार्डिनल के साथ ZFC के विस्तार की व्याख्या करता है।इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन तकनीक लागू की जा सकती है, जिसमें एक मॉडल देने के लिए वंशानुगत रूप से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ ZFC के प्रबल विस्तार के साथ समुच्चय करता है।
यह एक्सिओम्स ऊपर (पसंद के साथ) के रूप में निर्मित प्रकार के एक मॉडल में रखता है, बस स्थिति े में ZFC के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए ऑर्डिनल मॉडल के ऑर्डिनल का एक प्रारंभिक (उचित वर्ग) खंड है।
आगे विचार करें
- 'कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी कैंटोरियन समुच्चय के लिए और किसी भी सूत्र के लिए (आवश्यक नहीं कि स्तरीकृत!) समुच्चय {x )आ |}} उपस्थित है।
यह दो पूर्ववर्ती स्वयंसिद्धों के प्रभाव को जोड़ती है और वास्तव में और भी प्रबल है (ठीक है कि कैसे ज्ञात नहीं है)।अप्रतिबंधित गणितीय इंडक्शन यह सिद्ध करने में सक्षम बनाता है कि हर एन के लिए एन-महलो कार्डिनल हैं, जो कि कैंटोरियन समुच्चय दिए गए हैं, जो ZFC का एक विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं (नॉन -स्ट्रैंडर्ड काउंटरएक्सेमल्स की संभावना को खुला छोड़ते हुए)।
यह एक्सिओम्स ऊपर वर्णित प्रकार के एक मॉडल में होगा यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है, और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति समुच्चय भी ZFC के अंतर्निहित मॉडल में मानक है।फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।
एक अध्यादेश को कैंटोरियन कहा जाता है यदि यह टी द्वारा तय किया जाता है, और दृढ़ता से कैंटोरियन यदि यह केवल कैंटोरियन ऑर्डिनल्स पर हावी है (इसका मतलब है कि यह स्वयं कैंटोरियन है)।ऊपर निर्मित प्रकार के मॉडल में, एनएफयू के कैंटोरियन ऑर्डिनल्स जे द्वारा तय किए गए ऑर्डिनल्स के अनुरूप हैं (वे एक ही वस्तु नहीं हैं क्योंकि दो सिद्धांतों में क्रमिक संख्याओं की विभिन्न परिभाषाओं का उपयोग किया जाता है)।
कैंटोरियन समुच्चय के लिए ताकत के बराबर है
- 'बड़े अध्यादेशों का स्वयंसिद्ध': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए , एक प्राकृतिक संख्या n ऐसा है जैसे कि ।
याद करें कि सभी ऑर्डिनल्स पर प्राकृतिक आदेश का ऑर्डर प्रकार है।यह केवल कैंटोरियन समुच्चय का अर्थ है यदि हमारे पास विकल्प है (लेकिन किसी भी स्थिति े में स्थिरता की ताकत के स्तर पर है)।यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है : यह nth शब्द है लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह , प्रत्येक उपयुक्त के लिए मैं।यह परिभाषा पूरी तरह से असंरचित है।की विशिष्टता सिद्ध किया जा सकता है (उन n के लिए जिसके लिए यह उपस्थित है) और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े अध्यादेशों को पसंद की उपस्थिति में कैंटोरियन समुच्चय का अर्थ है।इस एक्सिओम्स के नॉट्टी औपचारिक बयान के बावजूद, यह एक बहुत ही स्वाभाविक धारणा है, जो कि टी की कार्रवाई को यथासंभव सरल बनाने के लिए है।
ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करेगा, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल हैं जो कुछ हावी हैं ZFC के अंतर्निहित गैर -मानक मॉडल में।
सोलोवे ने एनएफयू B = एनएफयू + इन्फिनिटी सभी ऑर्डिनल्स में) एक कमजोर कॉम्पैक्ट कार्डिनल है।यह वास्तव में बहुत प्रबल है!इसके अतिरिक्त , एनएफयू b-, जो कैंटोरियन समुच्चय के साथ एनएफयू b है, को आसानी से एनएफयू B के समान ताकत के रूप में देखा जाता है।
ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करेगा यदि J द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय का चौराहा है।
यहां तक कि प्रबल सिद्धांत एनएफयू m = एनएफयू + '।यह मोर्स-केली समुच्चय सिद्धांत के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक अल्ट्राफिल्टर है;वास्तव में, यह मोर्स -केली समुच्चय सिद्धांत है + उचित वर्ग ऑर्डिनल एक औसत अंकित े का कार्डिनल है!
यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत प्रबल स्वयंसिद्धों के लिए शक्ति के बराबर हो जाते हैं।यह तथ्य एनएफयू के मॉडल के अस्तित्व के बीच संबंध से संबंधित है, जो ऊपर वर्णित है और इन स्वयंसिद्धों को संतुष्ट करता है, और विशेष गुणों वाले ऑटोमोर्फिज्म के साथ ZFC के मॉडल के अस्तित्व को संतुष्ट करता है।
यह भी देखें
- वैकल्पिक समुच्चय सिद्धांत
- एक्सिओम्स समुच्चय सिद्धांत
- समुच्चय सिद्धांत में गणित का कार्यान्वयन
- सकारात्मक समुच्चय सिद्धांत
- प्राकृतिक संख्याओं की समुच्चय -सिद्धांतीय परिभाषा
टिप्पणियाँ
- ↑ Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant.
- ↑ Quine's New Foundations - Stanford Encyclopedia of Philosophy
- ↑ Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
- ↑ Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
- ↑ Fenton, Scott, 2015. New Foundations Explorer Home Page.
- ↑ Forster, Thomas (October 14, 2007). "Why the Sets of NF do not form a Cartesian-closed Category" (PDF). www.dpmms.cam.ac.uk.
- ↑ Forster (2008).
संदर्भ
- Crabbé, Marcel (1982). "On the consistency of an impredicative fragment of Quine's NF". The Journal of Symbolic Logic. 47 (1): 131–136. doi:10.2307/2273386. JSTOR 2273386. S2CID 42174966.
- Forster, T. E. (2008). "The iterative conception of set" (PDF). The Review of Symbolic Logic. 1: 97–110. doi:10.1017/S1755020308080064. S2CID 15231169.
- Forster, T. E. (1992), Set theory with a universal set. Exploring an untyped universe, Oxford Science Publications, Oxford Logic Guides, vol. 20, New York: The Clarendon Press, Oxford University Press, ISBN 0-19-853395-0, MR 1166801
- Holmes, M. Randall (1998), Elementary set theory with a universal set (PDF), Cahiers du Centre de Logique, vol. 10, Louvain-la-Neuve: Université Catholique de Louvain, Département de Philosophie, ISBN 2-87209-488-1, MR 1759289
- Jensen, R. B. (1969), "On the Consistency of a Slight(?) Modification of Quine's NF", Synthese, 19 (1/2): 250–63, doi:10.1007/bf00568059, JSTOR 20114640, S2CID 46960777 With discussion by Quine.
- Quine, W. V. (1937), "New Foundations for Mathematical Logic", The American Mathematical Monthly, Mathematical Association of America, 44 (2): 70–80, doi:10.2307/2300564, JSTOR 2300564
- Quine, Willard Van Orman (1940), Mathematical Logic (first ed.), New York: W. W. Norton & Co., Inc., MR 0002508
- Quine, Willard Van Orman (1951), Mathematical logic (Revised ed.), Cambridge, Mass.: Harvard University Press, ISBN 0-674-55451-5, MR 0045661
- Quine, W. V., 1980, "New Foundations for Mathematical Logic" in From a Logical Point of View, 2nd ed., revised. Harvard Univ. Press: 80-101. The definitive version of where it all began, namely Quine's 1937 paper in the American Mathematical Monthly.
- Rosser, Barkley (1942), "The Burali-Forti paradox", Journal of Symbolic Logic, 7 (1): 1–17, doi:10.2307/2267550, JSTOR 2267550, MR 0006327, S2CID 13389728
- Wang, Hao (1950), "A formal system of logic", Journal of Symbolic Logic, 15 (1): 25–32, doi:10.2307/2268438, JSTOR 2268438, MR 0034733, S2CID 42852449
- Holmes, M. Randall (2008). "Symmetry as a Criterion for Comprehension Motivating Quine's 'New Foundations'". Studia Logica. 88 (2): 195–213. doi:10.1007/s11225-008-9107-8. S2CID 207242273.
बाहरी संबंध
- "Enriched Stratified systems for the Foundations of Category Theory" by Solomon Feferman (2011)
- Stanford Encyclopedia of Philosophy:
- Quine's New Foundations — by Thomas Forster.
- Alternative axiomatic set theories — by Randall Holmes.
- Randall Holmes: New Foundations Home Page.
- Randall Holmes: Bibliography of Set Theory with a Universal Set.
- Randall Holmes: A new pass at the एनएफ consistency proof