सम्मिश्रता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Topic in mathematics}} | {{Short description|Topic in mathematics}} | ||
{{for|एक वास्तविक लाइ समूह की जटिलता|जटिलता (लाइ समूह)}} | {{for|एक वास्तविक लाइ समूह की जटिलता|जटिलता (लाइ समूह)}} | ||
गणित में | गणित में वास्तविक संख्या (एक "वास्तविक सदिश स्थान") के क्षेत्र में सदिश स्थान {{math|''V''}} का '''जटिलीकरण''' सम्मिश्र संख्या [[क्षेत्र (गणित)]] पर एक सदिश स्थान {{math|''V''{{i sup|'''C'''}}}} उत्पन्न करता है, जो औपचारिक रूप से [[जटिल संख्या|सम्मिश्र संख्याओं]] द्वारा उनके स्केलिंग (गुणन) को सम्मिलित करने के लिए वास्तविक संख्याओं द्वारा सदिशों के स्केलिंग का विस्तार करके प्राप्त किया जाता है। {{math|''V''}} के लिए कोई [[आधार (रैखिक बीजगणित)]] (वास्तविक संख्याओं पर एक स्थान) सम्मिश्र संख्याओं पर {{math|''V''{{i sup|'''C'''}}}} के आधार के रूप में भी काम कर सकता है। | ||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == | ||
मान लीजिए कि <math>V</math> एक वास्तविक सदिश समष्टि है। {{math|''V''}} की {{em|{{visible anchor|जटिलता}}}} को जटिल संख्याओं (वास्तविकताओं पर 2-आयामी वेक्टर स्पेस के रूप में माना जाता है) के साथ <math>V</math> के [[टेंसर उत्पाद]] को ले कर परिभाषित किया गया है: | |||
:<math>V^{\Complex} = V\otimes_{\R} \Complex\,.</math> | :<math>V^{\Complex} = V\otimes_{\R} \Complex\,.</math> | ||
सबस्क्रिप्ट, <math>\R</math> | टेंसर उत्पाद पर सबस्क्रिप्ट, <math>\R</math> निरुपित करता है कि टेंसर उत्पाद को वास्तविक संख्याओं (चूंकि <math>V</math> वास्तविक सदिश स्थान है वैसे भी यह एकमात्र समझदार विकल्प है, इसलिए सबस्क्रिप्ट को सुरक्षित रूप से छोड़ा जा सकता है) पर ले लिया गया है। जैसा यह प्रतीक होता है, <math>V^{\Complex}</math> केवल वास्तविक सदिश स्थान है। चूँकि, हम जटिल गुणन को निम्नानुसार परिभाषित करके <math>V^{\Complex}</math> को एक जटिल सदिश स्थान बना सकते हैं: | ||
:<math>\alpha(v \otimes \beta) = v\otimes(\alpha\beta)\qquad\mbox{ for all } v\in V \mbox{ and }\alpha,\beta \in \Complex.</math> | :<math>\alpha(v \otimes \beta) = v\otimes(\alpha\beta)\qquad\mbox{ for all } v\in V \mbox{ and }\alpha,\beta \in \Complex.</math> | ||
सामान्यतः, जटिलीकरण अदिशों के विस्तार का उदाहरण है - जो अदिशों को वास्तविक संख्याओं से सम्मिश्र संख्याओं तक विस्तारित करता है - जो कि किसी भी क्षेत्र विस्तार के लिए किया जा सकता है, या वास्तव में वलयों के किसी भी आकारिकी के लिए किया जा सकता है। | |||
औपचारिक रूप से, जटिलता | औपचारिक रूप से, जटिलता वास्तविक वेक्टर रिक्त स्थान की श्रेणी से जटिल वेक्टर रिक्त स्थान की श्रेणी में एक कार्यात्मक {{math|Vect<sub>'''R'''</sub> → Vect<sub>'''C'''</sub>}} है। यह आसन्न फ़ैक्टर है - विशेष रूप से बाएं आसन्न - फॉरगेटफुल फ़ैक्टर {{math|Vect<sub>'''C'''</sub> → Vect<sub>'''R'''</sub>}} के लिए जो जटिल संरचना को भूल जाता है। | ||
एक जटिल सदिश स्थान <math>V</math> की जटिल संरचना को भूल जाने को {{em|{{visible anchor|विसंकुलीकरण}}}} (या कभी-कभी "{{em|{{visible anchor|प्राप्ति}}}}") कहा जाता है। आधार <math>e_{\mu}</math> के साथ एक जटिल सदिश स्थान <math>V</math> का अपघटन, अदिशों के जटिल गुणन की संभावना को हटा देता है, इस प्रकार आधार <math>\{e_{\mu}, ie_{\mu}\}</math> के साथ दो बार आयाम का एक वास्तविक सदिश स्थान <math>W_{\R}</math> उत्पन्न करता है।<ref>{{cite book|last1=Kostrikin|first1=Alexei I.|last2=Manin|first2=Yu I.|title=रेखीय बीजगणित और ज्यामिति|date=July 14, 1989|publisher=CRC Press|isbn=978-2881246838|page=75}}</ref> | |||
Line 22: | Line 22: | ||
कहाँ {{math|''v''<sub>1</sub>}} और {{math|''v''<sub>2</sub>}} में सदिश हैं {{math|''V''}}. टेंसर उत्पाद प्रतीक को छोड़ना और लिखना आम बात है | कहाँ {{math|''v''<sub>1</sub>}} और {{math|''v''<sub>2</sub>}} में सदिश हैं {{math|''V''}}. टेंसर उत्पाद प्रतीक को छोड़ना और लिखना आम बात है | ||
:<math>v = v_1 + iv_2.\,</math> | :<math>v = v_1 + iv_2.\,</math> | ||
सम्मिश्र संख्या से गुणा {{math|''a'' + ''i b''}} तब सामान्य नियम द्वारा दिया जाता है | |||
:<math>(a+ib)(v_1 + iv_2) = (av_1 - bv_2) + i(bv_1 + av_2).\,</math> | :<math>(a+ib)(v_1 + iv_2) = (av_1 - bv_2) + i(bv_1 + av_2).\,</math> | ||
हम तब सम्मान कर सकते हैं {{math|''V''{{i sup|'''C'''}}}} की दो प्रतियों के सदिश स्थानों के प्रत्यक्ष योग के रूप में {{math|''V''}}: | हम तब सम्मान कर सकते हैं {{math|''V''{{i sup|'''C'''}}}} की दो प्रतियों के सदिश स्थानों के प्रत्यक्ष योग के रूप में {{math|''V''}}: | ||
Line 37: | Line 37: | ||
कहाँ <math>V^{\Complex}</math> ऑपरेटर द्वारा [[रैखिक जटिल संरचना]] दी जाती है {{math|''J''}} के रूप में परिभाषित <math>J(v,w) := (-w,v),</math> कहाँ {{math|''J''}} "द्वारा गुणन" के संचालन को कूटबद्ध करता है {{mvar|i}}”। मैट्रिक्स रूप में, {{math|''J''}} द्वारा दिया गया है: | कहाँ <math>V^{\Complex}</math> ऑपरेटर द्वारा [[रैखिक जटिल संरचना]] दी जाती है {{math|''J''}} के रूप में परिभाषित <math>J(v,w) := (-w,v),</math> कहाँ {{math|''J''}} "द्वारा गुणन" के संचालन को कूटबद्ध करता है {{mvar|i}}”। मैट्रिक्स रूप में, {{math|''J''}} द्वारा दिया गया है: | ||
:<math>J = \begin{bmatrix}0 & -I_V \\ I_V & 0\end{bmatrix}.</math> | :<math>J = \begin{bmatrix}0 & -I_V \\ I_V & 0\end{bmatrix}.</math> | ||
यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - हालांकि यह अंतरिक्ष को अलग तरीके से बनाता है। इसलिए, <math>V^{\Complex}</math> रूप में लिखा जा सकता है <math>V \oplus JV</math> या <math>V \oplus i V,</math> की पहचान {{math|''V''}} पहले सीधे योग के साथ। यह दृष्टिकोण अधिक ठोस है, और इसमें तकनीकी रूप से | यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - हालांकि यह अंतरिक्ष को अलग तरीके से बनाता है। इसलिए, <math>V^{\Complex}</math> रूप में लिखा जा सकता है <math>V \oplus JV</math> या <math>V \oplus i V,</math> की पहचान {{math|''V''}} पहले सीधे योग के साथ। यह दृष्टिकोण अधिक ठोस है, और इसमें तकनीकी रूप से सम्मिलित टेंसर उत्पाद के उपयोग से बचने का लाभ है, लेकिन यह तदर्थ है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 47: | Line 47: | ||
से हटकर जटिलता की प्रक्रिया {{math|'''R'''}} को {{math|'''C'''}} [[लियोनार्ड डिक्सन]] सहित बीसवीं सदी के गणितज्ञों द्वारा अमूर्त किया गया था। [[ पहचान मानचित्रण ]] के उपयोग से शुरू होता है {{math|1=''x''* = ''x''}} तुच्छ समावेशन (गणित) के रूप में {{math|'''R'''}}. R की अगली दो प्रतियाँ बनाने के लिए उपयोग की जाती हैं {{math|1=''z'' = (''a , b'')}} इनवोल्यूशन के रूप में पेश किए गए [[जटिल संयुग्मन]] के साथ {{math|1=''z''* = (''a'', −''b'')}}. दो तत्व {{mvar|w}} और {{mvar|z}} दोगुने सेट में से गुणा करें | से हटकर जटिलता की प्रक्रिया {{math|'''R'''}} को {{math|'''C'''}} [[लियोनार्ड डिक्सन]] सहित बीसवीं सदी के गणितज्ञों द्वारा अमूर्त किया गया था। [[ पहचान मानचित्रण ]] के उपयोग से शुरू होता है {{math|1=''x''* = ''x''}} तुच्छ समावेशन (गणित) के रूप में {{math|'''R'''}}. R की अगली दो प्रतियाँ बनाने के लिए उपयोग की जाती हैं {{math|1=''z'' = (''a , b'')}} इनवोल्यूशन के रूप में पेश किए गए [[जटिल संयुग्मन]] के साथ {{math|1=''z''* = (''a'', −''b'')}}. दो तत्व {{mvar|w}} और {{mvar|z}} दोगुने सेट में से गुणा करें | ||
:<math>w z = (a,b) \times (c,d) = (ac\ - \ d^*b,\ da \ + \ b c^*).</math> | :<math>w z = (a,b) \times (c,d) = (ac\ - \ d^*b,\ da \ + \ b c^*).</math> | ||
अंत में, दोगुने सेट को मानदंड दिया जाता है {{math|1=''N''(''z'') = ''z* z''}}. से शुरू करते समय {{math|'''R'''}} पहचान | अंत में, दोगुने सेट को मानदंड दिया जाता है {{math|1=''N''(''z'') = ''z* z''}}. से शुरू करते समय {{math|'''R'''}} पहचान सम्मिलित होने के साथ, दोगुना सेट है {{math|'''C'''}} मानदंड के साथ {{math|''a''<sup>2</sup> + ''b''<sup>2</sup>}}. | ||
अगर कोई दोगुना हो जाता है {{math|'''C'''}}, और संयुग्मन (ए, बी) * = (ए *, -बी) का उपयोग करता है, निर्माण उपज चतुष्कोणीय है। दोहरीकरण फिर से [[ऑक्टोनियन]] पैदा करता है, जिसे केली नंबर भी कहा जाता है। यह इस बिंदु पर था कि 1919 में डिक्सन ने बीजगणितीय संरचना को उजागर करने में योगदान दिया। | अगर कोई दोगुना हो जाता है {{math|'''C'''}}, और संयुग्मन (ए, बी) * = (ए *, -बी) का उपयोग करता है, निर्माण उपज चतुष्कोणीय है। दोहरीकरण फिर से [[ऑक्टोनियन]] पैदा करता है, जिसे केली नंबर भी कहा जाता है। यह इस बिंदु पर था कि 1919 में डिक्सन ने बीजगणितीय संरचना को उजागर करने में योगदान दिया। | ||
प्रक्रिया भी शुरू की जा सकती है {{math|'''C'''}} और तुच्छ समावेशन {{math|1=''z''* = ''z''}}. उत्पादित मानदंड बस है {{math|''z''<sup>2</sup>}}, की पीढ़ी के विपरीत {{math|'''C'''}} दोगुना करके {{math|'''R'''}}. जब यह {{math|'''C'''}} को दुगुना करने पर यह [[द्विजटिल संख्या]] उत्पन्न करता है, और दुगना करने से द्विचतुर्भुज संख्याएँ उत्पन्न होती हैं, और दुगनी करने पर फिर से द्विकणात्मक संख्याएँ उत्पन्न होती हैं। जब आधार बीजगणित साहचर्य होता है, तो इस केली-डिक्सन निर्माण द्वारा निर्मित बीजगणित को [[रचना बीजगणित]] कहा जाता है क्योंकि यह दिखाया जा सकता है कि इसमें संपत्ति है | प्रक्रिया भी शुरू की जा सकती है {{math|'''C'''}} और तुच्छ समावेशन {{math|1=''z''* = ''z''}}. उत्पादित मानदंड बस है {{math|''z''<sup>2</sup>}}, की पीढ़ी के विपरीत {{math|'''C'''}} दोगुना करके {{math|'''R'''}}. जब यह {{math|'''C'''}} को दुगुना करने पर यह [[द्विजटिल संख्या|द्विसम्मिश्र संख्या]] उत्पन्न करता है, और दुगना करने से द्विचतुर्भुज संख्याएँ उत्पन्न होती हैं, और दुगनी करने पर फिर से द्विकणात्मक संख्याएँ उत्पन्न होती हैं। जब आधार बीजगणित साहचर्य होता है, तो इस केली-डिक्सन निर्माण द्वारा निर्मित बीजगणित को [[रचना बीजगणित]] कहा जाता है क्योंकि यह दिखाया जा सकता है कि इसमें संपत्ति है | ||
:<math>N(p\,q) = N(p)\,N(q)\,.</math> | :<math>N(p\,q) = N(p)\,N(q)\,.</math> | ||
Revision as of 07:18, 24 April 2023
गणित में वास्तविक संख्या (एक "वास्तविक सदिश स्थान") के क्षेत्र में सदिश स्थान V का जटिलीकरण सम्मिश्र संख्या क्षेत्र (गणित) पर एक सदिश स्थान VC उत्पन्न करता है, जो औपचारिक रूप से सम्मिश्र संख्याओं द्वारा उनके स्केलिंग (गुणन) को सम्मिलित करने के लिए वास्तविक संख्याओं द्वारा सदिशों के स्केलिंग का विस्तार करके प्राप्त किया जाता है। V के लिए कोई आधार (रैखिक बीजगणित) (वास्तविक संख्याओं पर एक स्थान) सम्मिश्र संख्याओं पर VC के आधार के रूप में भी काम कर सकता है।
औपचारिक परिभाषा
मान लीजिए कि एक वास्तविक सदिश समष्टि है। V की जटिलता को जटिल संख्याओं (वास्तविकताओं पर 2-आयामी वेक्टर स्पेस के रूप में माना जाता है) के साथ के टेंसर उत्पाद को ले कर परिभाषित किया गया है:
टेंसर उत्पाद पर सबस्क्रिप्ट, निरुपित करता है कि टेंसर उत्पाद को वास्तविक संख्याओं (चूंकि वास्तविक सदिश स्थान है वैसे भी यह एकमात्र समझदार विकल्प है, इसलिए सबस्क्रिप्ट को सुरक्षित रूप से छोड़ा जा सकता है) पर ले लिया गया है। जैसा यह प्रतीक होता है, केवल वास्तविक सदिश स्थान है। चूँकि, हम जटिल गुणन को निम्नानुसार परिभाषित करके को एक जटिल सदिश स्थान बना सकते हैं:
सामान्यतः, जटिलीकरण अदिशों के विस्तार का उदाहरण है - जो अदिशों को वास्तविक संख्याओं से सम्मिश्र संख्याओं तक विस्तारित करता है - जो कि किसी भी क्षेत्र विस्तार के लिए किया जा सकता है, या वास्तव में वलयों के किसी भी आकारिकी के लिए किया जा सकता है।
औपचारिक रूप से, जटिलता वास्तविक वेक्टर रिक्त स्थान की श्रेणी से जटिल वेक्टर रिक्त स्थान की श्रेणी में एक कार्यात्मक VectR → VectC है। यह आसन्न फ़ैक्टर है - विशेष रूप से बाएं आसन्न - फॉरगेटफुल फ़ैक्टर VectC → VectR के लिए जो जटिल संरचना को भूल जाता है।
एक जटिल सदिश स्थान की जटिल संरचना को भूल जाने को विसंकुलीकरण (या कभी-कभी "प्राप्ति") कहा जाता है। आधार के साथ एक जटिल सदिश स्थान का अपघटन, अदिशों के जटिल गुणन की संभावना को हटा देता है, इस प्रकार आधार के साथ दो बार आयाम का एक वास्तविक सदिश स्थान उत्पन्न करता है।[1]
मूल गुण
टेंसर उत्पाद की प्रकृति से, प्रत्येक वेक्टर v में VC के रूप में विशिष्ट रूप से लिखा जा सकता है
कहाँ v1 और v2 में सदिश हैं V. टेंसर उत्पाद प्रतीक को छोड़ना और लिखना आम बात है
सम्मिश्र संख्या से गुणा a + i b तब सामान्य नियम द्वारा दिया जाता है
हम तब सम्मान कर सकते हैं VC की दो प्रतियों के सदिश स्थानों के प्रत्यक्ष योग के रूप में V:
सम्मिश्र संख्याओं से गुणन के लिए उपरोक्त नियम के साथ।
का स्वाभाविक बन्धन है V में VC द्वारा दिए गए
वेक्टर स्थान V को तब की वास्तविक रैखिक उपसमष्टि के रूप में माना जा सकता है VC. अगर V का आधार है (रैखिक बीजगणित) { ei } (मैदान के ऊपर R) तो के लिए इसी आधार VC द्वारा दिया गया है { ei ⊗ 1 } मैदान के ऊपर C. का जटिल आयाम (रैखिक बीजगणित)। VC इसलिए के वास्तविक आयाम के बराबर है V:
वैकल्पिक रूप से, टेंसर उत्पादों का उपयोग करने के बजाय, इस प्रत्यक्ष योग का उपयोग जटिलता की परिभाषा के रूप में किया जा सकता है:
कहाँ ऑपरेटर द्वारा रैखिक जटिल संरचना दी जाती है J के रूप में परिभाषित कहाँ J "द्वारा गुणन" के संचालन को कूटबद्ध करता है i”। मैट्रिक्स रूप में, J द्वारा दिया गया है:
यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - हालांकि यह अंतरिक्ष को अलग तरीके से बनाता है। इसलिए, रूप में लिखा जा सकता है या की पहचान V पहले सीधे योग के साथ। यह दृष्टिकोण अधिक ठोस है, और इसमें तकनीकी रूप से सम्मिलित टेंसर उत्पाद के उपयोग से बचने का लाभ है, लेकिन यह तदर्थ है।
उदाहरण
- वास्तविक समन्वय स्थान की जटिलता Rn जटिल समन्वय स्थान है Cn.
- इसी प्रकार यदि V के होते हैं m×n मैट्रिक्स (गणित) वास्तविक प्रविष्टियों के साथ, VC से मिलकर बनेगा m×n जटिल प्रविष्टियों के साथ matrices।
डिकसन दोहरीकरण
से हटकर जटिलता की प्रक्रिया R को C लियोनार्ड डिक्सन सहित बीसवीं सदी के गणितज्ञों द्वारा अमूर्त किया गया था। पहचान मानचित्रण के उपयोग से शुरू होता है x* = x तुच्छ समावेशन (गणित) के रूप में R. R की अगली दो प्रतियाँ बनाने के लिए उपयोग की जाती हैं z = (a , b) इनवोल्यूशन के रूप में पेश किए गए जटिल संयुग्मन के साथ z* = (a, −b). दो तत्व w और z दोगुने सेट में से गुणा करें
अंत में, दोगुने सेट को मानदंड दिया जाता है N(z) = z* z. से शुरू करते समय R पहचान सम्मिलित होने के साथ, दोगुना सेट है C मानदंड के साथ a2 + b2. अगर कोई दोगुना हो जाता है C, और संयुग्मन (ए, बी) * = (ए *, -बी) का उपयोग करता है, निर्माण उपज चतुष्कोणीय है। दोहरीकरण फिर से ऑक्टोनियन पैदा करता है, जिसे केली नंबर भी कहा जाता है। यह इस बिंदु पर था कि 1919 में डिक्सन ने बीजगणितीय संरचना को उजागर करने में योगदान दिया।
प्रक्रिया भी शुरू की जा सकती है C और तुच्छ समावेशन z* = z. उत्पादित मानदंड बस है z2, की पीढ़ी के विपरीत C दोगुना करके R. जब यह C को दुगुना करने पर यह द्विसम्मिश्र संख्या उत्पन्न करता है, और दुगना करने से द्विचतुर्भुज संख्याएँ उत्पन्न होती हैं, और दुगनी करने पर फिर से द्विकणात्मक संख्याएँ उत्पन्न होती हैं। जब आधार बीजगणित साहचर्य होता है, तो इस केली-डिक्सन निर्माण द्वारा निर्मित बीजगणित को रचना बीजगणित कहा जाता है क्योंकि यह दिखाया जा सकता है कि इसमें संपत्ति है
जटिल संयुग्मन
जटिल वेक्टर स्थान VC में सामान्य जटिल सदिश स्थान की तुलना में अधिक संरचना होती है। यह विहित रूप जटिल संयुग्मन मानचित्र के साथ आता है:
द्वारा परिभाषित
- वो नक्शा χ को या तो संयुग्म-रैखिक मानचित्र के रूप में माना जा सकता है VC खुद से या जटिल रेखीय समरूपता के रूप में VC इसके जटिल संयुग्मित सदिश स्थान के लिए .
इसके विपरीत, जटिल सदिश स्थान दिया गया है W जटिल संयुग्मन के साथ χ, W जटिलता के लिए जटिल सदिश स्थान के रूप में आइसोमॉर्फिक है VC वास्तविक उप-स्थान का
दूसरे शब्दों में, जटिल संयुग्मन के साथ सभी जटिल सदिश स्थान वास्तविक सदिश स्थान की जटिलता हैं।
उदाहरण के लिए, कब W = Cn मानक जटिल संयुग्मन के साथ
अपरिवर्तनीय उप-स्थान V केवल वास्तविक उपस्थान है Rn.
रैखिक परिवर्तन
वास्तविक रैखिक परिवर्तन को देखते हुए f : V → W दो वास्तविक वेक्टर रिक्त स्थान के बीच प्राकृतिक जटिल रैखिक परिवर्तन होता है
द्वारा दिए गए
वो नक्शा 'एफ' की जटिलता कहलाती है। रैखिक परिवर्तनों की जटिलता निम्नलिखित गुणों को संतुष्ट करती है
श्रेणी सिद्धांत की भाषा में कोई कहता है कि जटिल वेक्टर रिक्त स्थान की श्रेणी से जटिल वेक्टर रिक्त स्थान की श्रेणी में (योगात्मक कारक) फ़ंक्टर को परिभाषित करता है।
वो नक्शा fC संयुग्मन के साथ संचार करता है और इसलिए V के वास्तविक उप-क्षेत्र को मैप करता हैC के वास्तविक उप-स्थान पर WC (नक्शे के माध्यम से f). इसके अलावा, जटिल रैखिक नक्शा g : VC → WC वास्तविक रेखीय मानचित्र की जटिलता है अगर और केवल अगर यह संयुग्मन के साथ शुरू होता है।
उदाहरण के रूप से रैखिक परिवर्तन पर विचार करें Rn को Rm के रूप में सोचा m×n मैट्रिक्स (गणित)। उस परिवर्तन की जटिलता बिल्कुल ही मैट्रिक्स है, लेकिन अब इसे रेखीय मानचित्र के रूप में माना जाता है Cn को Cm.
दोहरे स्थान और टेंसर उत्पाद
वास्तविक सदिश स्थान का दोहरा स्थान V स्थान है V* सभी वास्तविक रेखीय मानचित्रों से V को R. की जटिलता V* स्वाभाविक रूप से सभी वास्तविक रैखिक मानचित्रों के स्थान के रूप में सोचा जा सकता है V को C (निरूपित HomR(V,C)). वह है,
यह भी देखें
- अदिशों का विस्तार - सामान्य प्रक्रिया
- रैखिक जटिल संरचना
- बेकर-कैंपबेल-हॉसडॉर्फ सूत्र
संदर्भ
- ↑ Kostrikin, Alexei I.; Manin, Yu I. (July 14, 1989). रेखीय बीजगणित और ज्यामिति. CRC Press. p. 75. ISBN 978-2881246838.
- Halmos, Paul (1974) [1958]. Finite-Dimensional Vector Spaces. Springer. p 41 and §77 Complexification, pp 150–153. ISBN 0-387-90093-4.
- Shaw, Ronald (1982). Linear Algebra and Group Representations. Vol. I: Linear Algebra and Introduction to Group Representations. Academic Press. p. 196. ISBN 0-12-639201-3.
- Roman, Steven (2005). Advanced Linear Algebra. Graduate Texts in Mathematics. Vol. 135 (2nd ed.). New York: Springer. ISBN 0-387-24766-1.