बाइहार्मोनिक समीकरण: Difference between revisions
(→अंकन) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Fourth-order PDE in continuum mechanics}} | {{Short description|Fourth-order PDE in continuum mechanics}} | ||
गणित में, द्वि हरात्मक समीकरण एक | गणित में, द्वि हरात्मक समीकरण एक चतुर्थ क्रम आंशिक अंतर समीकरण है जो सातत्य यांत्रिकी के क्षेत्रों में उत्पन्न होता है, जिसमें [[रैखिक लोच|रैखिक प्रत्यास्थ]] सिद्धांत और [[स्टोक्स प्रवाह]] का समाधान सम्मलित है। विशेष रूप से, इसका उपयोग संकीर्ण संरचनाओं के निर्माण में किया जाता है जो बाह्य बलों के लिए [[लोच (भौतिकी)|प्रत्यास्थता (भौतिकी)]] पर प्रतिक्रिया देता है। | ||
== अंकन == | == अंकन == |
Revision as of 18:43, 20 April 2023
गणित में, द्वि हरात्मक समीकरण एक चतुर्थ क्रम आंशिक अंतर समीकरण है जो सातत्य यांत्रिकी के क्षेत्रों में उत्पन्न होता है, जिसमें रैखिक प्रत्यास्थ सिद्धांत और स्टोक्स प्रवाह का समाधान सम्मलित है। विशेष रूप से, इसका उपयोग संकीर्ण संरचनाओं के निर्माण में किया जाता है जो बाह्य बलों के लिए प्रत्यास्थता (भौतिकी) पर प्रतिक्रिया देता है।
अंकन
यह
या
या
- के रूप में लिखा गया हैं।
जहाँ , डेल संचालक की चौथी शक्ति और लाप्लासियन संचालक का वर्ग है (या ), जो द्वि हरात्मक संचालक या बिलाप्लासियन संचालक के रूप में जाना जाता है। कार्तिय निर्देशांक में, आयाम के रूप में इसे लिखा जा सकता हैं:
क्योंकि यहाँ सूत्र में सूचकांकों का योग है, कई गणितज्ञ अंकन को अधिक वरीयता देते हैं ऊपर जोकि पूर्व स्पष्ट करता है कि चार नाबला संचालको में से कौन से सूचकांक अनुबंधित हैं।
उदाहरण के लिए, तीन आयामी कार्तिय निर्देशांक में द्वि हरात्मक समीकरण का रूप है
एक अन्य उदाहरण के रूप में, एन-विमीय में मूल के बिना वास्तविक स्थानों का समन्वय होता है ,
जहाँ
जो दर्शाता है, केवल n=3 और n=5 के लिए, द्वि हरात्मक समीकरण का समाधान है।
द्वि हरात्मक समीकरण के समाधान को एक द्वि हरात्मक फलन कहा जाता है। कोई भी हरात्मक फलन द्वि हरात्मक होता हैं, लेकिन इसके विपरीत यह हमेशा सत्य नहीं होता है।
द्वि-आयामी ध्रुवीय निर्देशांक में, द्वि हरात्मक समीकरण हैं
जिसे चरों को अलग करके हल किया जा सकता है। इसका परिणाम मिशेल समाधान है।
द्वि-आयामी स्थान
दो-आयामी तथ्यों का सामान्य समाधान है
जहाँ , और का हरात्मक फलन हैं तथा , का एक हरात्मक संयुग्म है।
जिस तरह दो चरों में हरात्मक फलन जटिल विश्लेषणात्मक फलनो से निकटता से संबंधित हैं, उसी प्रकार दो चरों में द्वि हरात्मक फलन होते हैं। दो चरों में एक द्वि हरात्मक फलनों का सामान्य रूप भी लिखा जा सकता है
जहाँ और विश्लेषणात्मक कार्य हैं।
यह भी देखें
- हरात्मक फलन
संदर्भ
- Eric W Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 2002. ISBN 1-58488-347-2.
- S I Hayek, Advanced Mathematical Methods in Science and Engineering, Marcel Dekker, 2000. ISBN 0-8247-0466-5.
- J P Den Hartog (Jul 1, 1987). Advanced Strength of Materials. Courier Dover Publications. ISBN 0-486-65407-9.