कैननिकल परिवर्तन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Coordinate transformation that preserves the form of Hamilton's equations}} | {{Short description|Coordinate transformation that preserves the form of Hamilton's equations}} | ||
[[हैमिल्टनियन यांत्रिकी]] में, विहित परिवर्तन [[विहित निर्देशांक]]ों का परिवर्तन है {{math|('''q''', '''p''', ''t'') → ('''Q''', '''P''', ''t'')}} जो हैमिल्टन के समीकरणों के रूप को संरक्षित करता है। इसे कभी-कभी फॉर्म इंवेरियन के रूप में जाना जाता है। इसे हैमिल्टनियन यांत्रिकी के रूप को ही संरक्षित करने की आवश्यकता नहीं है। प्रामाणिक परिवर्तन अपने आप में उपयोगी हैं, और हैमिल्टन-जैकोबी समीकरणों ([[गति की निरंतरता]] की गणना के लिए उपयोगी विधि) और लिउविल के प्रमेय (हैमिल्टनियन) | लिउविल के प्रमेय (स्वयं | [[हैमिल्टनियन यांत्रिकी]] में, विहित परिवर्तन [[विहित निर्देशांक]]ों का परिवर्तन है {{math|('''q''', '''p''', ''t'') → ('''Q''', '''P''', ''t'')}} जो हैमिल्टन के समीकरणों के रूप को संरक्षित करता है। इसे कभी-कभी फॉर्म इंवेरियन के रूप में जाना जाता है। इसे हैमिल्टनियन यांत्रिकी के रूप को ही संरक्षित करने की आवश्यकता नहीं है। प्रामाणिक परिवर्तन अपने आप में उपयोगी हैं, और हैमिल्टन-जैकोबी समीकरणों ([[गति की निरंतरता]] की गणना के लिए उपयोगी विधि) और लिउविल के प्रमेय (हैमिल्टनियन) | लिउविल के प्रमेय (स्वयं मौलिक [[सांख्यिकीय यांत्रिकी]] के लिए आधार) के लिए आधार बनाते हैं। | ||
चूंकि [[Lagrangian यांत्रिकी]] [[सामान्यीकृत निर्देशांक]], निर्देशांक के परिवर्तन पर आधारित है {{math|'''q''' → '''Q'''}} Lagrangian यांत्रिकी | Lagrange के समीकरणों के रूप को प्रभावित नहीं करते हैं और इसलिए, हैमिल्टन के समीकरणों के रूप को प्रभावित नहीं करते हैं यदि हम साथ लीजेंड्रे परिवर्तन द्वारा संवेग को बदलते हैं | चूंकि [[Lagrangian यांत्रिकी]] [[सामान्यीकृत निर्देशांक]], निर्देशांक के परिवर्तन पर आधारित है {{math|'''q''' → '''Q'''}} Lagrangian यांत्रिकी | Lagrange के समीकरणों के रूप को प्रभावित नहीं करते हैं और इसलिए, हैमिल्टन के समीकरणों के रूप को प्रभावित नहीं करते हैं यदि हम साथ लीजेंड्रे परिवर्तन द्वारा संवेग को बदलते हैं | ||
<math display="block">P_i=\frac{\partial L}{\partial \dot{Q}_i}.</math> | <math display="block">P_i=\frac{\partial L}{\partial \dot{Q}_i}.</math> | ||
इसलिए, समन्वय परिवर्तन (जिसे बिंदु परिवर्तन भी कहा जाता है) विहित परिवर्तन का ''प्रकार'' है। | इसलिए, समन्वय परिवर्तन (जिसे बिंदु परिवर्तन भी कहा जाता है) विहित परिवर्तन का ''प्रकार'' है। चूंकि, विहित परिवर्तनों का वर्ग बहुत व्यापक है, क्योंकि पुराने सामान्यीकृत निर्देशांक, संवेग और यहाँ तक कि समय को नए सामान्यीकृत निर्देशांक और संवेग बनाने के लिए जोड़ा जा सकता है। कैनोनिकल ट्रांसफ़ॉर्मेशन जिसमें स्पष्ट रूप से समय सम्मिलित नहीं होता है, उसे प्रतिबंधित कैनोनिकल ट्रांसफ़ॉर्मेशन कहा जाता है (कई पाठ्यपुस्तकें केवल इस प्रकार पर विचार करती हैं)। | ||
स्पष्टता के लिए, हम यहाँ प्रस्तुति को कलन और [[शास्त्रीय यांत्रिकी]] तक सीमित रखते हैं। अधिक उन्नत गणित से परिचित पाठक जैसे कॉटंगेंट बंडल, [[ बाहरी व्युत्पन्न |बाहरी व्युत्पन्न]] ्स और [[सिंपलेक्टिक मैनिफोल्ड]] को संबंधित [[sympletomorphism]] लेख पढ़ना चाहिए। (कैनोनिकल ट्रांसफॉर्मेशन सिम्पेक्टोमोर्फिज्म का विशेष मामला है।) | स्पष्टता के लिए, हम यहाँ प्रस्तुति को कलन और [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] तक सीमित रखते हैं। अधिक उन्नत गणित से परिचित पाठक जैसे कॉटंगेंट बंडल, [[ बाहरी व्युत्पन्न |बाहरी व्युत्पन्न]] ्स और [[सिंपलेक्टिक मैनिफोल्ड]] को संबंधित [[sympletomorphism]] लेख पढ़ना चाहिए। (कैनोनिकल ट्रांसफॉर्मेशन सिम्पेक्टोमोर्फिज्म का विशेष मामला है।) चूंकि, इस लेख के अंत में आधुनिक गणितीय विवरण का संक्षिप्त परिचय सम्मिलित है। | ||
== नोटेशन == | == नोटेशन == | ||
बोल्डफेस चर जैसे {{math|'''q'''}} की सूची का प्रतिनिधित्व करते हैं {{mvar|N}} सामान्यीकृत निर्देशांक जिन्हें [[ ROTATION |ROTATION]] के | बोल्डफेस चर जैसे {{math|'''q'''}} की सूची का प्रतिनिधित्व करते हैं {{mvar|N}} सामान्यीकृत निर्देशांक जिन्हें [[ ROTATION |ROTATION]] के अनुसार [[वेक्टर (ज्यामितीय)]] की तरह बदलने की आवश्यकता नहीं है, उदाहरण के लिए, | ||
<math display="block">\mathbf{q} \equiv \left (q_{1}, q_{2}, \ldots, q_{N-1}, q_{N} \right ).</math> | <math display="block">\mathbf{q} \equiv \left (q_{1}, q_{2}, \ldots, q_{N-1}, q_{N} \right ).</math> | ||
एक चर या सूची पर बिंदु समय व्युत्पन्न का प्रतीक है, उदाहरण के लिए, | एक चर या सूची पर बिंदु समय व्युत्पन्न का प्रतीक है, उदाहरण के लिए, | ||
Line 30: | Line 30: | ||
कहाँ {{math|''K''('''Q''', '''P''')}} नया हैमिल्टनियन है (कभी-कभी कामिल्टनियन कहा जाता है<ref>{{harvnb|Goldstein|1980|p=380}}</ref>) निर्धारित किया जाना चाहिए। | कहाँ {{math|''K''('''Q''', '''P''')}} नया हैमिल्टनियन है (कभी-कभी कामिल्टनियन कहा जाता है<ref>{{harvnb|Goldstein|1980|p=380}}</ref>) निर्धारित किया जाना चाहिए। | ||
सामान्यतः, परिवर्तन {{math|('''q''', '''p''', ''t'') → ('''Q''', '''P''', ''t'')}} हैमिल्टन के समीकरणों के रूप को संरक्षित नहीं करता है। समय के बीच स्वतंत्र परिवर्तन {{math|('''q''', '''p''')}} और {{math|('''Q''', '''P''')}} हम जाँच कर सकते हैं कि क्या परिवर्तन प्रतिबंधित है, निम्नानुसार है। चूंकि प्रतिबंधित परिवर्तनों की कोई स्पष्ट समय निर्भरता नहीं है (परिभाषा के अनुसार), नए सामान्यीकृत समन्वय का समय व्युत्पन्न {{math|''Q<sub>m</sub>''}} है | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\dot{Q}_{m} &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} \\ | \dot{Q}_{m} &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} \\ | ||
Line 53: | Line 53: | ||
== लिउविल का प्रमेय == | == लिउविल का प्रमेय == | ||
अप्रत्यक्ष स्थितियां हमें लिउविले के प्रमेय (हैमिल्टनियन) को | अप्रत्यक्ष स्थितियां हमें लिउविले के प्रमेय (हैमिल्टनियन) को प्रमाणित करने की अनुमति देती हैं। लिउविल की प्रमेय, जिसमें कहा गया है कि चरण अंतरिक्ष में आयतन विहित परिवर्तनों के अनुसार संरक्षित है, अर्थात, | ||
<math display="block"> \int \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p} = \int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P}</math> | <math display="block"> \int \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p} = \int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P}</math> | ||
प्रतिस्थापन द्वारा एकीकरण द्वारा # कई चर के लिए प्रतिस्थापन, बाद वाला अभिन्न जैकबियन | प्रतिस्थापन द्वारा एकीकरण द्वारा # कई चर के लिए प्रतिस्थापन, बाद वाला अभिन्न जैकबियन आव्यूह और निर्धारक के पूर्व समय के बराबर होना चाहिए {{mvar|J}} | ||
<math display="block">\int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P} = \int J\, \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p}</math> | <math display="block">\int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P} = \int J\, \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p}</math> | ||
जहां जेकोबियन आंशिक डेरिवेटिव के [[मैट्रिक्स (गणित)]] का निर्धारक है, जिसे हम इस रूप में लिखते हैं | जहां जेकोबियन आंशिक डेरिवेटिव के [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] का निर्धारक है, जिसे हम इस रूप में लिखते हैं | ||
<math display="block">J \equiv \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math> | <math display="block">J \equiv \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math> | ||
जैकोबियन | जैकोबियन आव्यूह और निर्धारकों की पैदावार की विभाजन संपत्ति का शोषण | ||
<math display="block"> J \equiv \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{P})} \left/ \frac{\partial (\mathbf{q}, \mathbf{p})}{\partial (\mathbf{q}, \mathbf{P})} \right. </math> | <math display="block"> J \equiv \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{P})} \left/ \frac{\partial (\mathbf{q}, \mathbf{p})}{\partial (\mathbf{q}, \mathbf{P})} \right. </math> | ||
दोहराए गए चर को खत्म करना देता है | दोहराए गए चर को खत्म करना देता है | ||
Line 67: | Line 67: | ||
== फ़ंक्शन दृष्टिकोण उत्पन्न करना == | == फ़ंक्शन दृष्टिकोण उत्पन्न करना == | ||
{{main|Generating function (physics)}} | {{main|Generating function (physics)}} | ||
के बीच वैध परिवर्तन की गारंटी के लिए {{math|('''q''', '''p''', ''H'')}} और {{math|('''Q''', '''P''', ''K'')}}, हम प्रत्यक्ष जनन फलन दृष्टिकोण का सहारा ले सकते हैं। चरों के दोनों सेटों को क्रिया (भौतिकी) | हैमिल्टन के सिद्धांत का पालन करना चाहिए। यह Lagrangian यांत्रिकी पर क्रिया समाकलन है <math>\mathcal{L}_{qp}=\mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t)</math> और <math>\mathcal{L}_{QP}=\mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t)</math> क्रमशः, हेमिल्टनियन द्वारा (प्रतिलोम) लीजेंड्रे परिवर्तन के माध्यम से प्राप्त किया गया, दोनों को स्थिर होना चाहिए ( | के बीच वैध परिवर्तन की गारंटी के लिए {{math|('''q''', '''p''', ''H'')}} और {{math|('''Q''', '''P''', ''K'')}}, हम प्रत्यक्ष जनन फलन दृष्टिकोण का सहारा ले सकते हैं। चरों के दोनों सेटों को क्रिया (भौतिकी) | हैमिल्टन के सिद्धांत का पालन करना चाहिए। यह Lagrangian यांत्रिकी पर क्रिया समाकलन है <math>\mathcal{L}_{qp}=\mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t)</math> और <math>\mathcal{L}_{QP}=\mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t)</math> क्रमशः, हेमिल्टनियन द्वारा (प्रतिलोम) लीजेंड्रे परिवर्तन के माध्यम से प्राप्त किया गया, दोनों को स्थिर होना चाहिए (जिससे कि उपर्युक्त और निर्दिष्ट रूप के समीकरणों पर पहुंचने के लिए यूलर-लैग्रेंज समीकरणों का उपयोग किया जा सके; जैसा कि उदाहरण के लिए दिखाया गया है हैमिल्टन समीकरण# व्युत्पन्न हैमिल्टन के समीकरण): | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\delta \int_{t_{1}}^{t_{2}} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] dt &= 0 \\ | \delta \int_{t_{1}}^{t_{2}} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] dt &= 0 \\ | ||
Line 76: | Line 76: | ||
Lagrangians अद्वितीय नहीं हैं: कोई हमेशा स्थिरांक से गुणा कर सकता है {{mvar|λ}} और कुल समय व्युत्पन्न जोड़ें {{math|{{sfrac|''dG''|''dt''}}}} और गति के समान समीकरण प्राप्त करें (संदर्भ के लिए देखें: b: क्लासिकल मैकेनिक्स/लैग्रेंज थ्योरी#Is the Lagrangian Unique.3F)। | Lagrangians अद्वितीय नहीं हैं: कोई हमेशा स्थिरांक से गुणा कर सकता है {{mvar|λ}} और कुल समय व्युत्पन्न जोड़ें {{math|{{sfrac|''dG''|''dt''}}}} और गति के समान समीकरण प्राप्त करें (संदर्भ के लिए देखें: b: क्लासिकल मैकेनिक्स/लैग्रेंज थ्योरी#Is the Lagrangian Unique.3F)। | ||
सामान्यतः, स्केलिंग कारक {{mvar|λ}} के बराबर सेट है; जिसके लिए विहित परिवर्तन {{math|''λ'' ≠ 1}} विस्तारित विहित रूपांतरण कहलाते हैं। {{math|{{sfrac|''dG''|''dt''}}}} रखा जाता है, अन्यथा समस्या तुच्छ हो जाएगी और नए विहित चर के लिए पुराने से भिन्न होने की अधिक स्वतंत्रता नहीं होगी। | |||
यहाँ {{mvar|G}} पुराने विहित निर्देशांक का [[जनरेटिंग फ़ंक्शन (भौतिकी)]] है ({{math|'''q'''}} या {{math|'''p'''}}), नया विहित निर्देशांक ({{math|'''Q'''}} या {{math|'''P'''}}) और (संभवतः) समय {{mvar|t}}. इस प्रकार, चरों की पसंद के आधार पर, चार | यहाँ {{mvar|G}} पुराने विहित निर्देशांक का [[जनरेटिंग फ़ंक्शन (भौतिकी)]] है ({{math|'''q'''}} या {{math|'''p'''}}), नया विहित निर्देशांक ({{math|'''Q'''}} या {{math|'''P'''}}) और (संभवतः) समय {{mvar|t}}. इस प्रकार, चरों की पसंद के आधार पर, चार मौलिक प्रकार के जनक फलन होते हैं (चूंकि इन चार प्रकारों के मिश्रण मौजूद हो सकते हैं)। जैसा कि नीचे दिखाया जाएगा, जनरेटिंग फ़ंक्शन पुराने से नए कैनोनिकल निर्देशांक में परिवर्तन और ऐसे किसी भी परिवर्तन को परिभाषित करेगा {{math|('''q''', '''p''') → ('''Q''', '''P''')}} प्रामाणिक होने की गारंटी है। | ||
=== टाइप 1 जनरेटिंग फंक्शन === | === टाइप 1 जनरेटिंग फंक्शन === | ||
Line 99: | Line 99: | ||
के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | ||
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन | व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है। उदाहरण के लिए, चलो | ||
<math display="block">G_{1} \equiv \mathbf{q} \cdot \mathbf{Q}</math> | |||
इसके परिणामस्वरूप पल और इसके विपरीत सामान्यीकृत निर्देशांकों की अदला-बदली होती है | इसके परिणामस्वरूप पल और इसके विपरीत सामान्यीकृत निर्देशांकों की अदला-बदली होती है | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 127: | Line 127: | ||
के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | ||
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन | व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है। उदाहरण के लिए, चलो | ||
<math display="block">G_{2} \equiv \mathbf{g}(\mathbf{q}; t) \cdot \mathbf{P}</math> | |||
कहाँ {{math|'''g'''}} का समुच्चय है {{mvar|N}} कार्य करता है। इसका परिणाम सामान्यीकृत निर्देशांक के बिंदु परिवर्तन में होता है | कहाँ {{math|'''g'''}} का समुच्चय है {{mvar|N}} कार्य करता है। इसका परिणाम सामान्यीकृत निर्देशांक के बिंदु परिवर्तन में होता है | ||
<math display="block">\mathbf{Q} = \frac{\partial G_{2}}{\partial \mathbf{P}} = \mathbf{g}(\mathbf{q}; t)</math> | <math display="block">\mathbf{Q} = \frac{\partial G_{2}}{\partial \mathbf{P}} = \mathbf{g}(\mathbf{q}; t)</math> | ||
Line 150: | Line 150: | ||
नए सामान्यीकृत संवेग के लिए अनुरूप सूत्र देता है {{math|'''P'''}} पुराने विहित निर्देशांकों के संदर्भ में {{math|('''q''', '''p''')}}. फिर हम पुराने विहित निर्देशांक प्राप्त करने के लिए सूत्रों के दोनों सेटों को उल्टा कर देते हैं {{math|('''q''', '''p''')}} नए विहित निर्देशांकों के कार्यों के रूप में {{math|('''Q''', '''P''')}}. अंतिम समीकरण में उल्टे सूत्रों का प्रतिस्थापन <math display="block">K = H + \frac{\partial G_{3}}{\partial t}</math> के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | नए सामान्यीकृत संवेग के लिए अनुरूप सूत्र देता है {{math|'''P'''}} पुराने विहित निर्देशांकों के संदर्भ में {{math|('''q''', '''p''')}}. फिर हम पुराने विहित निर्देशांक प्राप्त करने के लिए सूत्रों के दोनों सेटों को उल्टा कर देते हैं {{math|('''q''', '''p''')}} नए विहित निर्देशांकों के कार्यों के रूप में {{math|('''Q''', '''P''')}}. अंतिम समीकरण में उल्टे सूत्रों का प्रतिस्थापन <math display="block">K = H + \frac{\partial G_{3}}{\partial t}</math> के लिए सूत्र देता है {{mvar|K}} नए विहित निर्देशांकों के कार्य के रूप में {{math|('''Q''', '''P''')}}. | ||
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन | व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है। | ||
=== टाइप 4 जनरेटिंग फंक्शन === | === टाइप 4 जनरेटिंग फंक्शन === | ||
Line 172: | Line 172: | ||
== एक विहित परिवर्तन के रूप में गति == | == एक विहित परिवर्तन के रूप में गति == | ||
स्वयं गति (या, समतुल्य रूप से, समय की उत्पत्ति में बदलाव) विहित परिवर्तन है। | स्वयं गति (या, समतुल्य रूप से, समय की उत्पत्ति में बदलाव) विहित परिवर्तन है। यदि <math>\mathbf{Q}(t) \equiv \mathbf{q}(t+\tau)</math> और <math>\mathbf{P}(t) \equiv \mathbf{p}(t+\tau)</math>, तब क्रिया (भौतिकी) | हैमिल्टन का सिद्धांत स्वतः संतुष्ट हो जाता है | ||
<math display="block"> \delta \int_{t_1}^{t_2} \left[ \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) \right] dt = \delta \int_{t_1 + \tau}^{t_2 + \tau} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t+\tau) \right] dt = 0 </math> | <math display="block"> \delta \int_{t_1}^{t_2} \left[ \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) \right] dt = \delta \int_{t_1 + \tau}^{t_2 + \tau} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t+\tau) \right] dt = 0 </math> | ||
एक वैध प्रक्षेपवक्र के बाद से <math>(\mathbf{q}(t), \mathbf{p}(t))</math> समापन बिंदुओं की परवाह किए बिना हमेशा कार्रवाई (भौतिकी) को संतुष्ट करना चाहिए | हैमिल्टन का सिद्धांत। | एक वैध प्रक्षेपवक्र के बाद से <math>(\mathbf{q}(t), \mathbf{p}(t))</math> समापन बिंदुओं की परवाह किए बिना हमेशा कार्रवाई (भौतिकी) को संतुष्ट करना चाहिए | हैमिल्टन का सिद्धांत। | ||
== उदाहरण == | == उदाहरण == | ||
* अनुवाद <math>\mathbf{Q}(\mathbf{q}, \mathbf{p})= \mathbf{q} + \mathbf{a}, \mathbf{P}(\mathbf{q}, \mathbf{p})= \mathbf{p} + \mathbf{b}</math> कहाँ <math>\mathbf{a}, \mathbf{b}</math> दो स्थिर सदिश हैं विहित परिवर्तन है। | * अनुवाद <math>\mathbf{Q}(\mathbf{q}, \mathbf{p})= \mathbf{q} + \mathbf{a}, \mathbf{P}(\mathbf{q}, \mathbf{p})= \mathbf{p} + \mathbf{b}</math> कहाँ <math>\mathbf{a}, \mathbf{b}</math> दो स्थिर सदिश हैं विहित परिवर्तन है। मुख्य रूप से, जेकोबियन आव्यूह पहचान है, जो सहानुभूतिपूर्ण है: <math>I^\text{T}JI=J</math>. | ||
* तय करना <math>\mathbf{x}=(q,p)</math> और <math>\mathbf{X}=(Q,P)</math>, रूपान्तरण <math>\mathbf{X}(\mathbf{x})=R \mathbf{x}</math> कहाँ <math>R \in SO(2)</math> ऑर्डर 2 का रोटेशन | * तय करना <math>\mathbf{x}=(q,p)</math> और <math>\mathbf{X}=(Q,P)</math>, रूपान्तरण <math>\mathbf{X}(\mathbf{x})=R \mathbf{x}</math> कहाँ <math>R \in SO(2)</math> ऑर्डर 2 का रोटेशन आव्यूह विहित है। यह ध्यान में रखते हुए कि विशेष ऑर्थोगोनल मेट्रिसेस पालन करते हैं <math>R^\text{T}R=I</math> यह देखना आसान है कि जैकोबियन सहानुभूतिपूर्ण है। सावधान रहें कि यह उदाहरण केवल आयाम 2 में कार्य करता है: <math>SO(2)</math> एकमात्र विशेष ऑर्थोगोनल समूह है जिसमें प्रत्येक आव्यूह सहानुभूतिपूर्ण है। | ||
* रूपान्तरण <math>(Q(q,p), P(q,p))=(q+f(p), p)</math>, कहाँ <math>f(p)</math> का मनमाना कार्य है <math>p</math>, विहित है। जैकोबियन | * रूपान्तरण <math>(Q(q,p), P(q,p))=(q+f(p), p)</math>, कहाँ <math>f(p)</math> का मनमाना कार्य है <math>p</math>, विहित है। जैकोबियन आव्यूह वास्तव में किसके द्वारा दिया जाता है <math display="block">\frac{\partial X}{\partial x} = \begin{bmatrix} 1 & f'(p) \\ 0 & 1 \end{bmatrix}</math> जो कि सहानुभूतिपूर्ण है। | ||
== आधुनिक गणितीय विवरण == | == आधुनिक गणितीय विवरण == |
Revision as of 23:34, 14 April 2023
हैमिल्टनियन यांत्रिकी में, विहित परिवर्तन विहित निर्देशांकों का परिवर्तन है (q, p, t) → (Q, P, t) जो हैमिल्टन के समीकरणों के रूप को संरक्षित करता है। इसे कभी-कभी फॉर्म इंवेरियन के रूप में जाना जाता है। इसे हैमिल्टनियन यांत्रिकी के रूप को ही संरक्षित करने की आवश्यकता नहीं है। प्रामाणिक परिवर्तन अपने आप में उपयोगी हैं, और हैमिल्टन-जैकोबी समीकरणों (गति की निरंतरता की गणना के लिए उपयोगी विधि) और लिउविल के प्रमेय (हैमिल्टनियन) | लिउविल के प्रमेय (स्वयं मौलिक सांख्यिकीय यांत्रिकी के लिए आधार) के लिए आधार बनाते हैं।
चूंकि Lagrangian यांत्रिकी सामान्यीकृत निर्देशांक, निर्देशांक के परिवर्तन पर आधारित है q → Q Lagrangian यांत्रिकी | Lagrange के समीकरणों के रूप को प्रभावित नहीं करते हैं और इसलिए, हैमिल्टन के समीकरणों के रूप को प्रभावित नहीं करते हैं यदि हम साथ लीजेंड्रे परिवर्तन द्वारा संवेग को बदलते हैं
स्पष्टता के लिए, हम यहाँ प्रस्तुति को कलन और मौलिक यांत्रिकी तक सीमित रखते हैं। अधिक उन्नत गणित से परिचित पाठक जैसे कॉटंगेंट बंडल, बाहरी व्युत्पन्न ्स और सिंपलेक्टिक मैनिफोल्ड को संबंधित sympletomorphism लेख पढ़ना चाहिए। (कैनोनिकल ट्रांसफॉर्मेशन सिम्पेक्टोमोर्फिज्म का विशेष मामला है।) चूंकि, इस लेख के अंत में आधुनिक गणितीय विवरण का संक्षिप्त परिचय सम्मिलित है।
नोटेशन
बोल्डफेस चर जैसे q की सूची का प्रतिनिधित्व करते हैं N सामान्यीकृत निर्देशांक जिन्हें ROTATION के अनुसार वेक्टर (ज्यामितीय) की तरह बदलने की आवश्यकता नहीं है, उदाहरण के लिए,
अप्रत्यक्ष दृष्टिकोण
हैमिल्टन के समीकरणों का कार्यात्मक रूप है
सामान्यतः, परिवर्तन (q, p, t) → (Q, P, t) हैमिल्टन के समीकरणों के रूप को संरक्षित नहीं करता है। समय के बीच स्वतंत्र परिवर्तन (q, p) और (Q, P) हम जाँच कर सकते हैं कि क्या परिवर्तन प्रतिबंधित है, निम्नानुसार है। चूंकि प्रतिबंधित परिवर्तनों की कोई स्पष्ट समय निर्भरता नहीं है (परिभाषा के अनुसार), नए सामान्यीकृत समन्वय का समय व्युत्पन्न Qm है
हमारे पास संयुग्मी संवेग P के लिए भी तत्समक हैm
लिउविल का प्रमेय
अप्रत्यक्ष स्थितियां हमें लिउविले के प्रमेय (हैमिल्टनियन) को प्रमाणित करने की अनुमति देती हैं। लिउविल की प्रमेय, जिसमें कहा गया है कि चरण अंतरिक्ष में आयतन विहित परिवर्तनों के अनुसार संरक्षित है, अर्थात,
फ़ंक्शन दृष्टिकोण उत्पन्न करना
के बीच वैध परिवर्तन की गारंटी के लिए (q, p, H) और (Q, P, K), हम प्रत्यक्ष जनन फलन दृष्टिकोण का सहारा ले सकते हैं। चरों के दोनों सेटों को क्रिया (भौतिकी) | हैमिल्टन के सिद्धांत का पालन करना चाहिए। यह Lagrangian यांत्रिकी पर क्रिया समाकलन है और क्रमशः, हेमिल्टनियन द्वारा (प्रतिलोम) लीजेंड्रे परिवर्तन के माध्यम से प्राप्त किया गया, दोनों को स्थिर होना चाहिए (जिससे कि उपर्युक्त और निर्दिष्ट रूप के समीकरणों पर पहुंचने के लिए यूलर-लैग्रेंज समीकरणों का उपयोग किया जा सके; जैसा कि उदाहरण के लिए दिखाया गया है हैमिल्टन समीकरण# व्युत्पन्न हैमिल्टन के समीकरण):
सामान्यतः, स्केलिंग कारक λ के बराबर सेट है; जिसके लिए विहित परिवर्तन λ ≠ 1 विस्तारित विहित रूपांतरण कहलाते हैं। dG/dt रखा जाता है, अन्यथा समस्या तुच्छ हो जाएगी और नए विहित चर के लिए पुराने से भिन्न होने की अधिक स्वतंत्रता नहीं होगी।
यहाँ G पुराने विहित निर्देशांक का जनरेटिंग फ़ंक्शन (भौतिकी) है (q या p), नया विहित निर्देशांक (Q या P) और (संभवतः) समय t. इस प्रकार, चरों की पसंद के आधार पर, चार मौलिक प्रकार के जनक फलन होते हैं (चूंकि इन चार प्रकारों के मिश्रण मौजूद हो सकते हैं)। जैसा कि नीचे दिखाया जाएगा, जनरेटिंग फ़ंक्शन पुराने से नए कैनोनिकल निर्देशांक में परिवर्तन और ऐसे किसी भी परिवर्तन को परिभाषित करेगा (q, p) → (Q, P) प्रामाणिक होने की गारंटी है।
टाइप 1 जनरेटिंग फंक्शन
टाइप 1 जनरेटिंग फ़ंक्शन G1 केवल पुराने और नए सामान्यीकृत निर्देशांकों पर निर्भर करता है
के लिए सूत्र देता है K नए विहित निर्देशांकों के कार्य के रूप में (Q, P).
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है। उदाहरण के लिए, चलो
और K = H. यह उदाहरण दर्शाता है कि हैमिल्टनियन सूत्रीकरण में निर्देशांक और संवेग कितने स्वतंत्र हैं; वे समकक्ष चर हैं।
टाइप 2 जनरेटिंग फंक्शन
टाइप 2 जनरेटिंग फ़ंक्शन G2 केवल पुराने सामान्यीकृत निर्देशांक और नए सामान्यीकृत संवेग पर निर्भर करता है
के लिए सूत्र देता है K नए विहित निर्देशांकों के कार्य के रूप में (Q, P).
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है। उदाहरण के लिए, चलो
टाइप 3 जनरेटिंग फंक्शन
टाइप 3 जनरेटिंग फ़ंक्शन G3 केवल पुराने सामान्यीकृत संवेग और नए सामान्यीकृत निर्देशांकों पर निर्भर करता है
जहां शर्तें नीचे दिए गए समीकरण के बाईं ओर बदलने के लिए लीजेंड्रे परिवर्तन का प्रतिनिधित्व करती हैं। निहित परिवर्तन प्राप्त करने के लिए, हम ऊपर परिभाषित समीकरण का विस्तार करते हैं
व्यवहार में, यह प्रक्रिया सुनने में जितनी आसान लगती है, उससे कहीं अधिक आसान है, क्योंकि जनरेटिंग फ़ंक्शन सामान्यतः सरल होता है।
टाइप 4 जनरेटिंग फंक्शन
टाइप 4 जनरेटिंग फ़ंक्शन केवल पुराने और नए सामान्यीकृत संवेगों पर निर्भर करता है
के लिए सूत्र देता है K नए विहित निर्देशांकों के कार्य के रूप में (Q, P).
एक विहित परिवर्तन के रूप में गति
स्वयं गति (या, समतुल्य रूप से, समय की उत्पत्ति में बदलाव) विहित परिवर्तन है। यदि और , तब क्रिया (भौतिकी) | हैमिल्टन का सिद्धांत स्वतः संतुष्ट हो जाता है
उदाहरण
- अनुवाद कहाँ दो स्थिर सदिश हैं विहित परिवर्तन है। मुख्य रूप से, जेकोबियन आव्यूह पहचान है, जो सहानुभूतिपूर्ण है: .
- तय करना और , रूपान्तरण कहाँ ऑर्डर 2 का रोटेशन आव्यूह विहित है। यह ध्यान में रखते हुए कि विशेष ऑर्थोगोनल मेट्रिसेस पालन करते हैं यह देखना आसान है कि जैकोबियन सहानुभूतिपूर्ण है। सावधान रहें कि यह उदाहरण केवल आयाम 2 में कार्य करता है: एकमात्र विशेष ऑर्थोगोनल समूह है जिसमें प्रत्येक आव्यूह सहानुभूतिपूर्ण है।
- रूपान्तरण , कहाँ का मनमाना कार्य है , विहित है। जैकोबियन आव्यूह वास्तव में किसके द्वारा दिया जाता है जो कि सहानुभूतिपूर्ण है।
आधुनिक गणितीय विवरण
गणितीय शब्दों में, कैनोनिकल निर्देशांक सिस्टम के चरण स्थान (कोटेंजेंट बंडल) पर कोई निर्देशांक होते हैं जो विहित रूप को लिखने की अनुमति देते हैं
इतिहास
पृथ्वी-चंद्रमा-सूर्य प्रणाली के अध्ययन में, चार्ल्स-यूजीन डेलाउने द्वारा 1846 में विहित परिवर्तन का पहला प्रमुख अनुप्रयोग था। इस काम के परिणामस्वरूप 1860 और 1867 में फ्रेंच एकेडमी ऑफ साइंसेज द्वारा संस्मरण के रूप में बड़े संस्करणों की जोड़ी का प्रकाशन हुआ।
यह भी देखें
- सिम्पेक्टोमोर्फिज्म
- हैमिल्टन-जैकोबी समीकरण
- लिउविल का प्रमेय (हैमिल्टनियन)
- मैथ्यू परिवर्तन
- रैखिक विहित परिवर्तन
संदर्भ
- ↑ Goldstein 1980, p. 380
- Goldstein, Herbert (1980). Classical mechanics (2d ed.). Reading, Mass.: Addison-Wesley Pub. Co. p. 380. ISBN 0-201-02918-9.
- Landau, L. D.; Lifshitz, E. M. (1975) [1939]. Mechanics. Translated by Bell, S. J.; Sykes, J. B. (3rd ed.). Amsterdam: Elsevier. ISBN 978-0-7506-28969.