चुंबकीय द्विध्रुवीय: Difference between revisions
(Created page with "{{short description|Magnetic analogue of the electric dipole}} File:VFPt_dipoles_magnetic.svg|thumb|350px|प्राकृतिक चुंबकीय द्विध...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Magnetic analogue of the electric dipole}} | {{short description|Magnetic analogue of the electric dipole}} | ||
[[File:VFPt_dipoles_magnetic.svg|thumb|350px|प्राकृतिक चुंबकीय द्विध्रुव (ऊपरी बाएँ), [[चुंबकीय मोनोपोल]] (ऊपरी दाएँ), एक वृत्ताकार लूप (निचले बाएँ) में एक [[विद्युत प्रवाह]] या एक [[solenoid]] (निचले दाएं) के कारण [[चुंबकीय क्षेत्र]]। व्यवस्था असीम रूप से छोटी होने पर सभी समान फ़ील्ड प्रोफ़ाइल उत्पन्न करते हैं।<ref>{{cite book|author=I.S. Grant, W.R. Phillips|title=विद्युत चुंबकत्व|url=https://archive.org/details/electromagnetism0000gran|url-access=registration|edition=2nd|publisher=Manchester Physics, John Wiley & Sons|year=2008|isbn=978-0-471-92712-9}}</ref>]][[विद्युत]] चुंबकत्व में, एक चुंबकीय द्विध्रुवीय या तो विद्युत प्रवाह के एक बंद लूप या ध्रुवों की एक जोड़ी की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का एक चुंबकीय अनुरूप है, लेकिन सादृश्य पूर्ण नहीं है। विशेष रूप से, एक वास्तविक चुंबकीय मोनोपोल, एक विद्युत आवेश का चुंबकीय एनालॉग, प्रकृति में कभी नहीं देखा गया है। | [[File:VFPt_dipoles_magnetic.svg|thumb|350px|प्राकृतिक चुंबकीय द्विध्रुव (ऊपरी बाएँ), [[चुंबकीय मोनोपोल]] (ऊपरी दाएँ), एक वृत्ताकार लूप (निचले बाएँ) में एक [[विद्युत प्रवाह]] या एक [[solenoid]] (निचले दाएं) के कारण [[चुंबकीय क्षेत्र]]। व्यवस्था असीम रूप से छोटी होने पर सभी समान फ़ील्ड प्रोफ़ाइल उत्पन्न करते हैं।<ref>{{cite book|author=I.S. Grant, W.R. Phillips|title=विद्युत चुंबकत्व|url=https://archive.org/details/electromagnetism0000gran|url-access=registration|edition=2nd|publisher=Manchester Physics, John Wiley & Sons|year=2008|isbn=978-0-471-92712-9}}</ref>]][[विद्युत]] चुंबकत्व में, एक चुंबकीय द्विध्रुवीय है या तो विद्युत प्रवाह के एक बंद लूप या ध्रुवों की एक जोड़ी की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का एक चुंबकीय अनुरूप है, लेकिन सादृश्य पूर्ण नहीं है। विशेष रूप से, एक वास्तविक चुंबकीय मोनोपोल, एक विद्युत आवेश का चुंबकीय एनालॉग, प्रकृति में कभी नहीं देखा गया है। यद्यपि, चुंबकीय मोनोपोल [[ quisiparticles | क्वासिपार्टिकल]] को कुछ संघनित पदार्थ प्रणालियों के आकस्मिक गुणों के रूप में देखा गया है।<ref>[https://physicsworld.com/a/magnetic-monopoles-spotted-in-spin-ices/ Magnetic monopoles spotted in spin ices], September 3, 2009.</ref> इसके अतिरिक्त, चुंबकीय द्विध्रुव आघूर्ण का एक रूप मौलिक क्वांटम गुण-[[प्राथमिक कण|प्राथमिक कणो]] के चक्रण (भौतिकी) से जुड़ा है। | ||
चुंबकीय मोनोपोल उपस्थित नहीं होता हैं, क्योंकि किसी भी स्थिर चुंबकीय स्रोत से बड़ी दूरी पर चुंबकीय क्षेत्र उसी द्विध्रुवीय क्षण के साथ एक द्विध्रुवीय क्षेत्र जैसा दिखता है। उच्च-क्रम के स्रोतों के लिए कोई द्विध्रुव क्षण नहीं होता है, उनका क्षेत्र द्विध्रुव क्षेत्र के सापेक्ष में तेजी से दूरी के साथ शून्य की ओर घटता है। | |||
== चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाहरी चुंबकीय क्षेत्र == | == चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाहरी चुंबकीय क्षेत्र == | ||
[[Image:VFPt dipole electric.svg|thumb|200px|upright|एक चुंबकीय पल के लिए एक इलेक्ट्रोस्टैटिक एनालॉग: दो विरोधी चार्ज एक सीमित दूरी से अलग हो जाते हैं। प्रत्येक तीर उस बिंदु पर फ़ील्ड वेक्टर की दिशा का प्रतिनिधित्व करता है।]] | [[Image:VFPt dipole electric.svg|thumb|200px|upright|एक चुंबकीय पल के लिए एक इलेक्ट्रोस्टैटिक एनालॉग: दो विरोधी चार्ज एक सीमित दूरी से अलग हो जाते हैं। प्रत्येक तीर उस बिंदु पर फ़ील्ड वेक्टर की दिशा का प्रतिनिधित्व करता है।]] | ||
[[Image:VFPt dipole magnetic3.svg|thumbnail|200px|right|करंट लूप का चुंबकीय क्षेत्र। वलय | [[Image:VFPt dipole magnetic3.svg|thumbnail|200px|right|करंट लूप का चुंबकीय क्षेत्र। वलय विद्युत लूप का प्रतिनिधित्व करता है, जो x पर पृष्ठ में जाता है और बिंदु पर बाहर आता है।]][[शास्त्रीय भौतिकी|पारम्परिक भौतिकी]] में, एक द्विध्रुव के चुंबकीय क्षेत्र की गणना या तो एक विद्युत पाश या आवेशों की एक जोड़ी की सीमा के रूप में की जाती है क्योंकि चुंबकीय क्षण {{math|'''m''' }}को बनाए रखते हुए स्रोत एक बिंदु तक सिकुड़ जाता है। विद्युत पाश के लिए, यह सीमा चुंबकीय सदिश क्षमता सरलता से प्राप्त होती है:<ref name=Chow146>{{harvnb|Chow|2006|pages=146–150}}</ref> | ||
: <math>{\mathbf{A}}({\mathbf{r}})=\frac{\mu_{0}}{4\pi r^{2}}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r}=\frac{\mu_{0}}{4\pi}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r^{3}},</math> | : <math>{\mathbf{A}}({\mathbf{r}})=\frac{\mu_{0}}{4\pi r^{2}}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r}=\frac{\mu_{0}}{4\pi}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r^{3}},</math> | ||
जहाँ μ<sub>0</sub> [[वैक्यूम पारगम्यता]] स्थिर है और {{math|4''π r''<sup>2</sup>}} त्रिज्या के गोले की सतह है {{math|''r''}}.तब चुंबकीय प्रवाह घनत्व बी-क्षेत्र की शक्ति है।<ref name=Chow146/> | |||
तब चुंबकीय प्रवाह घनत्व | |||
:<math>\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left[\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^{5}}-\frac{{\mathbf{m}}}{r^{3}}\right].</math> | :<math>\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left[\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^{5}}-\frac{{\mathbf{m}}}{r^{3}}\right].</math> | ||
वैकल्पिक रूप से पहले चुंबकीय ध्रुव सीमा से चुंबकीय | वैकल्पिक रूप से पहले चुंबकीय ध्रुव सीमा से चुंबकीय अदिश क्षमता प्राप्त कर सकता हैं, | ||
:<math>\psi({\mathbf{r}})=\frac{{\mathbf{m}}\cdot{\mathbf{r}}}{4\pi r^{3}},</math> | :<math>\psi({\mathbf{r}})=\frac{{\mathbf{m}}\cdot{\mathbf{r}}}{4\pi r^{3}},</math> | ||
और इसलिए चुंबकीय क्षेत्र की | और इसलिए चुंबकीय क्षेत्र की शक्ति या एच-फील्ड की शक्ति है। | ||
:<math>{\mathbf{H}}({\mathbf{r}})=-\nabla\psi=\frac{1}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{m}\cdot\mathbf{\hat{r}})-\mathbf{m}}{r^{3}}\right] = \frac{\mathbf{B}}{\mu_0}.</math> | :<math>{\mathbf{H}}({\mathbf{r}})=-\nabla\psi=\frac{1}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{m}\cdot\mathbf{\hat{r}})-\mathbf{m}}{r^{3}}\right] = \frac{\mathbf{B}}{\mu_0}.</math> | ||
चुंबकीय क्षण की धुरी के बारे में रोटेशन के तहत चुंबकीय क्षेत्र की ताकत सममित है। | चुंबकीय क्षण की धुरी के बारे में रोटेशन के तहत चुंबकीय क्षेत्र की ताकत सममित है। गोलाकार निर्देशांक में, के साथ <math>\mathbf{\hat{z}} = \mathbf{\hat{r}}\cos\theta - \boldsymbol{\hat{\theta}}\sin\theta</math>, और चुंबकीय क्षण के साथ z- अक्ष के साथ गठबंधन किया जाता है, तो क्षेत्र की ताकत को और अधिक आसानी से व्यक्त किया जा सकता है | ||
गोलाकार निर्देशांक में, के साथ <math>\mathbf{\hat{z}} = \mathbf{\hat{r}}\cos\theta - \boldsymbol{\hat{\theta}}\sin\theta</math>, और चुंबकीय क्षण के साथ z- अक्ष के साथ गठबंधन किया जाता है, तो क्षेत्र की ताकत को और अधिक आसानी से व्यक्त किया जा सकता है | |||
:<math>\mathbf{H}({\mathbf{r}})=\frac{|\mathbf{m}|}{4\pi r^3} \left ( | :<math>\mathbf{H}({\mathbf{r}})=\frac{|\mathbf{m}|}{4\pi r^3} \left ( | ||
Line 27: | Line 25: | ||
{{See also|Magnetic moment#Magnetic pole definition}} | {{See also|Magnetic moment#Magnetic pole definition}} | ||
एक द्विध्रुव ( | एक द्विध्रुव ( विद्युत पाश और चुंबकीय ध्रुव) के लिए दो मॉडल, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान भविष्यवाणियां देते हैं। हालाँकि, स्रोत क्षेत्र के अंदर वे अलग-अलग भविष्यवाणियाँ देते हैं। ध्रुवों के बीच चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है (जो ऋणात्मक आवेश से धनात्मक आवेश की ओर इशारा करता है), जबकि विद्युत लूप के अंदर यह उसी दिशा में होता है (दाईं ओर का चित्र देखें)। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होनी चाहिए क्योंकि स्रोत शून्य आकार में सिकुड़ जाते हैं। यह अंतर तभी मायने रखता है जब किसी चुंबकीय सामग्री के अंदर क्षेत्रों की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है। | ||
यदि एक करंट लूप को छोटा और छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन | यदि एक करंट लूप को छोटा और छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हुए, सीमित क्षेत्र है | ||
:<math>\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} + \frac{8\pi}{3}\mathbf{m}\delta(\mathbf{r})\right],</math> | :<math>\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} + \frac{8\pi}{3}\mathbf{m}\delta(\mathbf{r})\right],</math> | ||
कहाँ {{math|''δ''('''r''')}} तीन आयामों में डायराक डेल्टा फलन है। पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है। | कहाँ {{math|''δ''('''r''')}} तीन आयामों में डायराक डेल्टा फलन है। पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है। |
Revision as of 18:53, 7 April 2023
विद्युत चुंबकत्व में, एक चुंबकीय द्विध्रुवीय है या तो विद्युत प्रवाह के एक बंद लूप या ध्रुवों की एक जोड़ी की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का एक चुंबकीय अनुरूप है, लेकिन सादृश्य पूर्ण नहीं है। विशेष रूप से, एक वास्तविक चुंबकीय मोनोपोल, एक विद्युत आवेश का चुंबकीय एनालॉग, प्रकृति में कभी नहीं देखा गया है। यद्यपि, चुंबकीय मोनोपोल क्वासिपार्टिकल को कुछ संघनित पदार्थ प्रणालियों के आकस्मिक गुणों के रूप में देखा गया है।[2] इसके अतिरिक्त, चुंबकीय द्विध्रुव आघूर्ण का एक रूप मौलिक क्वांटम गुण-प्राथमिक कणो के चक्रण (भौतिकी) से जुड़ा है।
चुंबकीय मोनोपोल उपस्थित नहीं होता हैं, क्योंकि किसी भी स्थिर चुंबकीय स्रोत से बड़ी दूरी पर चुंबकीय क्षेत्र उसी द्विध्रुवीय क्षण के साथ एक द्विध्रुवीय क्षेत्र जैसा दिखता है। उच्च-क्रम के स्रोतों के लिए कोई द्विध्रुव क्षण नहीं होता है, उनका क्षेत्र द्विध्रुव क्षेत्र के सापेक्ष में तेजी से दूरी के साथ शून्य की ओर घटता है।
चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाहरी चुंबकीय क्षेत्र
पारम्परिक भौतिकी में, एक द्विध्रुव के चुंबकीय क्षेत्र की गणना या तो एक विद्युत पाश या आवेशों की एक जोड़ी की सीमा के रूप में की जाती है क्योंकि चुंबकीय क्षण m को बनाए रखते हुए स्रोत एक बिंदु तक सिकुड़ जाता है। विद्युत पाश के लिए, यह सीमा चुंबकीय सदिश क्षमता सरलता से प्राप्त होती है:[3]
जहाँ μ0 वैक्यूम पारगम्यता स्थिर है और 4π r2 त्रिज्या के गोले की सतह है r.तब चुंबकीय प्रवाह घनत्व बी-क्षेत्र की शक्ति है।[3]
वैकल्पिक रूप से पहले चुंबकीय ध्रुव सीमा से चुंबकीय अदिश क्षमता प्राप्त कर सकता हैं,
और इसलिए चुंबकीय क्षेत्र की शक्ति या एच-फील्ड की शक्ति है।
चुंबकीय क्षण की धुरी के बारे में रोटेशन के तहत चुंबकीय क्षेत्र की ताकत सममित है। गोलाकार निर्देशांक में, के साथ , और चुंबकीय क्षण के साथ z- अक्ष के साथ गठबंधन किया जाता है, तो क्षेत्र की ताकत को और अधिक आसानी से व्यक्त किया जा सकता है
एक द्विध्रुव का आंतरिक चुंबकीय क्षेत्र
एक द्विध्रुव ( विद्युत पाश और चुंबकीय ध्रुव) के लिए दो मॉडल, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान भविष्यवाणियां देते हैं। हालाँकि, स्रोत क्षेत्र के अंदर वे अलग-अलग भविष्यवाणियाँ देते हैं। ध्रुवों के बीच चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है (जो ऋणात्मक आवेश से धनात्मक आवेश की ओर इशारा करता है), जबकि विद्युत लूप के अंदर यह उसी दिशा में होता है (दाईं ओर का चित्र देखें)। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होनी चाहिए क्योंकि स्रोत शून्य आकार में सिकुड़ जाते हैं। यह अंतर तभी मायने रखता है जब किसी चुंबकीय सामग्री के अंदर क्षेत्रों की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है।
यदि एक करंट लूप को छोटा और छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हुए, सीमित क्षेत्र है
कहाँ δ(r) तीन आयामों में डायराक डेल्टा फलन है। पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है।
यदि एक उत्तरी ध्रुव और एक दक्षिणी ध्रुव लेकर एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, तो उन्हें एक साथ और करीब लाया जाता है, लेकिन चुंबकीय ध्रुव-आवेश और दूरी के उत्पाद को स्थिर रखते हुए, सीमांत क्षेत्र है
ये क्षेत्र इससे संबंधित हैं B = μ0(H + M), कहाँ
चुंबकीयकरण है।
दो चुंबकीय द्विध्रुवों के बीच बल
बल F एक द्विध्रुव आघूर्ण द्वारा आरोपित m1 किसी दूसरे पर m2 एक वेक्टर द्वारा अंतरिक्ष में अलग किया गया r का उपयोग करके गणना की जा सकती है:[4]
कहाँ r द्विध्रुवों के बीच की दूरी है। बल कार्य कर रहा है m1 विपरीत दिशा में है।
सूत्र से बल आघूर्ण प्राप्त किया जा सकता है
परिमित स्रोतों से द्विध्रुवीय क्षेत्र
चुंबकीय अदिश क्षमता ψ एक परिमित स्रोत द्वारा निर्मित, लेकिन इसके बाहर, एक मल्टीपोल विस्तार द्वारा प्रदर्शित किया जा सकता है। विस्तार में प्रत्येक शब्द एक विशेषता बहुध्रुव क्षण और दूरी के साथ घटने की एक विशेषता दर के साथ जुड़ा हुआ है r स्रोत से। मोनोपोल क्षणों में एक है 1/r ह्रास की दर, द्विध्रुव आघूर्ण है a 1/r2 दर, चतुष्कोणीय क्षणों में एक है 1/r3 दर, और इसी तरह। ऑर्डर जितना ऊंचा होता है, क्षमता उतनी ही तेजी से गिरती है। चूंकि चुंबकीय स्रोतों में सबसे कम क्रम वाला शब्द द्विध्रुवीय शब्द है, यह बड़ी दूरी पर हावी है। इसलिए, बड़ी दूरी पर कोई भी चुंबकीय स्रोत उसी चुंबकीय क्षण के द्विध्रुव की तरह दिखता है।
टिप्पणियाँ
- ↑ I.S. Grant, W.R. Phillips (2008). विद्युत चुंबकत्व (2nd ed.). Manchester Physics, John Wiley & Sons. ISBN 978-0-471-92712-9.
- ↑ Magnetic monopoles spotted in spin ices, September 3, 2009.
- ↑ 3.0 3.1 Chow 2006, pp. 146–150
- ↑ D.J. Griffiths (2007). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Pearson Education. p. 276. ISBN 978-81-7758-293-2.
- ↑ Furlani 2001, p. 140
- ↑ K.W. Yung; P.B. Landecker; D.D. Villani (1998). "दो चुंबकीय द्विध्रुवों के बीच बल के लिए एक विश्लेषणात्मक समाधान" (PDF). Retrieved November 24, 2012.
{{cite journal}}
: Cite journal requires|journal=
(help)
संदर्भ
- Chow, Tai L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett Learning. ISBN 978-0-7637-3827-3.
- Jackson, John D. (1975). Classical Electrodynamics (2nd ed.). Wiley. ISBN 0-471-43132-X.
- Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Academic Press. ISBN 0-12-269951-3.
- Schill, R. A. (2003). "General relation for the vector magnetic field of a circular current loop: A closer look". IEEE Transactions on Magnetics. 39 (2): 961–967. Bibcode:2003ITM....39..961S. doi:10.1109/TMAG.2003.808597.