संवहन-प्रसार समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
जो सामान्य समाधान देता है: | जो सामान्य समाधान देता है: | ||
<math display="block">c=f(\mathbf{x}-\mathbf{v}t), </math> | <math display="block">c=f(\mathbf{x}-\mathbf{v}t), </math> | ||
जहाँ <math>f </math> कोई अवकलनीय फलन है। यह समय उड़ान विधि के माध्यम से<ref name=":1">{{Cite journal| last1=Brzozowski|first1=Tomasz M| last2=Maczynska|first2=Maria| last3=Zawada|first3=Michal| last4=Zachorowski|first4=Jerzy| last5=Gawlik|first5=Wojciech| s2cid=67796405| date=2002-01-14| title=शॉर्ट ट्रैप-प्रोब बीम दूरी के लिए ठंडे परमाणुओं के तापमान का समय-समय पर उड़ान माप|journal=Journal of Optics B: Quantum and Semiclassical Optics| language=en| volume=4| issue=1| pages=62–66 | doi=10.1088/1464-4266/4/1/310| issn=1464-4266 | bibcode=2002JOptB...4...62B}}</ref> बोस-आइंस्टीन कंडेनसेट के निकट तापमान मापन का आधार | जहाँ <math>f </math> कोई अवकलनीय फलन है। यह समय उड़ान विधि के माध्यम से<ref name=":1">{{Cite journal| last1=Brzozowski|first1=Tomasz M| last2=Maczynska|first2=Maria| last3=Zawada|first3=Michal| last4=Zachorowski|first4=Jerzy| last5=Gawlik|first5=Wojciech| s2cid=67796405| date=2002-01-14| title=शॉर्ट ट्रैप-प्रोब बीम दूरी के लिए ठंडे परमाणुओं के तापमान का समय-समय पर उड़ान माप|journal=Journal of Optics B: Quantum and Semiclassical Optics| language=en| volume=4| issue=1| pages=62–66 | doi=10.1088/1464-4266/4/1/310| issn=1464-4266 | bibcode=2002JOptB...4...62B}}</ref> बोस-आइंस्टीन कंडेनसेट के निकट तापमान मापन का आधार है।<ref name=":0">{{cite arXiv|last1=Ketterle|first1=W. |last2=Durfee| first2=D. S.| last3=Stamper-Kurn|first3=D. M. | date=1999-04-01 | title=बोस-आइंस्टीन संघनित करना, जांचना और समझना|eprint=cond-mat/9904034}}</ref> | ||
Line 46: | Line 46: | ||
== व्युत्पत्ति == | == व्युत्पत्ति == | ||
संवहन-प्रसार समीकरण को सीधे विधियों से प्राप्त किया जा सकता है<ref name=Socolofsky/> निरंतरता समीकरण # विभेदक रूप से, जिसमें कहा गया है कि विभेदक (अतिसूक्ष्म) [[नियंत्रण मात्रा]] में स्केलर (भौतिकी) के लिए परिवर्तन की दर किसी भी पीढ़ी या खपत के साथ-साथ प्रणाली के उस भागों में प्रवाह और प्रसार द्वारा दी जाती है। नियंत्रण मात्रा के अंदर | संवहन-प्रसार समीकरण को सीधे विधियों से प्राप्त किया जा सकता है<ref name=Socolofsky/> निरंतरता समीकरण # विभेदक रूप से, जिसमें कहा गया है कि विभेदक (अतिसूक्ष्म) [[नियंत्रण मात्रा]] में स्केलर (भौतिकी) के लिए परिवर्तन की दर किसी भी पीढ़ी या खपत के साथ-साथ प्रणाली के उस भागों में प्रवाह और प्रसार द्वारा दी जाती है। नियंत्रण मात्रा के अंदर है। | ||
<math display="block"> \frac{\partial c}{\partial t} + \nabla\cdot\mathbf{j} = R, </math> | <math display="block"> \frac{\partial c}{\partial t} + \nabla\cdot\mathbf{j} = R, </math> | ||
जहाँ {{math|'''j'''}} कुल प्रवाह है और {{mvar|R}} के लिए शुद्ध आयतन स्रोत है {{mvar|c}}. इस स्थिति में प्रवाह के दो स्रोत हैं। सबसे पहले, विसरण के कारण विसरित प्रवाह उत्पन्न होता है। यह सामान्यतः फ़िक के पहले नियम द्वारा अनुमानित है: | जहाँ {{math|'''j'''}} कुल प्रवाह है और {{mvar|R}} के लिए शुद्ध आयतन स्रोत है {{mvar|c}}. इस स्थिति में प्रवाह के दो स्रोत हैं। सबसे पहले, विसरण के कारण विसरित प्रवाह उत्पन्न होता है। यह सामान्यतः फ़िक के पहले नियम द्वारा अनुमानित है: | ||
Line 82: | Line 82: | ||
== स्मोलुचोव्स्की संवहन-प्रसार समीकरण == | == स्मोलुचोव्स्की संवहन-प्रसार समीकरण == | ||
स्मोलुचोव्स्की संवहन-प्रसार समीकरण अतिरिक्त संवहन प्रवाह-क्षेत्र के साथ स्टोकेस्टिक (स्मोलुचोव्स्की) प्रसार समीकरण | स्मोलुचोव्स्की संवहन-प्रसार समीकरण अतिरिक्त संवहन प्रवाह-क्षेत्र के साथ स्टोकेस्टिक (स्मोलुचोव्स्की) प्रसार समीकरण है।<ref name=Dhont>{{cite book |title=कोलाइड्स की गतिशीलता का परिचय|first=J. K. G. |last=Dhont |page=195 |location= |publisher=Elsevier |year=1996 |isbn=0-444-82009-4 |url=https://books.google.com/books?id=mmArTF5SJ9oC&pg=PA195 |via=Google Books }}</ref> | ||
:<math>\frac{\partial c}{\partial t} = \nabla \cdot (D \nabla c) - \mathbf{\nabla} \cdot (\mathbf{v} c) - \nabla \cdot \left( \zeta^{-1} \mathbf{F} c \right)</math> | :<math>\frac{\partial c}{\partial t} = \nabla \cdot (D \nabla c) - \mathbf{\nabla} \cdot (\mathbf{v} c) - \nabla \cdot \left( \zeta^{-1} \mathbf{F} c \right)</math> | ||
इस स्थितियों में, बल {{math|'''F'''}} दो कोलाइडल कणों या द्रव में दो अणुओं के बीच दो या आणविक संपर्क बल के बीच रूढ़िवादी अंतरकण संपर्क बल का वर्णन करता है, और यह बाह्य रूप से लगाए गए प्रवाह वेग {{math|'''v'''}} से असंबंधित है '''{{math|'''v'''}}.''' इस समीकरण का स्थिर-अवस्था संस्करण है कतरनी प्रवाह के अंतर्गत कोलाइडयन निलंबन।<ref name=Dhont /> के जोड़ी वितरण फलन '''('''जिसके {{mvar|c}} साथ पहचाना जा सकता है '''{{mvar|c}}''') का विवरण प्रदान करने का आधार है | इस स्थितियों में, बल {{math|'''F'''}} दो कोलाइडल कणों या द्रव में दो अणुओं के बीच दो या आणविक संपर्क बल के बीच रूढ़िवादी अंतरकण संपर्क बल का वर्णन करता है, और यह बाह्य रूप से लगाए गए प्रवाह वेग {{math|'''v'''}} से असंबंधित है '''{{math|'''v'''}}.''' इस समीकरण का स्थिर-अवस्था संस्करण है कतरनी प्रवाह के अंतर्गत कोलाइडयन निलंबन।<ref name=Dhont /> के जोड़ी वितरण फलन '''('''जिसके {{mvar|c}} साथ पहचाना जा सकता है '''{{mvar|c}}''') का विवरण प्रदान करने का आधार है | ||
Line 88: | Line 88: | ||
इस समीकरण के स्थिर-अवस्था संस्करण का अनुमानित समाधान मेल खाने वाले स्पर्शोन्मुख विस्तार की विधि का उपयोग करके पाया गया है।<ref> {{cite journal | last1 = Zaccone | first1 = A. | last2 = Gentili | first2 = D. | last3 = Wu | first3 = H. | last4 = Morbidelli | first4 = M. | year = 2009| title = Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. | journal = Physical Review E | volume = 80 | issue = 5| pages = 051404 | doi = 10.1103/PhysRevE.80.051404 | pmid = 20364982 | arxiv = 0906.4879 | bibcode = 2009PhRvE..80e1404Z | hdl = 2434/653702 | s2cid = 22763509 | hdl-access = free }}</ref> यह समाधान कतरनी प्रवाह में दो अणुओं की परिवहन-नियंत्रित प्रतिक्रिया दर के लिए सिद्धांत प्रदान करता है, और कतरनी प्रवाह (जैसे माइक्रोफ्लुइडिक्स, [[रासायनिक रिएक्टर]], [[पर्यावरणीय प्रवाह]]) के अधीन कोलाइडल प्रणाली के लिए कोलाइडल स्थिरता के डीएलवीओ सिद्धांत का विस्तार करने का एक विधि भी प्रदान करता है। | इस समीकरण के स्थिर-अवस्था संस्करण का अनुमानित समाधान मेल खाने वाले स्पर्शोन्मुख विस्तार की विधि का उपयोग करके पाया गया है।<ref> {{cite journal | last1 = Zaccone | first1 = A. | last2 = Gentili | first2 = D. | last3 = Wu | first3 = H. | last4 = Morbidelli | first4 = M. | year = 2009| title = Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. | journal = Physical Review E | volume = 80 | issue = 5| pages = 051404 | doi = 10.1103/PhysRevE.80.051404 | pmid = 20364982 | arxiv = 0906.4879 | bibcode = 2009PhRvE..80e1404Z | hdl = 2434/653702 | s2cid = 22763509 | hdl-access = free }}</ref> यह समाधान कतरनी प्रवाह में दो अणुओं की परिवहन-नियंत्रित प्रतिक्रिया दर के लिए सिद्धांत प्रदान करता है, और कतरनी प्रवाह (जैसे माइक्रोफ्लुइडिक्स, [[रासायनिक रिएक्टर]], [[पर्यावरणीय प्रवाह]]) के अधीन कोलाइडल प्रणाली के लिए कोलाइडल स्थिरता के डीएलवीओ सिद्धांत का विस्तार करने का एक विधि भी प्रदान करता है। | ||
स्थिर-अवस्था समीकरण का पूर्ण समाधान, मेल खाने वाले स्पर्शोन्मुख विस्तार | स्थिर-अवस्था समीकरण का पूर्ण समाधान, मेल खाने वाले स्पर्शोन्मुख विस्तार संवहन-प्रसार समीकरण की विधि का उपयोग करके प्राप्त किया गया है, जिसे एलेसियो ज़ैकोन और एल. बैनेटा द्वारा विकसित किया गया है जिससे कतरनी प्रवाह में लेनार्ड-जोन्स इंटरेक्टिंग कणों के जोड़ी वितरण फलन की गणना की जा सके।<ref> {{cite journal | last1 = Banetta | first1 = L. | last2 = Zaccone | first2 = A. | year = 2019 | title = Radial distribution function of Lennard-Jones fluids in shear flows from intermediate asymptotics. | journal = Physical Review E | volume = 99 | issue = 5| pages = 052606 | doi = 10.1103/PhysRevE.99.052606 | pmid = 31212460 | arxiv = 1901.05175 | bibcode = 2019PhRvE..99e2606B | s2cid = 119011235 }}</ref> और बाद में कतरनी प्रवाह में आवेश-स्थिर युकावा या डेबी-हुकेल समीकरण कोलाइडल कणों के जोड़ी वितरण फलन की गणना करने के लिए विस्तारित किया गया।<ref>{{cite journal | last1 = Banetta | first1 = L. | last2 = Zaccone | first2 = A. | year = 2020 | title = कतरनी स्थितियों के तहत चार्ज-स्टेबलाइज्ड कोलाइडल सिस्टम का पेयर कोरिलेशन फंक्शन।| journal = Colloid and Polymer Science | volume = 298 | issue = 7| pages = 761–771 | doi = 10.1007/s00396-020-04609-4|arxiv=2006.00246| doi-access = free }}</ref> | ||
Revision as of 01:09, 13 April 2023
संवहन- [प्रसार समीकरण] प्रसार और संवहन (संवहन) समीकरणों का संयोजन है, और भौतिक घटनाओं का वर्णन करता है जहां कण, ऊर्जा, या अन्य भौतिक मात्रा दो प्रक्रियाओं के कारण एक भौतिक प्रणाली के अंदर स्थानांतरित हो जाती है: प्रसार और संवहन संदर्भ के आधार पर, समान समीकरण को संवहन-प्रसार समीकरण, बहाव वेग-प्रसार समीकरण कहा जा सकता है,[1] या (जेनेरिक) अदिश परिवहन समीकरण कहते है।[2]
समीकरण
सामान्य
- c ब्याज का चर है (बड़े पैमाने पर स्थानांतरण के लिए प्रजाति एकाग्रता, गर्मी हस्तांतरण के लिए तापमान),
- D विसरणशीलता है (जिसे विसरण गुणांक भी कहा जाता है), जैसे कि कण गति के लिए द्रव्यमान विसरणशीलता या ऊष्मा परिवहन के लिए तापीय विसरणशीलता,
- v वह वेग क्षेत्र है जिसके साथ मात्रा गतिमान है। यह समय और स्थान का कार्य है। उदाहरण के लिए, संवहन में, c नदी में नमक की सघनता हो सकती है, और फिर v समय और स्थान के कार्य के रूप में जल प्रवाह का वेग होगा। एक और उदाहरण, c शांत झील में छोटे बुलबुलों की सघनता हो सकती है, और फिर v बुलबुले के समय और स्थान के आधार पर उछाल से सतह की ओर बढ़ने वाले बुलबुले का वेग होगा झरझरा मीडिया में मल्टीफेज प्रवाह और प्रवाह के लिए, v (काल्पनिक) सतही वेग है।
- R मात्रा c के वर्तमान स्रोतों और सिंक का वर्णन करता है c. उदाहरण के लिए, रासायनिक प्रजाति के लिए, R > 0 का अर्थ है कि रासायनिक प्रतिक्रिया अधिक प्रजातियों का निर्माण कर रही है, और R < 0 का अर्थ है कि एक रासायनिक प्रतिक्रिया प्रजातियों को नष्ट कर रही है। गर्मी परिवहन के लिए, R > 0 हो सकता है यदि तापीय ऊर्जा घर्षण द्वारा उत्पन्न की जा रही हो।
- ∇ ढाल का प्रतिनिधित्व करता है और विचलन का प्रतिनिधित्व करता है। इस समीकरण में, ∇c एकाग्रता प्रवणता का प्रतिनिधित्व करता है।
सम्मिलित शर्तों को समझना
समीकरण का दाहिना हाथ तीन योगदानों का योग है।
- पहला, ∇ ⋅ (D∇c), प्रसार समीकरण का वर्णन करता है। कल्पना करो कि c रसायन की सांद्रता है। जब आस-पास के क्षेत्रों की तुलना में कहीं कम सांद्रता होती है (उदाहरण के लिए स्थानीय न्यूनतम सांद्रता), तो पदार्थ आसपास से फैल जाएगा, इसलिए एकाग्रता बढ़ जाएगी। इसके विपरीत, यदि परिवेश की तुलना में सघनता अधिक है (उदाहरण के लिए स्थानीय अधिकतम सघनता), तो पदार्थ विसरित हो जाएगा और सांद्रण कम हो जाएगा। प्रसार होने पर शुद्ध प्रसार सांद्रण के लाप्लासियन (या दूसरे व्युत्पन्न) के समानुपाती होता है D स्थिरांक है।
- दूसरा योगदान, −∇ ⋅ (vc), संवहन समीकरण (या संवहन) का वर्णन करता है। नदी के तट पर खड़े होने की कल्पना करें, प्रत्येक सेकंड में पानी की लवणता (नमक की मात्रा) को मापें। ऊपर की ओर, कोई नमक की बाल्टी नदी में फेंक देता है। थोड़ी देर बाद, आप खारे पानी के क्षेत्र से गुजरते हुए लवणता को अचानक बढ़ते, फिर गिरते हुए देखेंगे। इस प्रकार, प्रवाह के कारण किसी दिए गए स्थान पर एकाग्रता बदल सकती है।
- अंतिम योगदान, R, मात्रा के निर्माण या विनाश का वर्णन करता है। उदाहरण के लिए, यदि c अणु की सांद्रता है, तब R वर्णन करता है कि रासायनिक अभिक्रियाओं द्वारा अणु को कैसे बनाया या नष्ट किया जा सकता है। R का कार्य हो सकता है c और अन्य मापदंडों की। अधिकांशतः कई मात्राएँ होती हैं, जिनमें से प्रत्येक का अपना संवहन-प्रसार समीकरण होता है, जहाँ एक मात्रा का विनाश दूसरे के निर्माण पर जोर देता है। उदाहरण के लिए, जब मीथेन जलता है, तो इसमें न केवल मीथेन और ऑक्सीजन का विनाश होता है बल्कि कार्बन डाइऑक्साइड और जल वाष्प का निर्माण भी होता है। इसलिए, जबकि इन रसायनों में से प्रत्येक का अपना संवहन-प्रसार समीकरण है, वे एक साथ युग्मित हैं और एक साथ अंतर समीकरणों की प्रणाली के रूप में हल किया जाना चाहिए।
सामान्य सरलीकरण
सामान्य स्थिति में, प्रसार गुणांक स्थिर होता है, कोई स्रोत या सिंक नहीं होते हैं, और वेग क्षेत्र असंपीड़ित प्रवाह का वर्णन करता है (अर्थात्, इसमें सोलेनोइडल वेक्टर क्षेत्र है)। तब सूत्र सरल हो जाता है:[5][6][7]
गैर-बातचीत सामग्री में, D=0 (उदाहरण के लिए, जब तापमान पूर्ण शून्य के समीप होता है, तनु गैस में लगभग शून्य द्रव्यमान प्रसार होता है), इसलिए परिवहन समीकरण सरल है:
स्थिर संस्करण
स्थिर संवहन-प्रसार समीकरण संवहनी-विसरित प्रणाली के स्थिर-अवस्था व्यवहार का वर्णन करता है। स्थिर अवस्था में, ∂c/∂t = 0, तो सूत्र है:
व्युत्पत्ति
संवहन-प्रसार समीकरण को सीधे विधियों से प्राप्त किया जा सकता है[4] निरंतरता समीकरण # विभेदक रूप से, जिसमें कहा गया है कि विभेदक (अतिसूक्ष्म) नियंत्रण मात्रा में स्केलर (भौतिकी) के लिए परिवर्तन की दर किसी भी पीढ़ी या खपत के साथ-साथ प्रणाली के उस भागों में प्रवाह और प्रसार द्वारा दी जाती है। नियंत्रण मात्रा के अंदर है।
जटिल मिश्रण घटना
सामान्य रूप में, D, v, और R स्थान और समय के साथ भिन्न हो सकता है। जिन स्थितियों में वे एकाग्रता पर भी निर्भर करते हैं, समीकरण अरैखिक हो जाता है, रेले-बेनार्ड संवहन जैसे कई विशिष्ट मिश्रण घटनाओं को जन्म देता है v गर्मी हस्तांतरण सूत्रीकरण और प्रतिक्रिया-प्रसार प्रणाली में तापमान पर निर्भर करता है। प्रतिक्रिया-प्रसार पैटर्न गठन जब R मास ट्रांसफर फॉर्मूलेशन में एकाग्रता पर निर्भर करता है।
बल के जवाब में वेग
कुछ स्थितियों में, औसत वेग क्षेत्र v बल के कारण उपस्थित है; उदाहरण के लिए, समीकरण तरल में घुले हुए आयनों के प्रवाह का वर्णन कर सकता है, विद्युत क्षेत्र आयनों को किसी दिशा में खींच रहा है (जैसा कि जेल वैद्युतकणसंचलन में) इस स्थिति में, इसे सामान्यतः बहाव-प्रसार समीकरण या स्मोलुचोव्स्की समीकरण कहा जाता है,[1] मैरियन स्मोलुचोव्स्की के बाद जिन्होंने 1915 में इसका वर्णन किया था[10] (आइंस्टीन संबंध या स्मोलुचोव्स्की जमावट समीकरण) के साथ भ्रमित न हों।
सामान्यतः, औसत वेग प्रयुक्त बल के सीधे आनुपातिक होता है, समीकरण देते हुए:[11][12]
जहाँ F बल है, और ζ घर्षण या ड्रैग (भौतिकी) की विशेषता है। (उल्टा ζ−1 आइंस्टीन संबंध (गतिज सिद्धांत) कहा जाता है।)
आइंस्टीन संबंध की व्युत्पत्ति
जब बल संभावित ऊर्जा से जुड़ा होता है F = −∇U (रूढ़िवादी बल देखें), उपरोक्त समीकरण का स्थिर-अवस्था समाधान (अर्थात 0 = R = ∂c/∂t) है:
(मान लिया D और ζ स्थिर हैं)। दूसरे शब्दों में, वहाँ अधिक कण होते हैं जहाँ ऊर्जा कम होती है। इस सघनता प्रोफ़ाइल के बोल्ट्जमैन वितरण (अधिक सही रूप से, गिब्स उपाय) से सहमत होने की उम्मीद है। इस धारणा से आइंस्टीन संबंध (गतिज सिद्धांत) सिद्ध किया जा सकता है:[12]
स्मोलुचोव्स्की संवहन-प्रसार समीकरण
स्मोलुचोव्स्की संवहन-प्रसार समीकरण अतिरिक्त संवहन प्रवाह-क्षेत्र के साथ स्टोकेस्टिक (स्मोलुचोव्स्की) प्रसार समीकरण है।[13]
इस स्थितियों में, बल F दो कोलाइडल कणों या द्रव में दो अणुओं के बीच दो या आणविक संपर्क बल के बीच रूढ़िवादी अंतरकण संपर्क बल का वर्णन करता है, और यह बाह्य रूप से लगाए गए प्रवाह वेग v से असंबंधित है v. इस समीकरण का स्थिर-अवस्था संस्करण है कतरनी प्रवाह के अंतर्गत कोलाइडयन निलंबन।[13] के जोड़ी वितरण फलन (जिसके c साथ पहचाना जा सकता है c) का विवरण प्रदान करने का आधार है
इस समीकरण के स्थिर-अवस्था संस्करण का अनुमानित समाधान मेल खाने वाले स्पर्शोन्मुख विस्तार की विधि का उपयोग करके पाया गया है।[14] यह समाधान कतरनी प्रवाह में दो अणुओं की परिवहन-नियंत्रित प्रतिक्रिया दर के लिए सिद्धांत प्रदान करता है, और कतरनी प्रवाह (जैसे माइक्रोफ्लुइडिक्स, रासायनिक रिएक्टर, पर्यावरणीय प्रवाह) के अधीन कोलाइडल प्रणाली के लिए कोलाइडल स्थिरता के डीएलवीओ सिद्धांत का विस्तार करने का एक विधि भी प्रदान करता है।
स्थिर-अवस्था समीकरण का पूर्ण समाधान, मेल खाने वाले स्पर्शोन्मुख विस्तार संवहन-प्रसार समीकरण की विधि का उपयोग करके प्राप्त किया गया है, जिसे एलेसियो ज़ैकोन और एल. बैनेटा द्वारा विकसित किया गया है जिससे कतरनी प्रवाह में लेनार्ड-जोन्स इंटरेक्टिंग कणों के जोड़ी वितरण फलन की गणना की जा सके।[15] और बाद में कतरनी प्रवाह में आवेश-स्थिर युकावा या डेबी-हुकेल समीकरण कोलाइडल कणों के जोड़ी वितरण फलन की गणना करने के लिए विस्तारित किया गया।[16]
स्टोकेस्टिक अंतर समीकरण के रूप में
संवहन-प्रसार समीकरण (बिना किसी स्रोत या नालियों के, R = 0) स्टोकास्टिक अंतर समीकरण के रूप में देखा जा सकता है जो प्रसार D और पूर्वाग्रह v.के साथ यादृच्छिक गति का वर्णन करता है। उदाहरण के लिए, समीकरण एकल कण की ब्राउनियन गति का वर्णन कर सकता है, जहाँ चर c किसी दिए गए समय में किसी कण के दिए गए स्थान पर होने की संभावना वितरण का वर्णन करता है। समीकरण का इस तरह से उपयोग किया जा सकता है क्योंकि कण के संभाव्यता वितरण और असीमित रूप से कई कणों के संग्रह की एकाग्रता प्रोफ़ाइल के बीच कोई गणितीय अंतर नहीं है (जब तक कण एक दूसरे के साथ बातचीत नहीं करते हैं)।
लैंगविन समीकरण संवहन, प्रसार और अन्य परिघटनाओं का स्पष्ट रूप से स्टोकेस्टिक विधियों से वर्णन करता है। लैंग्विन समीकरण के सबसे सरल रूपों में से एक है जब इसका शोर शब्द गाऊसी शोर है; इस स्थितियों में, लैंगविन समीकरण संवहन-प्रसार समीकरण के बिल्कुल बराबर है।[12] चुकीं, लैंग्विन समीकरण अधिक सामान्य है।[12]
संख्यात्मक समाधान
संवहन-प्रसार समीकरण को शायद ही कभी कलम और कागज से हल किया जा सकता है। अधिक बार, कंप्यूटर का उपयोग संख्यात्मक रूप से समीकरण के समाधान का अनुमान लगाने के लिए किया जाता है, सामान्यतः परिमित तत्व विधि का उपयोग करते हुए। अधिक विवरण और एल्गोरिदम के लिए देखें: संवहन-प्रसार समीकरण का संख्यात्मक समाधान है।
अन्य संदर्भों में समान समीकरण
संवहन-प्रसार समीकरण अपेक्षाकृत सरल समीकरण है जो प्रवाह का वर्णन करता है, या वैकल्पिक रूप से, स्टोकेस्टिक रूप से बदलती प्रणाली का वर्णन करता है। इसलिए, अंतरिक्ष के माध्यम से प्रवाह से असंबंधित कई संदर्भों में समान या समान समीकरण उत्पन्न होता है।
- यह कण के वेग के लिए औपचारिक रूप से फोकर-प्लैंक समीकरण के समान है।
- यह ब्लैक-स्कोल्स समीकरण और वित्तीय गणित में अन्य समीकरणों से निकटता से संबंधित है।[17]
- यह नेवियर-स्टोक्स समीकरणों से निकटता से संबंधित है, क्योंकि द्रव में संवेग का प्रवाह गणितीय रूप से द्रव्यमान या ऊर्जा के प्रवाह के समान है। असंगत न्यूटोनियन तरल पदार्थ के स्थितियों में पत्राचार सबसे स्पष्ट है, इस स्थितियों में नेवियर-स्टोक्स समीकरण है:
जहाँ M प्रत्येक बिंदु (घनत्व के बराबर) पर द्रव (प्रति इकाई आयतन) का संवेग है ρ वेग से गुणा v), μ श्यानता है, P द्रव दबाव है, और f गुरुत्वाकर्षण जैसी कोई अन्य शारीरिक शक्ति है। इस समीकरण में, बायीं ओर का शब्द किसी दिए गए बिंदु पर संवेग में परिवर्तन का वर्णन करता है; दाहिनी ओर का पहला पद श्यानता द्वारा संवेग के विसरण का वर्णन करता है; दाईं ओर दूसरा पद संवेग के विशेषण प्रवाह का वर्णन करता है; और दाहिनी ओर अंतिम दो शब्द बाहरी और आंतरिक बलों का वर्णन करते हैं जो गति के स्रोत या सिंक के रूप में कार्य कर सकते हैं।
सेमीकंडक्टर भौतिकी में
अर्धचालक भौतिकी में, इस समीकरण को बहाव-प्रसार समीकरण कहा जाता है। ड्रिफ्ट शब्द बहाव वर्तमान और ड्रिफ्ट वेग से संबंधित है। समीकरण सामान्य रूप से लिखा जाता है:[18]
जहाँ
- n और p क्रमशः इलेक्ट्रॉनों और इलेक्ट्रॉन छेद की सांद्रता (घनत्व) हैं,
- q > 0 प्राथमिक शुल्क है,
- Jn और Jp क्रमशः इलेक्ट्रॉनों और छिद्रों के कारण विद्युत धाराएँ हैं,
- Jn/−q और Jp/q क्रमशः इलेक्ट्रॉनों और छिद्रों की संगत कण धाराएँ हैं,
- R वाहक उत्पादन और पुनर्संयोजन का प्रतिनिधित्व करता है (R > 0 इलेक्ट्रॉन-छिद्र जोड़े की पीढ़ी के लिए, R < 0 पुनर्संयोजन के लिए।)
- E विद्युत क्षेत्र वेक्टर है
- और इलेक्ट्रॉन गतिशीलता हैं।
प्रसार गुणांक और गतिशीलता आइंस्टीन संबंध (काइनेटिक सिद्धांत) से ऊपर के रूप में संबंधित हैं:
कहाँ kB बोल्ट्जमैन स्थिरांक है और T निरपेक्ष तापमान है। ड्रिफ्ट करंट और प्रसार वर्तमान दो शब्दों के लिए अलग-अलग भावों को संदर्भित करता है J, अर्थात्:
इस समीकरण को प्वासों के समीकरण के साथ संख्यात्मक रूप से हल किया जा सकता है।[19]
बहाव प्रसार समीकरण को हल करने के परिणामों का उदाहरण दाईं ओर दिखाया गया है। जब अर्धचालक के केंद्र पर प्रकाश पड़ता है तो वाहक मध्य में उत्पन्न होते हैं और दो सिरों की ओर फैलते हैं। इस संरचना में बहाव-प्रसार समीकरण को हल किया गया है और चित्र में इलेक्ट्रॉन घनत्व वितरण प्रदर्शित किया गया है। कोई केंद्र से दो सिरों की ओर वाहक का ढाल देख सकता है।
यह भी देखें
- उन्नत सिमुलेशन लाइब्रेरी
- संरक्षण कानून
- असंपीड़नीय नेवियर-स्टोक्स समीकरण
- नर्नस्ट-प्लैंक समीकरण
- डबल विसारक संवहन
- प्राकृतिक संवहन
- बकले-लेवरेट समीकरण
संदर्भ
- ↑ 1.0 1.1 Chandrasekhar (1943). "भौतिकी और खगोल विज्ञान में स्टोकेस्टिक समस्याएं". Rev. Mod. Phys. 15 (1): 1. Bibcode:1943RvMP...15....1C. doi:10.1103/RevModPhys.15.1. See equation (312)
- ↑ Baukal; Gershtein; Li, eds. (2001). औद्योगिक दहन में कम्प्यूटेशनल द्रव गतिशीलता. CRC Press. p. 67. ISBN 0-8493-2000-3 – via Google Books.
- ↑ Stocker, Thomas (2011). जलवायु मॉडलिंग का परिचय. Berlin: Springer. p. 57. ISBN 978-3-642-00772-9 – via Google Books.
- ↑ 4.0 4.1 Socolofsky, Scott A.; Jirka, Gerhard H. "विशेषण प्रसार समीकरण" (PDF). Lecture notes. Archived from the original (PDF) on June 25, 2010. Retrieved April 18, 2012.
- ↑ Bejan A (2004). संवहन गर्मी हस्तांतरण.
- ↑ Bird, Stewart, Lightfoot (1960). परिवहन घटना.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Probstein R (1994). भौतिक-रासायनिक हाइड्रोडायनामिक्स.
- ↑ Brzozowski, Tomasz M; Maczynska, Maria; Zawada, Michal; Zachorowski, Jerzy; Gawlik, Wojciech (2002-01-14). "शॉर्ट ट्रैप-प्रोब बीम दूरी के लिए ठंडे परमाणुओं के तापमान का समय-समय पर उड़ान माप". Journal of Optics B: Quantum and Semiclassical Optics (in English). 4 (1): 62–66. Bibcode:2002JOptB...4...62B. doi:10.1088/1464-4266/4/1/310. ISSN 1464-4266. S2CID 67796405.
- ↑ Ketterle, W.; Durfee, D. S.; Stamper-Kurn, D. M. (1999-04-01). "बोस-आइंस्टीन संघनित करना, जांचना और समझना". arXiv:cond-mat/9904034.
- ↑ Smoluchowski, M. v. (1915). "Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und den Zusammenhang mit der verallgemeinerten Diffusionsgleichung" (PDF). Ann. Phys. 4. Folge. 353 (48): 1103–1112. Bibcode:1915AnP...353.1103S. doi:10.1002/andp.19163532408.
- ↑ "स्मोलुचोव्स्की डिफ्यूजन समीकरण" (PDF).
- ↑ 12.0 12.1 12.2 12.3 Doi & Edwards (1988). पॉलिमर डायनेमिक्स का सिद्धांत. pp. 46–52. ISBN 978-0-19-852033-7 – via Google Books.
- ↑ 13.0 13.1 Dhont, J. K. G. (1996). कोलाइड्स की गतिशीलता का परिचय. Elsevier. p. 195. ISBN 0-444-82009-4 – via Google Books.
- ↑ Zaccone, A.; Gentili, D.; Wu, H.; Morbidelli, M. (2009). "Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids". Physical Review E. 80 (5): 051404. arXiv:0906.4879. Bibcode:2009PhRvE..80e1404Z. doi:10.1103/PhysRevE.80.051404. hdl:2434/653702. PMID 20364982. S2CID 22763509.
- ↑ Banetta, L.; Zaccone, A. (2019). "Radial distribution function of Lennard-Jones fluids in shear flows from intermediate asymptotics". Physical Review E. 99 (5): 052606. arXiv:1901.05175. Bibcode:2019PhRvE..99e2606B. doi:10.1103/PhysRevE.99.052606. PMID 31212460. S2CID 119011235.
- ↑ Banetta, L.; Zaccone, A. (2020). "कतरनी स्थितियों के तहत चार्ज-स्टेबलाइज्ड कोलाइडल सिस्टम का पेयर कोरिलेशन फंक्शन।". Colloid and Polymer Science. 298 (7): 761–771. arXiv:2006.00246. doi:10.1007/s00396-020-04609-4.
- ↑ Arabas, S.; Farhat, A. (2020). "Derivative pricing as a transport problem: MPDATA solutions to Black-Scholes-type equations". J. Comput. Appl. Math. (in English). 373: 112275. arXiv:1607.01751. doi:10.1016/j.cam.2019.05.023. S2CID 128273138.
- ↑ Hu, Yue (2015). "आंशिक रूप से क्षीण अवशोषक (पीडीए) फोटोडेटेक्टर का अनुकरण". Optics Express. 23 (16): 20402–20417. Bibcode:2015OExpr..2320402H. doi:10.1364/OE.23.020402. hdl:11603/11470. PMID 26367895.
- ↑ Hu, Yue (2014). "एक साधारण पिन फोटोडेटेक्टर में गैर-रैखिकता के मॉडलिंग स्रोत". Journal of Lightwave Technology. 32 (20): 3710–3720. Bibcode:2014JLwT...32.3710H. CiteSeerX 10.1.1.670.2359. doi:10.1109/JLT.2014.2315740. S2CID 9882873.
अग्रिम पठन
- Sewell, Granville (1988). The Numerical Solution of Ordinary and Partial Differential Equations. Academic Press. ISBN 0-12-637475-9.