द्विधातु पट्टी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Two-sided strip that coils when heated or cooled}}[[File:Bimetallic stripe.svg|thumb|द्विधात्वीय पट्टी का आरेख दिखाता है कि कैसे दो धातुओं में थर्मल विस्तार में अंतर पट्टी के बहुत बड़े पार्श्व विस्थापन की ओर जाता है]]
{{Short description|Two-sided strip that coils when heated or cooled}}[[File:Bimetallic stripe.svg|thumb|द्विधात्वीय पट्टी का आरेख दिखाता है कि कैसे दो धातुओं में थर्मल विस्तार में अंतर पट्टी के बहुत बड़े पार्श्व विस्थापन की ओर जाता है]]
[[File:Bimetal coil reacts to lighter.gif|thumb|थर्मामीटर से द्विधात्विक कुंडली लाइटर से उष्मा के प्रति प्रतिक्रिया करती है, जब लाइटर को हटा दिया जाता है तो उसे अनकॉइलिंग और फिर वापस ऊपर कोइल किया जाता है।]]यांत्रिक विस्थापन में तापमान परिवर्तन को परिवर्तित करने के लिए '''द्विधातु पट्टी''' का उपयोग किया जाता है। पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो गर्म होने पर भिन्न-भिन्न दरों पर फैलती हैं। अतः भिन्न-भिन्न विस्तार सपाट पट्टी को गर्म होने पर विशेष प्रकार से मोड़ने के लिए मजबूर करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे ठंडा किया जाता है। इस प्रकार ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के गर्म होने पर और ठंडी होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है।
[[File:Bimetal coil reacts to lighter.gif|thumb|थर्मामीटर से द्विधात्विक कुंडली लाइटर से उष्मा के प्रति प्रतिक्रिया करती है, जब लाइटर को हटा दिया जाता है तो उसे अनकॉइलिंग और फिर वापस ऊपर कोइल किया जाता है।]]यांत्रिक विस्थापन में तापमान परिवर्तन को परिवर्तित करने के लिए '''द्विधातु पट्टी''' का उपयोग किया जाता है। पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं। अतः भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर विशेष प्रकार से मोड़ने के लिए मजबूर करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। इस प्रकार ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और ठंडी होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है।


द्विधातु पट्टी के आविष्कार का श्रेय सामान्यतः [[जॉन हैरिसन]] को दिया जाता है जो अठारहवीं शताब्दी के घड़ीसाज़ थे जिन्होंने इसे सन्न 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि [[संतुलन वसंत]] में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सकती है।<ref>{{cite book |last= Sobel |first= Dava | author-link= Dava Sobel |title= देशान्तर|year= 1995 |publisher= Fourth Estate |location= London |isbn= 0-00-721446-4 | page= 103 | quote= One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.|title-link= देशान्तर(book) }}</ref> अतः हैरिसन के आविष्कार को इंग्लैंड के [[वेस्टमिन्स्टर ऐबी]] में उनके स्मारक में मान्यता दी गई है।
द्विधातु पट्टी के आविष्कार का श्रेय सामान्यतः [[जॉन हैरिसन]] को दिया जाता है जो अठारहवीं शताब्दी के घड़ीसाज़ थे जिन्होंने इसे सन्न 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि [[संतुलन वसंत]] में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सकती है।<ref>{{cite book |last= Sobel |first= Dava | author-link= Dava Sobel |title= देशान्तर|year= 1995 |publisher= Fourth Estate |location= London |isbn= 0-00-721446-4 | page= 103 | quote= One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.|title-link= देशान्तर(book) }}</ref> अतः हैरिसन के आविष्कार को इंग्लैंड के [[वेस्टमिन्स्टर ऐबी]] में उनके स्मारक में मान्यता दी गई है।
Line 8: Line 8:
== विशेषताएँ ==
== विशेषताएँ ==


द्विधातु पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो गर्म होने पर भिन्न-भिन्न दरों पर फैलती हैं सामान्यतः [[ इस्पात |इस्पात]] और तांबा या कुछ स्थितियों में स्टील और [[पीतल]], रिवेटिंग, ब्रेजिंग या [[वेल्डिंग]] द्वारा स्ट्रिप्स को उनकी पूर्ण लंबाई में साथ जोड़ा जाता है। इस प्रकार भिन्न-भिन्न विस्तार सपाट पट्टी को गर्म होने पर पूर्ण प्रकार से मोड़ने के लिए मजबूर करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे ठंडा किया जाता है। अतः ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के गर्म होने पर और ठंडी होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है। पट्टी का बग़ल में विस्थापन दो धातुओं में से किसी में छोटे लंबाई के विस्तार से बहुत बड़ा है।
द्विधातु पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं सामान्यतः [[ इस्पात |इस्पात]] और तांबा या कुछ स्थितियों में स्टील और [[पीतल]], रिवेटिंग, ब्रेजिंग या [[वेल्डिंग]] द्वारा स्ट्रिप्स को उनकी पूर्ण लंबाई में साथ जोड़ा जाता है। इस प्रकार भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर पूर्ण प्रकार से मोड़ने के लिए प्रेरित करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। अतः ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और शीतलन होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है। इस प्रकार पट्टी का बग़ल में विस्थापन दो धातुओं में से किसी में छोटे लंबाई के विस्तार से बहुत बड़ा है।


कुछ अनुप्रयोगों में बायमेटल पट्टी का उपयोग समतल रूप में किया जाता है। अतः दूसरों में इसे कॉम्पैक्टनेस के लिए कॉइल में लपेटा जाता है। कुंडलित संस्करण की अधिक लंबाई उत्तम संवेदनशीलता प्रदान करती है।
कुछ अनुप्रयोगों में बायमेटल पट्टी का उपयोग समतल रूप में किया जाता है। अतः दूसरों में इसे कॉम्पैक्टनेस के लिए कॉइल में लपेटा जाता है। कुंडलित संस्करण की अधिक लंबाई उत्तम संवेदनशीलता प्रदान करती है।
Line 72: Line 72:
अनुप्रयोग के आधार पर, उच्च तापमान संपर्क खोल सकता है (जैसे [[हीटर]] नियंत्रण में) या यह संपर्क बंद कर सकता है (जैसे [[ रेफ़्रिजरेटर |रेफ़्रिजरेटर]] या [[एयर कंडीशनर]] में)।
अनुप्रयोग के आधार पर, उच्च तापमान संपर्क खोल सकता है (जैसे [[हीटर]] नियंत्रण में) या यह संपर्क बंद कर सकता है (जैसे [[ रेफ़्रिजरेटर |रेफ़्रिजरेटर]] या [[एयर कंडीशनर]] में)।


विद्युत संपर्क बिजली को सीधे (घरेलू लोहे में) या अप्रत्यक्ष रूप से नियंत्रित कर सकते हैं, विद्युत शक्ति को [[रिले]] के माध्यम से स्विच कर सकते हैं या विद्युत संचालित वाल्व के माध्यम से [[प्राकृतिक गैस]] या [[ईंधन तेल]] की आपूर्ति कर सकते हैं। कुछ प्राकृतिक गैस हीटरों में [[थर्मोकपल]] के साथ बिजली प्रदान की जा सकती है जो पायलट लाइट (छोटी, लगातार जलती हुई लौ) द्वारा गर्म होती है। इग्निशन के लिए पायलट लाइट के बिना उपकरणों में (जैसा कि अधिकांश आधुनिक गैस कपड़े सुखाने वालों और कुछ प्राकृतिक गैस हीटर और सजावटी फायरप्लेस में) संपर्कों के लिए शक्ति कम घरेलू विद्युत शक्ति द्वारा प्रदान की जाती है जो इलेक्ट्रॉनिक इग्निटर को नियंत्रित करने वाले रिले को संचालित करती है, या तो प्रतिरोध हीटर या विद्युत चालित [[ चिंगारी का अंतर |चिंगारी का अंतर]] जनरेटिंग डिवाइस।
विद्युत संपर्क बिजली को सीधे (घरेलू लोहे में) या अप्रत्यक्ष रूप से नियंत्रित कर सकते हैं, विद्युत शक्ति को [[रिले]] के माध्यम से स्विच कर सकते हैं या विद्युत संचालित वाल्व के माध्यम से [[प्राकृतिक गैस]] या [[ईंधन तेल]] की आपूर्ति कर सकते हैं। कुछ प्राकृतिक गैस हीटरों में [[थर्मोकपल]] के साथ बिजली प्रदान की जा सकती है जो पायलट लाइट (छोटी, लगातार जलती हुई लौ) द्वारा ताप होती है। इग्निशन के लिए पायलट लाइट के बिना उपकरणों में (जैसा कि अधिकांश आधुनिक गैस कपड़े सुखाने वालों और कुछ प्राकृतिक गैस हीटर और सजावटी फायरप्लेस में) संपर्कों के लिए शक्ति कम घरेलू विद्युत शक्ति द्वारा प्रदान की जाती है जो इलेक्ट्रॉनिक इग्निटर को नियंत्रित करने वाले रिले को संचालित करती है, या तो प्रतिरोध हीटर या विद्युत चालित [[ चिंगारी का अंतर |चिंगारी का अंतर]] जनरेटिंग डिवाइस।


=== थर्मामीटर ===
=== थर्मामीटर ===
[[File:Механический_термометр.JPG|thumb|यांत्रिक आउटडोर थर्मामीटर।]]प्रत्यक्ष संकेतक डायल [[थर्मामीटर]], जो घरेलू उपकरणों में आम है (जैसे कि पेटियो थर्मामीटर या मांस थर्मामीटर), अपने सबसे सामान्य डिजाइन में कॉइल में लिपटे द्विधातु पट्टी का उपयोग करता है। कुंडल धातु के विस्तार के रैखिक आंदोलन को गोलाकार गति में बदल देता है, जो हेलिकॉइडल आकार के कारण होता है। कॉइल का सिरा फिक्स पॉइंट के रूप में डिवाइस की हाउसिंग से जुड़ा होता है और दूसरा सर्कुलर इंडिकेटर के अंदर इंडिकेटिंग सुई चलाता है। [[रिकॉर्डिंग थर्मामीटर]] में द्विधात्विक पट्टी का भी उपयोग किया जाता है। अधिक त्रुटिहीन परिणाम प्राप्त करने के लिए ब्रेगुएट के थर्मामीटर में त्रि-धात्विक हेलिक्स होता है।
[[File:Механический_термометр.JPG|thumb|यांत्रिक आउटडोर थर्मामीटर।]]प्रत्यक्ष संकेतक डायल [[थर्मामीटर]], जो घरेलू उपकरणों में आम है (जैसे कि पेटियो थर्मामीटर या मांस थर्मामीटर), अपने सबसे सामान्य डिजाइन में कॉइल में लिपटे द्विधातु पट्टी का उपयोग करता है। कुंडल धातु के विस्तार के रैखिक आंदोलन को गोलाकार गति में बदल देता है, जो हेलिकॉइडल आकार के कारण होता है। कॉइल का सिरा फिक्स पॉइंट के रूप में डिवाइस की हाउसिंग से जुड़ा होता है और दूसरा सर्कुलर इंडिकेटर के अंदर इंडिकेटिंग सुई चलाता है। [[रिकॉर्डिंग थर्मामीटर]] में द्विधात्विक पट्टी का भी उपयोग किया जाता है। अधिक त्रुटिहीन परिणाम प्राप्त करने के लिए ब्रेगुएट के थर्मामीटर में त्रि-धात्विक हेलिक्स होता है।


=== [[इंजन गर्म करें]] ===
=== [[इंजन गर्म करें|इंजन ताप करें]] ===


ऊष्मा इंजन सबसे अधिक कुशल नहीं होते हैं, और द्विधातु पट्टियों के उपयोग से ऊष्मा इंजन की दक्षता और भी कम हो जाती है जिससे कि ऊष्मा को रोकने के लिए कोई कक्ष नहीं होता है। इसके अतिरिक्त, बाइमेटेलिक स्ट्रिप्स अपनी चाल में शक्ति उत्पन्न नहीं कर सकती हैं, इसका कारण यह है कि उचित झुकने (आंदोलनों) को प्राप्त करने के लिए दोनों धातु स्ट्रिप्स को विस्तार के बीच अंतर को ध्यान देने योग्य बनाने के लिए पतला होना पड़ता है। इसलिए ऊष्मा इंजनों में धातु की पट्टियों का उपयोग ज्यादातर साधारण खिलौनों में होता है, जिन्हें यह प्रदर्शित करने के लिए बनाया गया है कि ताप इंजन को चलाने के लिए सिद्धांत का उपयोग कैसे किया जा सकता है।
ऊष्मा इंजन सबसे अधिक कुशल नहीं होते हैं, और द्विधातु पट्टियों के उपयोग से ऊष्मा इंजन की दक्षता और भी कम हो जाती है जिससे कि ऊष्मा को रोकने के लिए कोई कक्ष नहीं होता है। इसके अतिरिक्त, बाइमेटेलिक स्ट्रिप्स अपनी चाल में शक्ति उत्पन्न नहीं कर सकती हैं, इसका कारण यह है कि उचित झुकने (आंदोलनों) को प्राप्त करने के लिए दोनों धातु स्ट्रिप्स को विस्तार के बीच अंतर को ध्यान देने योग्य बनाने के लिए पतला होना पड़ता है। इसलिए ऊष्मा इंजनों में धातु की पट्टियों का उपयोग ज्यादातर साधारण खिलौनों में होता है, जिन्हें यह प्रदर्शित करने के लिए बनाया गया है कि ताप इंजन को चलाने के लिए सिद्धांत का उपयोग कैसे किया जा सकता है।
Line 83: Line 83:
=== विद्युत उपकरण ===
=== विद्युत उपकरण ===


परिपथ को अतिरिक्त धारा से बचाने के लिए बायमेटल स्ट्रिप्स का उपयोग मिनिएचर [[ परिपथ वियोजक |परिपथ वियोजक]] में किया जाता है। तार की कुंडली का उपयोग द्विधात्विक पट्टी को गर्म करने के लिए किया जाता है, जो लिंकेज को मोड़ती और संचालित करती है जो स्प्रिंग-संचालित संपर्क को खोलती है। यह परिपथ को बाधित करता है और बायमेटल स्ट्रिप के ठंडा होने पर इसे रीसेट किया जा सकता है।
परिपथ को अतिरिक्त धारा से बचाने के लिए बायमेटल स्ट्रिप्स का उपयोग मिनिएचर [[ परिपथ वियोजक |परिपथ वियोजक]] में किया जाता है। तार की कुंडली का उपयोग द्विधात्विक पट्टी को ताप करने के लिए किया जाता है, जो लिंकेज को मोड़ती और संचालित करती है जो स्प्रिंग-संचालित संपर्क को खोलती है। यह परिपथ को बाधित करता है और बायमेटल स्ट्रिप के शीतल होने पर इसे रीसेट किया जा सकता है।


बायमेटल स्ट्रिप्स का उपयोग समय-विलंब रिले, [[ गैस - चूल्हा |गैस - चूल्हा]] सुरक्षा वाल्व, पुराने [[ऑटोमोटिव लाइटिंग]] लैंप के लिए थर्मल फ्लैशर्स और फ्लोरोसेंट लैंप#स्टार्टिंग में भी किया जाता है। कुछ उपकरणों में, बायमेटल स्ट्रिप के माध्यम से सीधे चलने वाला धारा इसे गर्म करने और सीधे संपर्कों को संचालित करने के लिए पर्याप्त होता है। यह ऑटोमोटिव उपयोगों के लिए मैकेनिकल पीडब्लूएम वोल्टेज नियामकों में भी उपयोग किया गया है।<ref>{{Cite web|url=https://www.minimania.com/Smiths_Voltage_Stabilizers|title = Smiths Voltage Stabilizers - REVISED}}</ref>
बायमेटल स्ट्रिप्स का उपयोग समय-विलंब रिले, [[ गैस - चूल्हा |गैस - चूल्हा]] सुरक्षा वाल्व, पुराने [[ऑटोमोटिव लाइटिंग]] लैंप के लिए थर्मल फ्लैशर्स और फ्लोरोसेंट लैंप#स्टार्टिंग में भी किया जाता है। कुछ उपकरणों में, बायमेटल स्ट्रिप के माध्यम से सीधे चलने वाला धारा इसे ताप करने और सीधे संपर्कों को संचालित करने के लिए पर्याप्त होता है। यह ऑटोमोटिव उपयोगों के लिए मैकेनिकल पीडब्लूएम वोल्टेज नियामकों में भी उपयोग किया गया है।<ref>{{Cite web|url=https://www.minimania.com/Smiths_Voltage_Stabilizers|title = Smiths Voltage Stabilizers - REVISED}}</ref>
== यह भी देखें ==
== यह भी देखें ==



Revision as of 22:23, 25 April 2023

द्विधात्वीय पट्टी का आरेख दिखाता है कि कैसे दो धातुओं में थर्मल विस्तार में अंतर पट्टी के बहुत बड़े पार्श्व विस्थापन की ओर जाता है
थर्मामीटर से द्विधात्विक कुंडली लाइटर से उष्मा के प्रति प्रतिक्रिया करती है, जब लाइटर को हटा दिया जाता है तो उसे अनकॉइलिंग और फिर वापस ऊपर कोइल किया जाता है।

यांत्रिक विस्थापन में तापमान परिवर्तन को परिवर्तित करने के लिए द्विधातु पट्टी का उपयोग किया जाता है। पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं। अतः भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर विशेष प्रकार से मोड़ने के लिए मजबूर करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। इस प्रकार ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और ठंडी होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है।

द्विधातु पट्टी के आविष्कार का श्रेय सामान्यतः जॉन हैरिसन को दिया जाता है जो अठारहवीं शताब्दी के घड़ीसाज़ थे जिन्होंने इसे सन्न 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि संतुलन वसंत में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सकती है।[1] अतः हैरिसन के आविष्कार को इंग्लैंड के वेस्टमिन्स्टर ऐबी में उनके स्मारक में मान्यता दी गई है।

इस प्रभाव का उपयोग यांत्रिक और विद्युत उपकरणों की श्रृंखला में किया जाता है।

विशेषताएँ

द्विधातु पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं सामान्यतः इस्पात और तांबा या कुछ स्थितियों में स्टील और पीतल, रिवेटिंग, ब्रेजिंग या वेल्डिंग द्वारा स्ट्रिप्स को उनकी पूर्ण लंबाई में साथ जोड़ा जाता है। इस प्रकार भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर पूर्ण प्रकार से मोड़ने के लिए प्रेरित करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। अतः ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और शीतलन होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है। इस प्रकार पट्टी का बग़ल में विस्थापन दो धातुओं में से किसी में छोटे लंबाई के विस्तार से बहुत बड़ा है।

कुछ अनुप्रयोगों में बायमेटल पट्टी का उपयोग समतल रूप में किया जाता है। अतः दूसरों में इसे कॉम्पैक्टनेस के लिए कॉइल में लपेटा जाता है। कुंडलित संस्करण की अधिक लंबाई उत्तम संवेदनशीलता प्रदान करती है।

द्विधात्विक बीम की वक्रता को निम्नलिखित समीकरण द्वारा वर्णित किया जा सकता है।

जहाँ और वक्रता की त्रिज्या है, और सामग्री और की यंग के मापांक और ऊंचाई (मोटाई) हैं और सामग्री दो के यंग मापांक और ऊंचाई (मोटाई) हैं। मिसफिट स्ट्रेन है, जिसकी गणना निम्न द्वारा की जाती है:

जहां α1 सामग्री और α के थर्मल विस्तार का गुणांक है2 सामग्री दो के थर्मल विस्तार का गुणांक है। ΔT वर्तमान तापमान माइनस संदर्भ तापमान है (तापमान जहां बीम का कोई मोड़ नहीं है)।[2][3]


अंतर्दृष्टि प्राप्त की जा सकती है यदि अभी दिए गए परिणाम को ऊपर और नीचे से गुणा किया जाए

जहाँ , और . तब से छोटे के लिए , जो असंवेदनशील है पहले आदेश की शर्तों की कमी के कारण, हम अनुमान लगा सकते हैं के लिए एकता के समीप (और असंवेदनशील ), और के लिए एकता के समीप (और असंवेदनशील ). इस प्रकार, जब तक या एकता से बहुत दूर हैं जिसका हम अनुमान लगा सकते हैं .

इतिहास

File:John Harrison memorial 02.jpg
वेस्टमिंस्टर एब्बे, लंदन में जॉन हैरिसन का स्मारक

सबसे पुरानी जीवित द्विधात्विक पट्टी अठारहवीं शताब्दी के घड़ी निर्माता जॉन हैरिसन द्वारा बनाई गई थी, जिसे सामान्यतः इसके आविष्कार का श्रेय दिया जाता है। उन्होंने इसे 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि संतुलन वसंत में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सके।[4] इसे अपने ग्रिडिरॉन पेंडुलम में थर्मल विस्तार के लिए सही करने के लिए द्विपक्षीय तंत्र से भ्रमित नहीं होना चाहिए। उनके प्रारंभिक उदाहरणों में दो भिन्न-भिन्न धातु की पट्टियां रिवेट्स से जुड़ी थीं, किन्तु उन्होंने स्टील सब्सट्रेट पर सीधे पिघले हुए पीतल को फ्यूज करने की बाद की तकनीक का भी आविष्कार किया। इस प्रकार की पट्टी उनके अंतिम टाइमकीपर H5 में फिट की गई थी। हैरिसन के आविष्कार को इंग्लैंड के वेस्टमिंस्टर एब्बे में उनके स्मारक में मान्यता दी गई है।

रचना

अनुप्रयोग

इस प्रभाव का उपयोग यांत्रिक और विद्युत उपकरणों की श्रृंखला में किया जाता है।

घड़ियाँ

यांत्रिक घड़ी तंत्र तापमान परिवर्तन के प्रति संवेदनशील होते हैं जिससे कि प्रत्येक भाग में थोड़ी सहनशीलता होती है और यह समय कीपिंग में त्रुटियों की ओर जाता है। कुछ टाइमपीस के तंत्र में इस घटना की भरपाई के लिए द्विधातु पट्टी का उपयोग किया जाता है। संतुलन चक्र के वृत्ताकार रिम के लिए द्विधातु निर्माण का उपयोग करना सबसे आम विधि है। यह क्या करता है वजन को रेडियल प्रकार से संतुलन पहिया द्वारा गोलाकार विमान को नीचे की ओर देखता है, भिन्न-भिन्न होता है, बैलेंस व्हील की जड़ता की गति। चूंकि बढ़ते तापमान के साथ संतुलन को नियंत्रित करने वाला वसंत कमजोर हो जाता है, जड़ता की गति को कम करने और दोलन की अवधि (और इसलिए टाइमकीपिंग) को स्थिर रखने के लिए संतुलन व्यास में छोटा हो जाता है।

आजकल इस प्रणाली का उपयोग नहीं किया जाता है जिससे कि प्रत्येक ब्रांड के आधार पर निवारोक्स, पैराक्रोम और कई अन्य जैसे कम तापमान गुणांक मिश्र धातुओं की उपस्थिति होती है।

थर्मोस्टैट्स

(2) पर बायमेटल कॉइल के साथ थर्मोस्टेट

हीटिंग और कूलिंग के नियमन में, तापमान की विस्तृत श्रृंखला पर काम करने वाले थर्मोस्टेट ्स का उपयोग किया जाता है। इनमें द्विधात्विक पट्टी का सिरा यांत्रिक रूप से स्थिर होता है और विद्युत शक्ति स्रोत से जुड़ा होता है, जबकि दूसरा (चलता हुआ) सिरा विद्युत संपर्क रखता है। समायोज्य थर्मोस्टैट्स में अन्य संपर्क विनियमन घुंडी या लीवर के साथ स्थित होता है। इस प्रकार सेट की गई स्थिति विनियमित तापमान को नियंत्रित करती है, जिसे सेट पॉइंट कहा जाता है।

कुछ थर्मोस्टैट्स दोनों विद्युत तारों से जुड़े पारा स्विच का उपयोग करते हैं। थर्मोस्टैट के सेट पॉइंट को नियंत्रित करने के लिए पूरे तंत्र का कोण समायोज्य है।

अनुप्रयोग के आधार पर, उच्च तापमान संपर्क खोल सकता है (जैसे हीटर नियंत्रण में) या यह संपर्क बंद कर सकता है (जैसे रेफ़्रिजरेटर या एयर कंडीशनर में)।

विद्युत संपर्क बिजली को सीधे (घरेलू लोहे में) या अप्रत्यक्ष रूप से नियंत्रित कर सकते हैं, विद्युत शक्ति को रिले के माध्यम से स्विच कर सकते हैं या विद्युत संचालित वाल्व के माध्यम से प्राकृतिक गैस या ईंधन तेल की आपूर्ति कर सकते हैं। कुछ प्राकृतिक गैस हीटरों में थर्मोकपल के साथ बिजली प्रदान की जा सकती है जो पायलट लाइट (छोटी, लगातार जलती हुई लौ) द्वारा ताप होती है। इग्निशन के लिए पायलट लाइट के बिना उपकरणों में (जैसा कि अधिकांश आधुनिक गैस कपड़े सुखाने वालों और कुछ प्राकृतिक गैस हीटर और सजावटी फायरप्लेस में) संपर्कों के लिए शक्ति कम घरेलू विद्युत शक्ति द्वारा प्रदान की जाती है जो इलेक्ट्रॉनिक इग्निटर को नियंत्रित करने वाले रिले को संचालित करती है, या तो प्रतिरोध हीटर या विद्युत चालित चिंगारी का अंतर जनरेटिंग डिवाइस।

थर्मामीटर

यांत्रिक आउटडोर थर्मामीटर।

प्रत्यक्ष संकेतक डायल थर्मामीटर, जो घरेलू उपकरणों में आम है (जैसे कि पेटियो थर्मामीटर या मांस थर्मामीटर), अपने सबसे सामान्य डिजाइन में कॉइल में लिपटे द्विधातु पट्टी का उपयोग करता है। कुंडल धातु के विस्तार के रैखिक आंदोलन को गोलाकार गति में बदल देता है, जो हेलिकॉइडल आकार के कारण होता है। कॉइल का सिरा फिक्स पॉइंट के रूप में डिवाइस की हाउसिंग से जुड़ा होता है और दूसरा सर्कुलर इंडिकेटर के अंदर इंडिकेटिंग सुई चलाता है। रिकॉर्डिंग थर्मामीटर में द्विधात्विक पट्टी का भी उपयोग किया जाता है। अधिक त्रुटिहीन परिणाम प्राप्त करने के लिए ब्रेगुएट के थर्मामीटर में त्रि-धात्विक हेलिक्स होता है।

इंजन ताप करें

ऊष्मा इंजन सबसे अधिक कुशल नहीं होते हैं, और द्विधातु पट्टियों के उपयोग से ऊष्मा इंजन की दक्षता और भी कम हो जाती है जिससे कि ऊष्मा को रोकने के लिए कोई कक्ष नहीं होता है। इसके अतिरिक्त, बाइमेटेलिक स्ट्रिप्स अपनी चाल में शक्ति उत्पन्न नहीं कर सकती हैं, इसका कारण यह है कि उचित झुकने (आंदोलनों) को प्राप्त करने के लिए दोनों धातु स्ट्रिप्स को विस्तार के बीच अंतर को ध्यान देने योग्य बनाने के लिए पतला होना पड़ता है। इसलिए ऊष्मा इंजनों में धातु की पट्टियों का उपयोग ज्यादातर साधारण खिलौनों में होता है, जिन्हें यह प्रदर्शित करने के लिए बनाया गया है कि ताप इंजन को चलाने के लिए सिद्धांत का उपयोग कैसे किया जा सकता है।

विद्युत उपकरण

परिपथ को अतिरिक्त धारा से बचाने के लिए बायमेटल स्ट्रिप्स का उपयोग मिनिएचर परिपथ वियोजक में किया जाता है। तार की कुंडली का उपयोग द्विधात्विक पट्टी को ताप करने के लिए किया जाता है, जो लिंकेज को मोड़ती और संचालित करती है जो स्प्रिंग-संचालित संपर्क को खोलती है। यह परिपथ को बाधित करता है और बायमेटल स्ट्रिप के शीतल होने पर इसे रीसेट किया जा सकता है।

बायमेटल स्ट्रिप्स का उपयोग समय-विलंब रिले, गैस - चूल्हा सुरक्षा वाल्व, पुराने ऑटोमोटिव लाइटिंग लैंप के लिए थर्मल फ्लैशर्स और फ्लोरोसेंट लैंप#स्टार्टिंग में भी किया जाता है। कुछ उपकरणों में, बायमेटल स्ट्रिप के माध्यम से सीधे चलने वाला धारा इसे ताप करने और सीधे संपर्कों को संचालित करने के लिए पर्याप्त होता है। यह ऑटोमोटिव उपयोगों के लिए मैकेनिकल पीडब्लूएम वोल्टेज नियामकों में भी उपयोग किया गया है।[5]

यह भी देखें

संदर्भ


टिप्पणियाँ

  1. Sobel, Dava (1995). देशान्तर. London: Fourth Estate. p. 103. ISBN 0-00-721446-4. One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.
  2. Clyne, TW. "Residual stresses in surface coatings and their effects on interfacial debonding." Key Engineering Materials (Switzerland). Vol. 116–117, pp. 307–330. 1996
  3. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)
  4. Sobel, Dava (1995). देशान्तर. London: Fourth Estate. p. 103. ISBN 0-00-721446-4. One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.
  5. "Smiths Voltage Stabilizers - REVISED".


बाहरी संबंध