बाइहार्मोनिक समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
Line 82: Line 82:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:39, 25 April 2023

गणित में, बाइहार्मोनिक समीकरण एक चतुर्थ क्रम आंशिक अंतर समीकरण है जो सातत्य यांत्रिकी के क्षेत्रों में उत्पन्न होता है, जिसमें रैखिक प्रत्यास्थ सिद्धांत और स्टोक्स प्रवाह का समाधान सम्मलित है। विशेष रूप से, इसका उपयोग संकीर्ण संरचनाओं के निर्माण में किया जाता है जो बाह्य बलों के लिए प्रत्यास्थता (भौतिकी) पर प्रतिक्रिया देता है।

अंकन

यह

या

या

के रूप में लिखा गया हैं।

जहाँ , डेल संचालक की चौथी शक्ति और लाप्लासियन संचालक का वर्ग है (या ), जो बाइहार्मोनिक संचालक या बिलाप्लासियन संचालक के रूप में जाना जाता है। कार्तीय निर्देशांक में, आयाम के रूप में इसे लिखा जा सकता हैं:

क्योंकि यहाँ सूत्र में सूचकांकों का योग है, कई गणितज्ञ अंकन को अधिक वरीयता देते हैं ऊपर जो कि पूर्व स्पष्ट करता है कि चार नाबला संचालको में से कौन से सूचकांक अनुबंधित हैं।

उदाहरण के लिए, तीन आयामी कार्तीय निर्देशांक में बाइहार्मोनिक समीकरण का रूप है

एक अन्य उदाहरण के रूप में, एन-विमीय में मूल के बिना वास्तविक स्थानों का समन्वय होता है ,

जहाँ

जो दर्शाता है, केवल n=3 और n=5 के लिए, बाइहार्मोनिक समीकरण का समाधान है।

बाइहार्मोनिक समीकरण के समाधान को एक बाइहार्मोनिक फलन कहा जाता है। कोई भी हार्मोनिक फलन बाइहार्मोनिक होता हैं, लेकिन इसके विपरीत यह हमेशा सत्य नहीं होता है।

द्वि-आयामी ध्रुवीय निर्देशांक में, बाइहार्मोनिक समीकरण हैं

जिसे चरों को अलग करके हल किया जा सकता है। इसका परिणाम मिशेल समाधान है।

द्वि-आयामी स्थान

दो-आयामी तथ्यों का सामान्य समाधान है

जहाँ , और का हार्मोनिक फलन हैं तथा , का एक हार्मोनिक संयुग्म है।  

जिस प्रकार से दो चरों में हार्मोनिक फलन जटिल विश्लेषणात्मक फलनो से निकटता से संबंधित हैं, उसी प्रकार दो चरों में बाइहार्मोनिक फलन होते हैं। दो चरों में एक बाइहार्मोनिक फलनों का सामान्य रूप भी लिखा जा सकता है

जहाँ और विश्लेषणात्मक फलन हैं।

यह भी देखें

  • हार्मोनिक फलन

संदर्भ

  • Eric W Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 2002. ISBN 1-58488-347-2.
  • S I Hayek, Advanced Mathematical Methods in Science and Engineering, Marcel Dekker, 2000. ISBN 0-8247-0466-5.
  • J P Den Hartog (Jul 1, 1987). Advanced Strength of Materials. Courier Dover Publications. ISBN 0-486-65407-9.

बाहरी संबंध