परिधि (ज्यामिति): Difference between revisions
m (11 revisions imported from alpha:परिधि_(ज्यामिति)) |
No edit summary |
||
Line 31: | Line 31: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 17/04/2023]] | [[Category:Created On 17/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:यूक्लिडियन ठोस ज्यामिति]] |
Latest revision as of 15:39, 27 April 2023
त्रि-आयामी ज्यामिति में, निश्चित दिशा में ज्यामितीय वस्तु का परिमाप, उस दिशा में समानांतर प्रक्षेपण की परिधि है।[1][2] उदाहरण के लिए, तीन समन्वय अक्षों में समानांतर दिशा में इकाई घन की परिधि चार है| यह इकाई वर्ग के लिए प्रक्षेप करता है, जिसकी परिधि चार होती है।
स्थिर परिधि की सतह
किसी भी दिशा में वृत का परिमाप उसके भूमध्य रेखा या किसी बड़े वृत्त की परिधि के समान होता है। सामान्यतः, यदि S स्थिर चौड़ाई की सतह (w) है, तब S का प्रत्येक प्रक्षेपण समान चौड़ाई w के साथ स्थिर चौड़ाई का वक्र होता है। स्थिर चौड़ाई के सभी वक्रों का परिमाप समान होता है, उस चौड़ाई के साथ वृत्त की परिधि का मान πw के समान होता है (यह बारबियर का प्रमेय है)। इसलिए, स्थिर चौड़ाई की प्रत्येक सतह भी स्थिर परिधि की सतह होती है| सभी दिशाओं में इसकी परिधि समान संख्या πw है| इसके विपरीत हरमन मिन्कोव्स्की ने यह सिद्ध किया कि नियत परिधि की प्रत्येक उत्तल सतह भी स्थिर चौड़ाई की सतह होती है।[1][2]
प्रक्षेपण के प्रति क्रॉस-सेक्शन
प्रिज्म (ज्यामिति) अथवा सिलेंडर (ज्यामिति) के लिए, धुरी के समानांतर दिशा में प्रक्षेपण इसके क्रॉस सेक्शन (ज्यामिति) के समान होता है, इसलिए इन स्तिथियों में परिधि भी क्रॉस सेक्शन के समान होती है। जलयान निर्माण जैसे कुछ अनुप्रयोग क्षेत्रों में यह वैकल्पिक अर्थ है कि क्रॉस सेक्शन के परिमाप को परिधि की परिभाषा के रूप में अध्यन्न किया जाता है।[3]
अनुप्रयोग
परिधि का उपयोग कभी-कभी डाक सेवाओं और वितरण कंपनियों द्वारा मूल्य निर्धारण के आधार के रूप में किया जाता है। उदाहरण के लिए, कनाडा पोस्ट के लिए आवश्यक है कि किसी वस्तु की लंबाई और परिमाप अधिकतम अनुमत मान से अधिक नहीं होना चाहिए।[4] आयताकार बक्से के लिए, परिधि 2 * (ऊँचाई + चौड़ाई) है, अर्थात किसी प्रक्षेपण की परिधि या उसकी लंबाई के लंबवत अनुप्रस्थ काट है।
संदर्भ
- ↑ 1.0 1.1 Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), Chelsea, pp. 216–217, ISBN 0-8284-1087-9.
- ↑ 2.0 2.1 Groemer, H. (1996), Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, p. 219, ISBN 9780521473187.
- ↑ Gillmer, Thomas Charles (1982), Introduction to Naval Architecture, Naval Institute Press, p. 305, ISBN 9780870213182.
- ↑ "Canada". Canada Post. 2008-01-14. Retrieved 2008-03-13.