सम्मिश्रता: Difference between revisions
No edit summary |
No edit summary |
||
Line 35: | Line 35: | ||
वैकल्पिक रूप से, टेंसर उत्पादों का उपयोग करने के अतिरिक्त, इस प्रत्यक्ष योग का उपयोग जटिलता की परिभाषा के रूप में किया जा सकता है: | वैकल्पिक रूप से, टेंसर उत्पादों का उपयोग करने के अतिरिक्त, इस प्रत्यक्ष योग का उपयोग जटिलता की परिभाषा के रूप में किया जा सकता है: | ||
:<math>V^{\Complex} := V \oplus V,</math> | :<math>V^{\Complex} := V \oplus V,</math> | ||
जहाँ <math>V^{\Complex}</math> | जहाँ <math>V^{\Complex}</math> को <math>J(v,w) := (-w,v),</math> के रूप में परिभाषित ऑपरेटर {{math|''J''}} द्वारा एक [[रैखिक जटिल संरचना]] दी गई है, जहाँ {{math|''J''}} "गुणन {{mvar|i}} द्वारा" के संचालन को कूटबद्ध करता है। मैट्रिक्स रूप में, {{math|''J''}} द्वारा दिया गया है: | ||
:<math>J = \begin{bmatrix}0 & -I_V \\ I_V & 0\end{bmatrix}.</math> | :<math>J = \begin{bmatrix}0 & -I_V \\ I_V & 0\end{bmatrix}.</math> | ||
यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - | यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - चूंकि यह अंतरिक्ष को अलग विधि से बनाता है। इसलिए, <math>V^{\Complex}</math> को <math>V \oplus JV</math> या <math>V \oplus i V</math> के रूप में लिखा जा सकता है जो {{math|''V''}} को पहले प्रत्यक्ष योग के साथ पहचानता है। यह दृष्टिकोण अधिक ठोस है, और इसमें तकनीकी रूप से सम्मिलित टेंसर उत्पाद के उपयोग से बचने का लाभ है, किन्तु यह तदर्थ है। | ||
== उदाहरण == | == उदाहरण == | ||
* [[वास्तविक समन्वय स्थान]] | *[[वास्तविक समन्वय स्थान]] {{math|'''R'''<sup>''n''</sup>}} की जटिलता जटिल समन्वय स्थान {{math|'''C'''<sup>''n''</sup>}} है। | ||
* इसी | * इसी तरह, यदि {{math|''V''}} में वास्तविक प्रविष्टियों के साथ {{math|''m''×''n''}} [[मैट्रिक्स (गणित)]] होते हैं, तो {{math|''V''{{i sup|'''C'''}}}} में जटिल प्रविष्टियों के साथ {{math|''m''×''n''}} मैट्रिक्स सम्मिलित होंगे। | ||
== डिकसन दोहरीकरण == | == डिकसन दोहरीकरण == | ||
{{Main|केली-डिक्सन निर्माण}} | {{Main|केली-डिक्सन निर्माण}} | ||
[[लियोनार्ड डिक्सन]] सहित बीसवीं शताब्दी के गणितज्ञों द्वारा {{math|'''R'''}} को {{math|'''C'''}} तक जाने की जटिलता की प्रक्रिया को सारगर्भित किया गया था। एक [[ पहचान मानचित्रण |पहचान मानचित्रण]] {{math|1=''x''* = ''x''}} को {{math|'''R'''}} पर एक तुच्छ इनवोल्यूशन के रूप में उपयोग करने के साथ प्रारंभ होता है। R की अगली दो प्रतियों का उपयोग {{math|1=''z'' = (''a , b'')}} बनाने के लिए किया जाता है, जिसमें इनवोल्यूशन {{math|1=''z''* = (''a'', −''b'')}} के रूप में प्रस्तुत [[जटिल संयुग्मन]] होता है। दो तत्व {{mvar|w}} और {{mvar|z}} दोगुने सेट में से गुणा करें | |||
:<math>w z = (a,b) \times (c,d) = (ac\ - \ d^*b,\ da \ + \ b c^*).</math> | :<math>w z = (a,b) \times (c,d) = (ac\ - \ d^*b,\ da \ + \ b c^*).</math> | ||
अंत में, दोगुने सेट को मानदंड | अंत में, दोगुने सेट को मानदंड {{math|1=''N''(''z'') = ''z* z''}} दिया जाता है। आइडेंटिटी इन्वॉल्वमेंट के साथ {{math|'''R'''}} से प्रारंभ करते समय, दोगुना सेट मानदंड {{math|''a''<sup>2</sup> + ''b''<sup>2</sup>}} के साथ {{math|'''C'''}} होता है। | ||
प्रक्रिया | यदि कोई {{math|'''C'''}} को दोगुना करता है, और संयुग्मन (a,b)* = (a*, -b) का उपयोग करता है, तो निर्माण चतुर्भुज उत्पन्न करता है। दोहरीकरण फिर से [[ऑक्टोनियन]] उत्पन्न करता है, जिसे केली संख्या भी कहा जाता है। यह इस बिंदु पर था कि 1919 में डिक्सन ने बीजगणितीय संरचना को प्रकाशित करने में योगदान दिया। | ||
इस प्रक्रिया को {{math|'''C'''}} और छोटे इनवोल्यूशन {{math|1=''z''* = ''z''}} से भी प्रारंभ किया जा सकता है। {{math|'''R'''}} को दोगुना करके {{math|'''C'''}} की पीढ़ी के विपरीत, उत्पादित मानदंड केवल {{math|''z''<sup>2</sup>}} है। जब इस {{math|'''C'''}} को दोगुना किया जाता है, तो यह [[द्विजटिल संख्या|द्विसम्मिश्र संख्या]] उत्पन्न करता है, और दोहरीकरण जो द्विभाजितता उत्पन्न करता है, और फिर से दोगुना करने से बायोक्टनियन उत्पन्न होते हैं। जब आधार बीजगणित सहयोगी होता है, तो इस केली-डिक्सन निर्माण द्वारा निर्मित बीजगणित को एक [[रचना बीजगणित|संरचना बीजगणित]] कहा जाता है क्योंकि यह दिखाया जा सकता है कि इसकी गुण है। | |||
:<math>N(p\,q) = N(p)\,N(q)\,.</math> | :<math>N(p\,q) = N(p)\,N(q)\,.</math> | ||
Line 80: | Line 81: | ||
[[श्रेणी सिद्धांत]] की भाषा में कोई कहता है कि जटिल [[वेक्टर रिक्त स्थान की श्रेणी]] से जटिल वेक्टर रिक्त स्थान की श्रेणी में ([[योगात्मक कारक]]) फ़ंक्टर को परिभाषित करता है। | [[श्रेणी सिद्धांत]] की भाषा में कोई कहता है कि जटिल [[वेक्टर रिक्त स्थान की श्रेणी]] से जटिल वेक्टर रिक्त स्थान की श्रेणी में ([[योगात्मक कारक]]) फ़ंक्टर को परिभाषित करता है। | ||
वो नक्शा {{math|''f''{{i sup|'''C'''}}}} संयुग्मन के साथ संचार करता है और इसलिए V के वास्तविक उप-क्षेत्र को मैप करता है{{i sup|'''C'''}} के वास्तविक उप-स्थान पर {{math|''W''{{i sup|'''C'''}}}} (नक्शे के माध्यम से {{math|''f''}}). इसके अलावा, जटिल रैखिक नक्शा {{math|''g'' : ''V''{{i sup|'''C'''}} → ''W''{{i sup|'''C'''}}}} वास्तविक रेखीय मानचित्र की जटिलता है यदि और केवल यदि यह संयुग्मन के साथ | वो नक्शा {{math|''f''{{i sup|'''C'''}}}} संयुग्मन के साथ संचार करता है और इसलिए V के वास्तविक उप-क्षेत्र को मैप करता है{{i sup|'''C'''}} के वास्तविक उप-स्थान पर {{math|''W''{{i sup|'''C'''}}}} (नक्शे के माध्यम से {{math|''f''}}). इसके अलावा, जटिल रैखिक नक्शा {{math|''g'' : ''V''{{i sup|'''C'''}} → ''W''{{i sup|'''C'''}}}} वास्तविक रेखीय मानचित्र की जटिलता है यदि और केवल यदि यह संयुग्मन के साथ प्रारंभ होता है। | ||
उदाहरण के रूप से रैखिक परिवर्तन पर विचार करें {{math|'''R'''<sup>''n''</sup>}} को {{math|'''R'''<sup>''m''</sup>}} के रूप में सोचा {{math|''m''×''n''}} मैट्रिक्स (गणित)। उस परिवर्तन की जटिलता बिल्कुल ही मैट्रिक्स है, | उदाहरण के रूप से रैखिक परिवर्तन पर विचार करें {{math|'''R'''<sup>''n''</sup>}} को {{math|'''R'''<sup>''m''</sup>}} के रूप में सोचा {{math|''m''×''n''}} मैट्रिक्स (गणित)। उस परिवर्तन की जटिलता बिल्कुल ही मैट्रिक्स है, किन्तु अब इसे रेखीय मानचित्र के रूप में माना जाता है {{math|'''C'''<sup>''n''</sup>}} को {{math|'''C'''<sup>''m''</sup>}}. | ||
== दोहरे स्थान और टेंसर उत्पाद == | == दोहरे स्थान और टेंसर उत्पाद == | ||
Line 98: | Line 99: | ||
अधिक आम तौर पर, वास्तविक वेक्टर रिक्त स्थान दिए गए हैं {{math|''V''}} और {{math|''W''}} प्राकृतिक समरूपता है | अधिक आम तौर पर, वास्तविक वेक्टर रिक्त स्थान दिए गए हैं {{math|''V''}} और {{math|''W''}} प्राकृतिक समरूपता है | ||
<math display=block>\mathrm{Hom}_{\Reals}(V,W)^{\Complex} \cong \mathrm{Hom}_{\Complex}(V^{\Complex},W^{\Complex}).</math> | <math display=block>\mathrm{Hom}_{\Reals}(V,W)^{\Complex} \cong \mathrm{Hom}_{\Complex}(V^{\Complex},W^{\Complex}).</math> | ||
टेंसर उत्पादों, [[बाहरी शक्ति]]यों और [[सममित शक्ति]]यों को लेने के संचालन के साथ जटिलता भी | टेंसर उत्पादों, [[बाहरी शक्ति]]यों और [[सममित शक्ति]]यों को लेने के संचालन के साथ जटिलता भी प्रारंभ होती है। उदाहरण के लिए, यदि {{math|''V''}} और {{math|''W''}} वास्तविक सदिश स्थान हैं, प्राकृतिक समरूपता है | ||
<math display=block>(V \otimes_{\Reals} W)^{\Complex} \cong V^{\Complex} \otimes_{\Complex} W^{\Complex}\,.</math> | <math display=block>(V \otimes_{\Reals} W)^{\Complex} \cong V^{\Complex} \otimes_{\Complex} W^{\Complex}\,.</math> | ||
ध्यान दें कि बाएं हाथ के टेंसर उत्पाद को वास्तविक पर ले लिया जाता है जबकि दाएं हाथ वाले को परिसरों पर ले लिया जाता है। सामान्य तौर पर यही पैटर्न सही है। उदाहरण के लिए, किसी के पास है | ध्यान दें कि बाएं हाथ के टेंसर उत्पाद को वास्तविक पर ले लिया जाता है जबकि दाएं हाथ वाले को परिसरों पर ले लिया जाता है। सामान्य तौर पर यही पैटर्न सही है। उदाहरण के लिए, किसी के पास है |
Revision as of 08:59, 24 April 2023
गणित में वास्तविक संख्या (एक "वास्तविक सदिश स्थान") के क्षेत्र में सदिश स्थान V का जटिलीकरण सम्मिश्र संख्या क्षेत्र (गणित) पर एक सदिश स्थान VC उत्पन्न करता है, जो औपचारिक रूप से सम्मिश्र संख्याओं द्वारा उनके स्केलिंग (गुणन) को सम्मिलित करने के लिए वास्तविक संख्याओं द्वारा सदिशों के स्केलिंग का विस्तार करके प्राप्त किया जाता है। V के लिए कोई आधार (रैखिक बीजगणित) (वास्तविक संख्याओं पर एक स्थान) सम्मिश्र संख्याओं पर VC के आधार के रूप में भी काम कर सकता है।
औपचारिक परिभाषा
मान लीजिए कि एक वास्तविक सदिश समष्टि है। V की जटिलता को जटिल संख्याओं (वास्तविकताओं पर 2-आयामी वेक्टर स्पेस के रूप में माना जाता है) के साथ के टेंसर उत्पाद को ले कर परिभाषित किया गया है:
टेंसर उत्पाद पर सबस्क्रिप्ट, निरुपित करता है कि टेंसर उत्पाद को वास्तविक संख्याओं (चूंकि वास्तविक सदिश स्थान है वैसे भी यह एकमात्र समझदार विकल्प है, इसलिए सबस्क्रिप्ट को सुरक्षित रूप से छोड़ा जा सकता है) पर ले लिया गया है। जैसा यह प्रतीक होता है, केवल वास्तविक सदिश स्थान है। चूँकि, हम जटिल गुणन को निम्नानुसार परिभाषित करके को एक जटिल सदिश स्थान बना सकते हैं:
सामान्यतः, जटिलीकरण अदिशों के विस्तार का उदाहरण है - जो अदिशों को वास्तविक संख्याओं से सम्मिश्र संख्याओं तक विस्तारित करता है - जो कि किसी भी क्षेत्र विस्तार के लिए किया जा सकता है, या वास्तव में वलयों के किसी भी आकारिकी के लिए किया जा सकता है।
औपचारिक रूप से, जटिलता वास्तविक वेक्टर रिक्त स्थान की श्रेणी से जटिल वेक्टर रिक्त स्थान की श्रेणी में एक कार्यात्मक VectR → VectC है। यह आसन्न फ़ैक्टर है - विशेष रूप से बाएं आसन्न - फॉरगेटफुल फ़ैक्टर VectC → VectR के लिए जो जटिल संरचना को भूल जाता है।
एक जटिल सदिश स्थान की जटिल संरचना को भूल जाने को विसंकुलीकरण (या कभी-कभी "प्राप्ति") कहा जाता है। आधार के साथ एक जटिल सदिश स्थान का अपघटन, अदिशों के जटिल गुणन की संभावना को हटा देता है, इस प्रकार आधार के साथ दो बार आयाम का एक वास्तविक सदिश स्थान उत्पन्न करता है।[1]
मूल गुण
टेंसर उत्पाद की प्रकृति से, VC में प्रत्येक वेक्टर v को विशिष्ट रूप से
के रूप में लिखा जा सकता है जहां v1 और v2 V में सदिश हैं। टेंसर उत्पाद प्रतीक को छोड़ना और लिखना सामान्य बात है
सम्मिश्र संख्या से गुणा a + i b तब सामान्य नियम द्वारा दिया जाता है
इसके बाद हम VC को V:
की दो प्रतियों के प्रत्यक्ष योग के रूप में जटिल संख्याओं से गुणा करने के उपरोक्त नियम के साथ मान सकते हैं।
द्वारा दिए गए VC में V का एक प्राकृतिक एम्बेडिंग है।
वेक्टर स्थान V को तब VC की वास्तविक रैखिक उपसमष्टि के रूप में माना जा सकता है। यदि V का आधार { ei } (क्षेत्र R पर) है तो VC के लिए संबंधित आधार क्षेत्र C पर { ei ⊗ 1 } द्वारा दिया जाता है। इसलिए VC का जटिल आयाम (रैखिक बीजगणित) V के वास्तविक आयाम के बराबर है:
वैकल्पिक रूप से, टेंसर उत्पादों का उपयोग करने के अतिरिक्त, इस प्रत्यक्ष योग का उपयोग जटिलता की परिभाषा के रूप में किया जा सकता है:
जहाँ को के रूप में परिभाषित ऑपरेटर J द्वारा एक रैखिक जटिल संरचना दी गई है, जहाँ J "गुणन i द्वारा" के संचालन को कूटबद्ध करता है। मैट्रिक्स रूप में, J द्वारा दिया गया है:
यह समान स्थान उत्पन्न करता है - रैखिक जटिल संरचना वाला वास्तविक वेक्टर स्थान जटिल वेक्टर स्थान के समान डेटा है - चूंकि यह अंतरिक्ष को अलग विधि से बनाता है। इसलिए, को या के रूप में लिखा जा सकता है जो V को पहले प्रत्यक्ष योग के साथ पहचानता है। यह दृष्टिकोण अधिक ठोस है, और इसमें तकनीकी रूप से सम्मिलित टेंसर उत्पाद के उपयोग से बचने का लाभ है, किन्तु यह तदर्थ है।
उदाहरण
- वास्तविक समन्वय स्थान Rn की जटिलता जटिल समन्वय स्थान Cn है।
- इसी तरह, यदि V में वास्तविक प्रविष्टियों के साथ m×n मैट्रिक्स (गणित) होते हैं, तो VC में जटिल प्रविष्टियों के साथ m×n मैट्रिक्स सम्मिलित होंगे।
डिकसन दोहरीकरण
लियोनार्ड डिक्सन सहित बीसवीं शताब्दी के गणितज्ञों द्वारा R को C तक जाने की जटिलता की प्रक्रिया को सारगर्भित किया गया था। एक पहचान मानचित्रण x* = x को R पर एक तुच्छ इनवोल्यूशन के रूप में उपयोग करने के साथ प्रारंभ होता है। R की अगली दो प्रतियों का उपयोग z = (a , b) बनाने के लिए किया जाता है, जिसमें इनवोल्यूशन z* = (a, −b) के रूप में प्रस्तुत जटिल संयुग्मन होता है। दो तत्व w और z दोगुने सेट में से गुणा करें
अंत में, दोगुने सेट को मानदंड N(z) = z* z दिया जाता है। आइडेंटिटी इन्वॉल्वमेंट के साथ R से प्रारंभ करते समय, दोगुना सेट मानदंड a2 + b2 के साथ C होता है।
यदि कोई C को दोगुना करता है, और संयुग्मन (a,b)* = (a*, -b) का उपयोग करता है, तो निर्माण चतुर्भुज उत्पन्न करता है। दोहरीकरण फिर से ऑक्टोनियन उत्पन्न करता है, जिसे केली संख्या भी कहा जाता है। यह इस बिंदु पर था कि 1919 में डिक्सन ने बीजगणितीय संरचना को प्रकाशित करने में योगदान दिया।
इस प्रक्रिया को C और छोटे इनवोल्यूशन z* = z से भी प्रारंभ किया जा सकता है। R को दोगुना करके C की पीढ़ी के विपरीत, उत्पादित मानदंड केवल z2 है। जब इस C को दोगुना किया जाता है, तो यह द्विसम्मिश्र संख्या उत्पन्न करता है, और दोहरीकरण जो द्विभाजितता उत्पन्न करता है, और फिर से दोगुना करने से बायोक्टनियन उत्पन्न होते हैं। जब आधार बीजगणित सहयोगी होता है, तो इस केली-डिक्सन निर्माण द्वारा निर्मित बीजगणित को एक संरचना बीजगणित कहा जाता है क्योंकि यह दिखाया जा सकता है कि इसकी गुण है।
जटिल संयुग्मन
जटिल वेक्टर स्थान VC में सामान्य जटिल सदिश स्थान की तुलना में अधिक संरचना होती है। यह विहित रूप जटिल संयुग्मन मानचित्र के साथ आता है:
द्वारा परिभाषित
- वो नक्शा χ को या तो संयुग्म-रैखिक मानचित्र के रूप में माना जा सकता है VC खुद से या जटिल रेखीय समरूपता के रूप में VC इसके जटिल संयुग्मित सदिश स्थान के लिए .
इसके विपरीत, जटिल सदिश स्थान दिया गया है W जटिल संयुग्मन के साथ χ, W जटिलता के लिए जटिल सदिश स्थान के रूप में आइसोमॉर्फिक है VC वास्तविक उप-स्थान का
दूसरे शब्दों में, जटिल संयुग्मन के साथ सभी जटिल सदिश स्थान वास्तविक सदिश स्थान की जटिलता हैं।
उदाहरण के लिए, कब W = Cn मानक जटिल संयुग्मन के साथ
अपरिवर्तनीय उप-स्थान V केवल वास्तविक उपस्थान है Rn.
रैखिक परिवर्तन
वास्तविक रैखिक परिवर्तन को देखते हुए f : V → W दो वास्तविक वेक्टर रिक्त स्थान के बीच प्राकृतिक जटिल रैखिक परिवर्तन होता है
द्वारा दिए गए
वो नक्शा 'एफ' की जटिलता कहलाती है। रैखिक परिवर्तनों की जटिलता निम्नलिखित गुणों को संतुष्ट करती है
श्रेणी सिद्धांत की भाषा में कोई कहता है कि जटिल वेक्टर रिक्त स्थान की श्रेणी से जटिल वेक्टर रिक्त स्थान की श्रेणी में (योगात्मक कारक) फ़ंक्टर को परिभाषित करता है।
वो नक्शा fC संयुग्मन के साथ संचार करता है और इसलिए V के वास्तविक उप-क्षेत्र को मैप करता हैC के वास्तविक उप-स्थान पर WC (नक्शे के माध्यम से f). इसके अलावा, जटिल रैखिक नक्शा g : VC → WC वास्तविक रेखीय मानचित्र की जटिलता है यदि और केवल यदि यह संयुग्मन के साथ प्रारंभ होता है।
उदाहरण के रूप से रैखिक परिवर्तन पर विचार करें Rn को Rm के रूप में सोचा m×n मैट्रिक्स (गणित)। उस परिवर्तन की जटिलता बिल्कुल ही मैट्रिक्स है, किन्तु अब इसे रेखीय मानचित्र के रूप में माना जाता है Cn को Cm.
दोहरे स्थान और टेंसर उत्पाद
वास्तविक सदिश स्थान का दोहरा स्थान V स्थान है V* सभी वास्तविक रेखीय मानचित्रों से V को R. की जटिलता V* स्वाभाविक रूप से सभी वास्तविक रैखिक मानचित्रों के स्थान के रूप में सोचा जा सकता है V को C (निरूपित HomR(V,C)). वह है,
यह भी देखें
- अदिशों का विस्तार - सामान्य प्रक्रिया
- रैखिक जटिल संरचना
- बेकर-कैंपबेल-हॉसडॉर्फ सूत्र
संदर्भ
- ↑ Kostrikin, Alexei I.; Manin, Yu I. (July 14, 1989). रेखीय बीजगणित और ज्यामिति. CRC Press. p. 75. ISBN 978-2881246838.
- Halmos, Paul (1974) [1958]. Finite-Dimensional Vector Spaces. Springer. p 41 and §77 Complexification, pp 150–153. ISBN 0-387-90093-4.
- Shaw, Ronald (1982). Linear Algebra and Group Representations. Vol. I: Linear Algebra and Introduction to Group Representations. Academic Press. p. 196. ISBN 0-12-639201-3.
- Roman, Steven (2005). Advanced Linear Algebra. Graduate Texts in Mathematics. Vol. 135 (2nd ed.). New York: Springer. ISBN 0-387-24766-1.