प्रतिक्रिया कैलोरीमीटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Rc1 calorimeter.jpg|thumb|मूल RC1 कैलोरीमीटर]]'''प्रतिक्रिया [[कैलोरीमीटर]] | [[Image:Rc1 calorimeter.jpg|thumb|मूल RC1 कैलोरीमीटर]]'''प्रतिक्रिया [[कैलोरीमीटर]] विशेष प्रकार कैलोरीमीटर है जो [[रासायनिक प्रतिक्रिया]] द्वारा जारी ([[ एक्ज़ोथिर्मिक | एक्ज़ोथिर्मिक]] ) या अवशोषित ([[ एन्दोठेर्मिक | एन्दोठेर्मिक]] ) [[ऊर्जा]] की मात्रा को मापता है। यह माप ऐसी प्रतिक्रियाओं की अधिक त्रुटिहीन चित्र प्रदान करते हैं।''' | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
Line 25: | Line 25: | ||
== रीयल-टाइम उष्मामिति == | == रीयल-टाइम उष्मामिति == | ||
वास्तविक समय में उष्मामिति ऊष्मा प्रवाह नियंत्रक पर आधारित उष्मामिति विधि है जो प्रतिघातक जहाजों की दीवार पर स्थित होती | वास्तविक समय में उष्मामिति ऊष्मा प्रवाह नियंत्रक पर आधारित उष्मामिति विधि है जो प्रतिघातक जहाजों की दीवार पर स्थित होती हैl चूँकि नियंत्रक सीधे प्रतिघातक की दीवार पर ऊष्मा को मापते हैं और इस प्रकार माप तापमान, गुणों या प्रतिक्रिया द्रव्यमान के व्यवहार से स्वतंत्र होता है। अतः प्रयोग के समय बिना किसी अंशांकन के तुरंत ऊष्मा प्रवाह के साथ-साथ ऊष्मा हस्तांतरण की जानकारी प्राप्त की जाती है। | ||
== ऊष्मा संतुलन कैलोरीमिति == | == ऊष्मा संतुलन कैलोरीमिति == | ||
ऊष्मा संतुलन उष्मामिति में, कूलिंग / हीटिंग जैकेट प्रक्रिया के तापमान को नियंत्रित करता है। इस प्रकार ऊष्मा हस्तांतरण द्रव द्वारा प्राप्त या विलुप्त की हुई ऊष्मा की निगरानी के द्वारा ऊष्मा को मापा जाता है। | ऊष्मा संतुलन उष्मामिति में, '''कूलिंग / हीटिंग''' जैकेट प्रक्रिया के तापमान को नियंत्रित करता है। इस प्रकार ऊष्मा हस्तांतरण द्रव द्वारा प्राप्त या विलुप्त की हुई ऊष्मा की निगरानी के द्वारा ऊष्मा को मापा जाता है। | ||
:<math>Q = m_s C_{ps}(T_i - T_o)</math> | :<math>Q = m_s C_{ps}(T_i - T_o)</math> | ||
Line 53: | Line 53: | ||
== निरंतर प्रवाह उष्मामिति == | == निरंतर प्रवाह उष्मामिति == | ||
[[Image:Coflux1.png|thumb|COFLUX प्रणाली का आरेख]]उष्मामिति में हाल ही में विकास चूंकि निरंतर फ्लक्स कूलिंग / हीटिंग जैकेट का है। यह अस्थिर ज्योमेट्री कूलिंग जैकेट्स का उपयोग करते हैं और अधिक स्थिर तापमान पर कूलिंग जैकेट्स के साथ कार्य कर सकते हैं। यह प्रतिक्रिया कैलोरीमीटर उपयोग करने के लिए अधिक सरल होते हैं और प्रक्रिया स्थितियों में परिवर्तन के प्रति अधिक सहिष्णु होते हैं (जो ऊष्मा प्रवाह या विद्युत क्षतिपूर्ति कैलोरीमीटर में अंशांकन को प्रभावित करता है)। | [[Image:Coflux1.png|thumb|COFLUX प्रणाली का आरेख]]उष्मामिति में हाल ही में विकास चूंकि निरंतर फ्लक्स '''कूलिंग / हीटिंग''' जैकेट का है। यह अस्थिर ज्योमेट्री कूलिंग जैकेट्स का उपयोग करते हैं और अधिक स्थिर तापमान पर कूलिंग जैकेट्स के साथ कार्य कर सकते हैं। यह प्रतिक्रिया कैलोरीमीटर उपयोग करने के लिए अधिक सरल होते हैं और प्रक्रिया स्थितियों में परिवर्तन के प्रति अधिक सहिष्णु होते हैं (जो ऊष्मा प्रवाह या विद्युत क्षतिपूर्ति कैलोरीमीटर में अंशांकन को प्रभावित करता है)। | ||
प्रतिक्रिया उष्मामिति का महत्वपूर्ण भाग अत्यधिक तापीय घटनाओं के सामने तापमान को नियंत्रित करने की क्षमता है। जब तापमान को नियंत्रित करने में सक्षम हो जाता है तब विभिन्न प्रकार के मापदंडों का मापन यह समझने की अनुमति दे सकता है कि प्रतिक्रिया द्वारा कितनी ऊष्मा अवशोषित की जा रही है। | प्रतिक्रिया उष्मामिति का महत्वपूर्ण भाग अत्यधिक तापीय घटनाओं के सामने तापमान को नियंत्रित करने की क्षमता है। जब तापमान को नियंत्रित करने में सक्षम हो जाता है तब विभिन्न प्रकार के मापदंडों का मापन यह समझने की अनुमति दे सकता है कि प्रतिक्रिया द्वारा कितनी ऊष्मा अवशोषित की जा रही है। |
Revision as of 15:34, 24 April 2023
प्रतिक्रिया कैलोरीमीटर विशेष प्रकार कैलोरीमीटर है जो रासायनिक प्रतिक्रिया द्वारा जारी ( एक्ज़ोथिर्मिक ) या अवशोषित ( एन्दोठेर्मिक ) ऊर्जा की मात्रा को मापता है। यह माप ऐसी प्रतिक्रियाओं की अधिक त्रुटिहीन चित्र प्रदान करते हैं।
अनुप्रयोग
प्रयोगशाला पैमाने से बड़े पैमाने पर प्रतिक्रिया को बढ़ाने पर विचार करते समय यह समझना महत्वपूर्ण है कि कितनी ऊष्मा जारी होती है। इस प्रकार छोटे पैमाने पर जारी की गई ऊष्मा चिंता का कारण नहीं हो सकती है चूंकि जब स्केलिंग होती है तब बिल्ड-अप अधिक खतरनाक हो सकता है।
समाधान से प्रतिक्रिया उत्पाद को क्रिस्टलीकृत करना अत्यधिक लागत प्रभावी शुद्धिकरण विधि है। इसलिए यह मापने में सक्षम होना मूल्यवान है कि इसे अनुकूलित करने में सक्षम होने के लिए क्रिस्टलाइजेशन कितना प्रभावी रूप से हो रहा है। अतः प्रक्रिया द्वारा अवशोषित ऊष्मा उपयोगी उपाय हो सकती है।
ऊष्मा के रूप में किसी भी प्रक्रिया द्वारा जारी की जा रही ऊर्जा सीधे प्रतिक्रिया की दर के समानुपाती होती है और इसलिए कैनेटीक्स का अध्ययन करने के लिए प्रतिक्रिया उष्मामिति (समय हल माप विधि के रूप में) का उपयोग किया जा सकता है।
प्रक्रिया के विकास में प्रतिक्रिया उष्मामिति का उपयोग ऐतिहासिक रूप से इन उपकरणों की लागत के प्रभाव के कारण सीमित रहा है, चूंकि रासायनिक प्रक्रिया के भाग के रूप में आयोजित होने वाली प्रतिक्रियाओं को पूर्ण प्रकार से समझने के लिए उष्मामिति तेज़ और सरल विधि है।
ऊष्मा प्रवाह उष्मामिति
ऊष्मा प्रवाह कैलोरीमिति प्रतिघातक की दीवार के पार बहने वाली ऊष्मा को मापती है और प्रतिघातक के अंदर अन्य ऊर्जा प्रवाह के संबंध में इसकी मात्रा निर्धारित करती है।
जहाँ
- = प्रक्रिया हीटिंग (या कूलिंग) शक्ति (W)
- = समग्र ऊष्मा हस्तांतरण गुणांक (W/(m2K))
- = ऊष्मा हस्तांतरण क्षेत्र (m2)
- = प्रक्रिया तापमान (K)
- = जैकेट क तापमान (K)
सामान्यतः ऊष्मा प्रवाह उष्मामिति उपयोगकर्ता को ऊष्मा को मापने की अनुमति देता है जबकि प्रक्रिया का तापमान नियंत्रण में रहता है। इस प्रकार प्रेरक बल Tr − Tj अपेक्षाकृत उच्च विभेदन के साथ मापा जाता है, समग्र ताप हस्तांतरण गुणांक U या अंशांकन कारक UA क्रमशः प्रतिक्रिया होने से पहले और बाद में अंशांकन के माध्यम से निर्धारित किया जाता है। अंशांकन कारक UA (या समग्र ताप हस्तांतरण गुणांक U) उत्पाद संरचना, प्रक्रिया तापमान, आंदोलन दर, चिपचिपाहट और तरल स्तर से प्रभावित होते हैं। इस प्रकार अनुभवी कर्मचारियों के साथ अच्छी त्रुटिहीनता प्राप्त की जा सकती है जो सीमाओं को जानते हैं और उपकरण से सर्वोत्तम परिणाम कैसे प्राप्त करते हैं।
रीयल-टाइम उष्मामिति
वास्तविक समय में उष्मामिति ऊष्मा प्रवाह नियंत्रक पर आधारित उष्मामिति विधि है जो प्रतिघातक जहाजों की दीवार पर स्थित होती हैl चूँकि नियंत्रक सीधे प्रतिघातक की दीवार पर ऊष्मा को मापते हैं और इस प्रकार माप तापमान, गुणों या प्रतिक्रिया द्रव्यमान के व्यवहार से स्वतंत्र होता है। अतः प्रयोग के समय बिना किसी अंशांकन के तुरंत ऊष्मा प्रवाह के साथ-साथ ऊष्मा हस्तांतरण की जानकारी प्राप्त की जाती है।
ऊष्मा संतुलन कैलोरीमिति
ऊष्मा संतुलन उष्मामिति में, कूलिंग / हीटिंग जैकेट प्रक्रिया के तापमान को नियंत्रित करता है। इस प्रकार ऊष्मा हस्तांतरण द्रव द्वारा प्राप्त या विलुप्त की हुई ऊष्मा की निगरानी के द्वारा ऊष्मा को मापा जाता है।
जहाँ
- = प्रक्रिया हीटिंग (या कूलिंग) शक्ति (W)
- = ऊष्मा हस्तांतरण द्रव का द्रव्यमान प्रवाह (kg/s)
- = ऊष्मा हस्तांतरण द्रव की विशिष्ट ऊष्मा (J/(kg K))
- = ऊष्मा हस्तांतरण द्रव का इनलेट तापमान (K)
- = ऊष्मा हस्तांतरण द्रव का आउटलेट तापमान (K)
ऊष्मा संतुलन कैलोरीमिति सिद्धांत रूप में, ऊष्मा को मापने की आदर्श विधि है जिससे कि ताप / शीतलन जैकेट के माध्यम से प्रणाली में प्रवेश करने और छोड़ने वाली ऊष्मा को ऊष्मा हस्तांतरण द्रव (जिसके ज्ञात गुण होते हैं) से मापा जाता है। यह ऊष्मा प्रवाह और विद्युत क्षतिपूर्ति उष्मामिति द्वारा सामना की जाने वाली अधिकांश अंशांकन समस्याओं को समाप्त करता है। इस प्रकार दुर्भाग्य से पारंपरिक बैच के जहाजों में विधि अच्छी प्रकार से कार्य नहीं करती है जिससे कि कूलिंग / हीटिंग जैकेट में बड़े उष्ण शिफ्ट द्वारा प्रक्रिया उष्ण सिग्नल अस्पष्ट है।
विद्युत क्षतिपूर्ति उष्मामिति
'ऊष्मा प्रवाह' विधि की भिन्नता को 'शक्ति क्षतिपूर्ति' उष्मामिति कहा जाता है। यह विधि निरंतर प्रवाह और तापमान पर चलने वाली कूलिंग जैकेट का उपयोग करती है। विद्युत हीटर की शक्ति को समायोजित करके प्रक्रिया तापमान को नियंत्रित किया जाता है। इस प्रकार जब प्रयोग प्रारंभ किया जाता है तब विद्युत ताप और शीतलन शक्ति (शीतलन जैकेट की) संतुलन में होती है। जैसे ही प्रक्रिया का ताप भार परिवर्तित होता है, वांछित प्रक्रिया तापमान को बनाए रखने के लिए विद्युत शक्ति भिन्न होती है। अतः प्रक्रिया द्वारा मुक्त या अवशोषित ऊष्मा माप के समय प्रारंभिक विद्युत शक्ति और विद्युत शक्ति की मांग के मध्य के अंतर से निर्धारित होती है। ताप प्रवाह उष्मामिति की तुलना में विद्युत क्षतिपूर्ति विधि स्थापित करना सरल है, किन्तु यह समान सीमाओं से ग्रस्त है जिससे कि उत्पाद संरचना, तरल स्तर, प्रक्रिया तापमान, आंदोलन दर या चिपचिपाहट में कोई भी परिवर्तन अंशांकन को परेशान करता है। इस प्रकार प्रक्रिया संचालन के लिए विद्युत ताप तत्व की उपस्थिति भी अवांछनीय है। अतः यह विधि इस तथ्य से और सीमित है कि यह मापी जाने वाली सबसे बड़ी ऊष्मा हीटर पर प्रयुक्त प्रारंभिक विद्युत शक्ति के समान्तर होती है।
- = हीटर को आपूर्ति की जाने वाली धारा
- = हीटर को आपूर्ति की गई वोल्टेज
- = संतुलन पर हीटर को आपूर्ति की जाने वाली धारा (निरंतर वोल्टेज / प्रतिरोध मानते हुए)
निरंतर प्रवाह उष्मामिति
उष्मामिति में हाल ही में विकास चूंकि निरंतर फ्लक्स कूलिंग / हीटिंग जैकेट का है। यह अस्थिर ज्योमेट्री कूलिंग जैकेट्स का उपयोग करते हैं और अधिक स्थिर तापमान पर कूलिंग जैकेट्स के साथ कार्य कर सकते हैं। यह प्रतिक्रिया कैलोरीमीटर उपयोग करने के लिए अधिक सरल होते हैं और प्रक्रिया स्थितियों में परिवर्तन के प्रति अधिक सहिष्णु होते हैं (जो ऊष्मा प्रवाह या विद्युत क्षतिपूर्ति कैलोरीमीटर में अंशांकन को प्रभावित करता है)।
प्रतिक्रिया उष्मामिति का महत्वपूर्ण भाग अत्यधिक तापीय घटनाओं के सामने तापमान को नियंत्रित करने की क्षमता है। जब तापमान को नियंत्रित करने में सक्षम हो जाता है तब विभिन्न प्रकार के मापदंडों का मापन यह समझने की अनुमति दे सकता है कि प्रतिक्रिया द्वारा कितनी ऊष्मा अवशोषित की जा रही है।
संक्षेप में, निरंतर प्रवाह उष्मामिति अत्यधिक विकसित तापमान नियंत्रण तंत्र है जिसका उपयोग अत्यधिक त्रुटिहीन उष्मामिति उत्पन्न करने के लिए किया जा सकता है। यह नियंत्रित प्रयोगशाला प्रतिघातक के जैकेट क्षेत्र को नियंत्रित करके कार्य करता है, जबकि थर्मल द्रव के इनलेट तापमान को स्थिर रखता है। यह अत्यधिक एक्ज़ोथिर्मिक या एंडोथर्मिक घटनाओं के अनुसार भी तापमान को त्रुटिहीन रूप से नियंत्रित करने की अनुमति देता है जिससे कि अतिरिक्त शीतलन हमेशा उस क्षेत्र को बढ़ाकर उपलब्ध होता है जिस पर ऊष्मा का आदान-प्रदान किया जा रहा है।
डेल्टा तापमान (टी) में परिवर्तन के रूप में यह प्रणाली सामान्यतः ऊष्मा संतुलन उष्मामिति (जिस पर यह आधारित है) की तुलना में अधिक त्रुटिहीन है जिससे कि डेल्टा तापमान (Tout - Tin) में परिवर्तन द्रव प्रवाह को यथासंभव कम रखकर बढ़ाया जाता है।
निरंतर प्रवाह उष्मामिति के मुख्य लाभों में से ऊष्मा हस्तांतरण गुणांक (U) को गतिशील रूप से मापने की क्षमता है। इस प्रकार हम ऊष्मा संतुलन समीकरण से जानते हैं कि:
- Q = mf.Cpf.Tin - Tout
हम यह भी जानते हैं कि ऊष्मा प्रवाह समीकरण से,
- Q = U.A.LMTD
इसलिए हम इसे इस प्रकार पुनर्व्यवस्थित कर सकते हैं।
- U = mf.Cpf.Tin - Tout /A.LMTD
इसलिए यह हमें U को समय के कार्य के रूप में मॉनिटर करने की अनुमति देता है।
सतत प्रतिक्रिया कैलोरीमीटर
ट्यूबलर प्रतिघातकों में निरंतर प्रक्रियाओं के स्केल-अप के लिए थर्मोडायनामिक जानकारी प्राप्त करने के लिए सतत प्रतिक्रिया कैलोरीमीटर विशेष रूप से उपयुक्त है। यह उपयोगी है जिससे कि जारी ऊष्मा विशेष रूप से गैर-चयनात्मक प्रतिक्रियाओं के लिए प्रतिक्रिया नियंत्रण पर दृढ़ता से निर्भर कर सकती है। इस प्रकार सतत प्रतिक्रिया कैलोरीमीटर के साथ ट्यूब प्रतिघातक के साथ अक्षीय तापमान प्रोफ़ाइल अंकित की जा सकती है और प्रतिक्रिया की विशिष्ट ऊष्मा को ऊष्मा संतुलन और खंडीय गतिशील मापदंडों के माध्यम से निर्धारित किया जा सकता है। अतः सिस्टम में ट्यूबलर प्रतिघातक, डोजिंग सिस्टम, प्रीहीटर्स, तापमान नियंत्रक और प्रवाह मीटर सम्मिलित होते है।
परंपरागत ताप प्रवाह कैलोरीमीटर में प्रतिक्रिया का पूर्ण रूपांतरण प्राप्त करने के लिए अर्ध-बैच प्रक्रिया के समान प्रतिक्रियाशील को छोटी मात्रा में लगातार जोड़ा जाता है। ट्यूबलर प्रतिघातक के विपरीत यह लंबे समय तक निवास समय, विभिन्न पदार्थ सांद्रता और चापलूसी तापमान प्रोफाइल की ओर जाता है। इस प्रकार अच्छी प्रकार से परिभाषित प्रतिक्रियाओं की चयनात्मकता प्रभावित नहीं हो सकती है। इससे उप-उत्पादों या लगातार उत्पादों का निर्माण हो सकता है जो प्रतिक्रिया की मापक ऊष्मा को परिवर्तित करती हैं जिससे कि अन्य बांड बनते हैं। अतः वांछित उत्पाद की उपज की गणना करके उप-उत्पाद या द्वितीयक उत्पाद की मात्रा पाई जा सकती है।
यदि एचएफसी (उष्ण प्रवाह उष्मामिति) और पीएफआर कैलोरीमीटर में मापी गई प्रतिक्रिया की ऊष्मा भिन्न-भिन्न होती है तब संभवत: कुछ साइड प्रतिक्रिया होती हैं। उदाहरण के लिए वह भिन्न-भिन्न तापमान और रहने के समय के कारण हो सकते हैं। इस प्रकार पूर्ण प्रकार से मापी गई Qr आंशिक रूप से ओवरलैप्ड प्रतिक्रिया एन्थैल्पी (ΔHr) मुख्य और पार्श्व प्रतिक्रियाओं से बनी होती है जो उनके रूपांतरण की डिग्री (U) पर निर्भर करती है।
यह भी देखें
संदर्भ
- Continuous milli‑scale reaction calorimeter for direct scale‑up of flow chemistry Journal of Flow Chemistry https://doi.org/10.1007/s41981-021-00204-y
- Reaction Calorimetry in continuous flow mode. A new approach for the thermal characterization of high energetic and fast reactions https://doi.org/10.1021/acs.oprd.0c00117