रेखा-रेखा प्रतिच्छेदन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
|||
Line 223: | Line 223: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 05/04/2023]] | [[Category:Created On 05/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 14:47, 2 May 2023
यूक्लिडियन ज्यामिति में, रेखा और रेखा का प्रतिच्छेदन खाली सेट, बिंदु (ज्यामिति), या दूसरी रेखा (ज्यामिति) हो सकती है। इन स्तिथियों को भिन्न करना और प्रतिच्छेदन (यूक्लिडियन ज्यामिति) ज्ञात करना, उदाहरण के लिए, कंप्यूटर चित्रलेख, गति योजना और संघट्टन ज्ञात करने में उपयोग करता है।
त्रि-आयामी यूक्लिडियन ज्यामिति में, यदि दो रेखाएँ समान तल (ज्यामिति) में नहीं हैं, तो उनका कोई प्रतिच्छेदन बिंदु नहीं होता है और उन्हें तिरछी रेखाएँ कहा जाता है। यदि वे समान तल में हैं, तथापि, तीन संभावनाएँ हैं- यदि वे संयोग करते हैं (भिन्न-भिन्न रेखाएँ नहीं हैं), तो उनके निकट समान रूप से बिंदुओं की अनंतता होती है (अर्थात् उनमें से किसी पर भी सभी बिंदु); यदि वे भिन्न-भिन्न हैं किन्तु ढलान समान है, तो उन्हें समानांतर (ज्यामिति) कहा जाता है और उनके निकट कोई बिंदु नहीं है, अन्यथा, उनके निकट प्रतिच्छेदन का बिंदु है।
गैर-यूक्लिडियन ज्यामिति की विशिष्ट विशेषताएं दो रेखाओं के मध्य संभावित प्रतिच्छेदन की संख्या और स्थान हैं और ऐसी संभावित रेखाएँ जिनमें दी गई रेखा के साथ कोई प्रतिच्छेदन (समानांतर रेखाएँ) नहीं है।[further explanation needed]
सूत्र
दो रेखाओं के प्रतिच्छेद के लिए आवश्यक स्तिथि यह है कि वे समान तल में होनी चाहिए, अर्थात् तिरछी रेखाएँ नहीं होनी चाहिए। इस स्थिति की संतुष्टि चतुर्पाश्वीय के समतुल्य है, जिसमें रेखा पर दो बिंदु और दूसरी रेखा पर दो बिंदु शून्य आयतन होने में अध: पतन (गणित) हैं। इस स्थिति के बीजगणितीय रूप के लिए तिरछी रेखाएँ § तिरछापन का परीक्षण देखें|
प्रत्येक रेखा पर दो बिंदु दिए गए हैं
हम द्वि-आयामी अंतरिक्ष में दो रेखाओं L1 और L2 के प्रतिच्छेदन पर विचार करते हैं, रेखा L1 को दो अलग-अलग बिंदुओं (x1, y1) और (x2, y2) द्वारा परिभाषित किया गया है और रेखा L2 दो अलग-अलग बिंदुओं (x3, y3) और (x4, y4) द्वारा परिभाषित किया गया है|[1]
रेखा L1 और L2 के प्रतिच्छेदन P को सारणिक का उपयोग करके परिभाषित किया जा सकता है।
सारणिक को इस प्रकार प्रदर्शित किया जा सकता है-
जब दो रेखाएँ समानांतर या संपाती होती हैं, तो भाजक शून्य होता है।
प्रत्येक रेखा खंड पर दो बिंदु दिए गए हैं
उपरोक्त प्रतिच्छेदन बिंदु बिंदुओं के मध्य रेखा खंडों के बजाय बिंदुओं द्वारा परिभाषित असीम रूप से लंबी रेखाओं के लिए है और प्रतिच्छेदन बिंदु का उत्पादन कर सकता है जो दो रेखाखंडों में सम्मिलित नहीं है। रेखाखंडों के संबंध में प्रतिच्छेदन की स्थिति ज्ञात करने के लिए, हम प्रथम डिग्री बेज़ियर पैरामीटर के संदर्भ में रेखा L1 और L2 को परिभाषित कर सकते हैं-
(जहाँ t और u वास्तविक संख्याएँ हैं)। रेखाओं का प्रतिच्छेदन बिंदु t या u निम्नलिखित मानों में प्राप्त होता है, जहाँ,
और
साथ
- है।
यदि 0 ≤ t ≤ 1 और 0 ≤ u ≤ 1 है, तो प्रतिच्छेदन होगा। यदि 0 ≤ t ≤ 1 है, तो प्रतिच्छेदन बिंदु प्रथम रेखा खंड के अंतर्गत आता है और यदि 0 ≤ u ≤ 1 है, तो यह द्वितीय रेखा खंड के अंतर्गत आता है| इन असमानताओं के परीक्षण के लिए विभाजन की आवश्यकता नहीं होती है, यह त्रुटिहीन बिंदु की गणना करने से पूर्व रेखा खंड प्रतिच्छेदन के अस्तित्व का तीव्रता से निर्धारण करने की अनुमति प्रदान करता है।[2]
द्विरेखीय समीकरण
निम्नलिखित प्रतिस्थापन और पुनर्व्यवस्था का उपयोग करके दो गैर-ऊर्ध्वाधर रेखाओं के प्रतिच्छेदन बिंदु के x और y निर्देशांक सरलता से प्राप्त किये जा सकते हैं।
मान लीजिए कि दो रेखाओं के y = ax + c और y = bx + d समीकरण हैं, जहाँ a और b रेखाओं की ढलान (ढाल) हैं और जहाँ c और d रेखाओं का अवरोधन y है। उस बिंदु पर जहाँ दो रेखाएं प्रतिच्छेद करती हैं (यदि वे करती हैं), दोनों y निर्देशांक समान होंगे, इसलिए निम्नलिखित समानता यह है-
x का मान ज्ञात करने के लिए हम इस व्यंजक को पुनर्व्यवस्थित कर सकते हैं,
इसलिए,
y निर्देशांक ज्ञात करने के लिए, हमें x के मान को दो रेखा समीकरणों में प्रतिस्थापित करना है,
इसलिए, प्रतिच्छेदन बिंदु है|
यदि a = b है, तो दो रेखाएँ समानांतर (ज्यामिति) हैं। यदि c ≠ d है, तो रेखाएँ भिन्न हैं और कोई प्रतिच्छेदन नहीं है, अन्यथा दो रेखाएँ समान हैं और प्रत्येक बिंदु पर प्रतिच्छेद करती हैं।
सजातीय निर्देशांक का उपयोग
सजातीय निर्देशांक का उपयोग करके, दो स्पष्ट रूप से परिभाषित रेखाओं के प्रतिच्छेदन बिंदु को अधिक सरलता से निर्धारित किया जा सकता है। 2D में, प्रत्येक बिंदु को 3D बिंदु के प्रक्षेपण के रूप में परिभाषित किया जा सकता है, जिसे तीन क्रमों (x, y, w) के रूप में दिया गया है| 3D से 2D निर्देशांकों की मैपिंग (x′, y′) = (x/w, y/w) है| हम उन्हें (x, y, 1) के रूप में परिभाषित करके 2D बिंदुओं को सजातीय निर्देशांक में परिवर्तित कर सकते हैं|
हम 2-आयामी अंतरिक्ष में दो अनंत रेखाओं का प्रतिच्छेदन ज्ञात करना चाहते हैं, जिसे a1x + b1y + c1 = 0 और a2x + b2y + c2 = 0 के रूप में परिभाषित किया गया है| हम इन दो रेखाओं को निर्देशांक में U1 = (a1, b1, c1) और U2 = (a2, b2, c2) के रूप में निरूपित कर सकते हैं| दो रेखाओं का प्रतिच्छेदन P′ सरलता से प्राप्त हो जाता है[3]
यदि cp = 0 है, तो रेखाएँ प्रतिच्छेद नहीं करती हैं।
दो से अधिक रेखाएँ
अतिरिक्त रेखाओं को सम्मिलित करने के लिए दो रेखाओं के प्रतिच्छेदन को सामान्यीकृत किया जा सकता है। n-रेखीय प्रतिच्छेदन की समस्या का अस्तित्व और अभिव्यक्ति इस प्रकार हैं-
दो आयाम में
दो आयामों में, दो से अधिक रेखाएँ लगभग निश्चित रूप से बिंदु पर प्रतिच्छेद नहीं करती हैं। यह निर्धारित करने के लिए कि क्या वे करते हैं और यदि ऐसा है, तो प्रतिच्छेदन बिंदु ज्ञात करने के लिए, iवें समीकरण (i = 1, …, n) को इस रूप में लिखें-
और इन समीकरणों को मैट्रिक्स रूप में स्टैक करें,
जहाँ n × 2 आव्यूह A की iवीं पंक्ति [ai1, ai2] है, w 2 × 1 [x
y] वेक्टर है और स्तंभ सदिश b का iवाँ तत्व bi है| यदि A में स्वतंत्र स्तंभ हैं, तो इसकी मैट्रिक्स कोटि 2 है। यदि संवर्धित मैट्रिक्स [A | b] की कोटि 2 है, तो मैट्रिक्स समीकरण का समाधान उपस्थित है और इस प्रकार n रेखाओं का प्रतिच्छेदन बिंदु है। यदि प्रतिच्छेदन बिंदु उपस्थित है तो इस समीकरण द्वारा प्राप्त किया गया है-
जहाँ Ag, A का मूर-पेनरोज़ सामान्यीकृत व्युत्क्रम है (जिसका रूप प्रदर्शित किया गया है क्योंकि A का पूर्ण स्तंभ कोटि है)। वैकल्पिक रूप से, दो स्वतंत्र समीकरणों को संयुक्त रूप से हल करके समाधान ज्ञात किया जा सकता है। किन्तु यदि A की कोटि मात्र 1 है और संवर्धित मैट्रिक्स की कोटि 2 है तो इसका समाधान नहीं है किन्तु यदि इसकी कोटि 1 है तो सभी रेखाएँ परस्पर समान हैं।
तीन आयाम में
उपरोक्त दृष्टिकोण को सरलता से तीन आयाम में विस्तृत किया जा सकता है। तीन या अधिक आयामों में, दो रेखाएं प्रायः निश्चित रूप से प्रतिच्छेद नहीं करती हैं| असमांतर रेखाओं के युग्म जो प्रतिच्छेद नहीं करते हैं, तिरछी रेखाएँ कहलाते हैं। किन्तु यदि कोई प्रतिच्छेदन उपस्थित है तो इसे निम्नानुसार प्राप्त किया जा सकता है।
तीन आयाम में रेखा को दो तलों के प्रतिच्छेदन द्वारा दर्शाया जाता है, जिनमें से प्रत्येक के रूप का समीकरण होता है-
इस प्रकार n रेखाओं के समुच्चय को 3-आयामी निर्देशांक सदिश w में 2n समीकरण द्वारा दर्शाया जा सकता है,
जहाँ, अब A, 2n × 3 है और b, 2n × 1 है| पूर्व की भाँति ही अद्वितीय प्रतिच्छेदन बिंदु है, यदि A में पूर्ण स्तंभ कोटि हैं और संवर्धित मैट्रिक्स [A | b] में पूर्ण स्तंभ कोटि नहीं है और यदि अद्वितीय प्रतिच्छेदन उपस्थित है, तो इसके द्वारा प्राप्त किया गया है-
तिरछी रेखाओं के निकटतम बिंदु
दो या दो से अधिक आयामों में, हम सामान्यतः ऐसा बिंदु ज्ञात करते हैं जो कम से कम वर्ग में दो या दो से अधिक रेखाओं के परस्पर निकटतम है।
दो आयामों में
द्वि-आयामी स्तिथि में, रेखा i को बिंदु pi के रूप में और इकाई सामान्य वेक्टर n̂i, उस रेखा के लंबवत दर्शाया गया है। अर्थात यदि x1 और x2 रेखा 1 पर बिंदु हैं, तो मान लीजिए p1 = x1 है|
यह समकोण द्वारा घूर्णित रेखा के साथ इकाई सदिश है।
बिंदु x से रेखा की दूरी (p, n̂) है,
बिंदु x से रेखा की वर्ग दूरी है,
विभिन्न रेखाओं की वर्ग दूरियों का योग फलन है-
इस प्रकार इसे पुनर्व्यवस्थित किया जा सकता है-
न्यूनतम के लिए, हम इसे x के सापेक्ष अवकलित करते हैं और परिणाम को शून्य वेक्टर के समरूप निर्धारित करते हैं,
इसलिए
इसलिए
दो से अधिक आयामों में
जबकि n̂i दो से अधिक आयामों में उचित रूप से परिभाषित नहीं किया गया है, इसे आयामों की संख्या के लिए सामान्यीकृत किया जा सकता है| pi और अन्य बिंदु के मध्य की दूरी पर सेमिनोर्म प्रदान करने वाली रेखा के साथ दिशा में शून्य आइगेन मान को छोड़कर सभी आइगेन मान यूनिटी के साथ मात्र सममित मैट्रिक्स n̂i n̂iT है। आयामों की संख्या में, यदि v̂i iवीं रेखा के साथ इकाई वेक्टर है, तो
- , बन जाता है|
जहाँ I आइडेंटिटी मैट्रिक्स है,[4]
सामान्य व्युत्पत्ति
रेखाओं के समूह का प्रतिच्छेदन बिंदु ज्ञात करने के लिए, हम न्यूनतम दूरी के बिंदु की गणना करते हैं। प्रत्येक रेखा को मूल ai और इकाई दिशा वेक्टर n̂i द्वारा परिभाषित किया गया है| बिंदु p से रेखा की दूरी का वर्ग पाइथागोरस से प्राप्त किया जाता है|
जहाँ (p − ai)T n̂i, i पर p − ai का प्रक्षेपण है| वर्ग से सभी रेखाओं की दूरियों का योग है-
इस व्यंजक को न्यूनतम करने के लिए, हम इसे p के सापेक्ष अवकलित करते हैं।
जिसके परिणामस्वरूप
जहाँ I आइडेंटिटी मैट्रिक्स है। यह समाधान p = S+C के साथ मैट्रिक्स Sp = C है, जहाँ S+, S का प्रतिलोम है|
गैर-यूक्लिडियन ज्यामिति
गोलीय ज्यामिति में, कोई भी दो रेखाएँ प्रतिच्छेद करती हैं।[5] अतिपरवलयिक ज्यामिति में, किसी भी रेखा और बिंदु को दिए जाने पर, उस बिंदु से होकर जाने वाली अपरिमित रूप से विभिन्न रेखाएँ होती हैं जो रेखा को प्रतिच्छेद नहीं करती हैं।[5]
यह भी देखें
- रेखा खंड प्रतिच्छेदन
- प्रक्षेपी समतल में रेखाओं का प्रतिच्छेदन
- दो समानांतर रेखाओं के मध्य की दूरी
- बिंदु से रेखा की दूरी
- रेखा-समतल प्रतिच्छेदन
- समानांतर अभिधारणा
- त्रिकोण (कंप्यूटर दृष्टि)
- प्रतिच्छेदन (यूक्लिडियन ज्यामिति) § द्वि-रेखा खंड
संदर्भ
- ↑ Weisstein, Eric W. "Line-Line Intersection". MathWorld. Retrieved 2008-01-10.
- ↑ Antonio, Franklin (1992). "Chapter IV.6: Faster Line Segment Intersection". In Kirk, David (ed.). ग्राफिक्स रत्न III. Academic Press, Inc. pp. 199–202. ISBN 0-12-059756-X.
- ↑ Birchfield, Stanley (1998-04-23). "सजातीय निर्देशांक". robotics.stanford.edu. Archived from the original on 2000-09-29. Retrieved 2015-08-18.
- ↑ Traa, Johannes (2013). "रेखाओं का कम से कम वर्ग चौराहा" (PDF). cal.cs.illinois.edu. Archived from the original (PDF) on 2017-09-12. Retrieved 2018-08-30.
- ↑ 5.0 5.1 "हाइपरबोलिक स्पेस की खोज" (PDF). math.berkeley.edu. Retrieved 2022-06-03.
{{cite web}}
: CS1 maint: url-status (link)
बाहरी संबंध
- Distance between Lines and Segments with their Closest Point of Approach, applicable to two, three, or more dimensions.