ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Tetrahedron where all pairs of opposite edges are perpendicular}} | {{Short description|Tetrahedron where all pairs of opposite edges are perpendicular}} | ||
[[ज्यामिति]] में, ऑर्थोसेन्ट्रिक [[ चतुर्पाश्वीय |टेट्राहेड्रॉन]] में विपरीत कोर के तीन युगल लंबवत होते हैं। इसे ऑर्थोगोनल टेट्राहेड्रॉन के रूप में भी जाना जाता है क्योंकि ऑर्थोगोनल का अर्थ [[सीधा|समकोण]] होता है। सर्वप्रथम 1782 में साइमन एंटोनी जीन ल'हुइलियर द्वारा इसका अध्ययन किया गया था और गैस्टन अल्बर्ट गोहिरे डी लॉन्गचैम्प्स द्वारा ऑर्थोसेन्ट्रिक टेट्राहेड्रोन नाम दिया गया था। 1890 में डी लॉन्गचैम्प्स।<ref name=Court>{{citation|last=Court|first=N. A.|authorlink=Nathan Altshiller Court|title=Notes on the orthocentric tetrahedron|journal=[[American Mathematical Monthly]]|date=October 1934|volume=41|issue=8|pages=499–502|jstor=2300415|doi=10.2307/2300415}}.</ref> | [[ज्यामिति]] में, ऑर्थोसेन्ट्रिक [[ चतुर्पाश्वीय |टेट्राहेड्रॉन]] में विपरीत कोर के तीन युगल लंबवत होते हैं। इसे ऑर्थोगोनल टेट्राहेड्रॉन के रूप में भी जाना जाता है क्योंकि ऑर्थोगोनल का अर्थ [[सीधा|समकोण]] होता है। सर्वप्रथम 1782 में साइमन एंटोनी जीन ल'हुइलियर द्वारा इसका अध्ययन किया गया था और गैस्टन अल्बर्ट गोहिरे डी लॉन्गचैम्प्स द्वारा ऑर्थोसेन्ट्रिक टेट्राहेड्रोन नाम दिया गया था। 1890 में डी लॉन्गचैम्प्स।<ref name=Court>{{citation|last=Court|first=N. A.|authorlink=Nathan Altshiller Court|title=Notes on the orthocentric tetrahedron|journal=[[American Mathematical Monthly]]|date=October 1934|volume=41|issue=8|pages=499–502|jstor=2300415|doi=10.2307/2300415}}.</ref> | ||
ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन में चार ऊँचाई [[समवर्ती रेखाएँ]] हैं। इस सामान्य बिंदु को ऑर्थोसेंटर कहा जाता है, और इसकी संपत्ति है कि यह [[केन्द्रक]] के संबंध में परिचालित क्षेत्र के केंद्र का सममित बिंदु है।<ref name="Court" />इसलिए लम्बकेन्द्र चतुष्फलक के त्रिभुज के अनुरूप चतुष्फलक#गुणों के साथ मेल खाता है। | |||
== लक्षण वर्णन == | == लक्षण वर्णन == | ||
सभी टेट्राहेड्रा को समांतर चतुर्भुज में अंकित किया जा सकता है। एक टेट्राहेड्रॉन ऑर्थोसेन्ट्रिक है [[अगर और केवल अगर]] इसके परिचालित समांतर चतुर्भुज एक समचतुर्भुज है। वास्तव में, किसी भी चतुष्फलक में, विपरीत किनारों की एक जोड़ी लंबवत होती है यदि और केवल यदि परिबद्ध समांतर चतुर्भुज के संगत फलक समचतुर्भुज हों। यदि | सभी टेट्राहेड्रा को समांतर चतुर्भुज में अंकित किया जा सकता है। एक टेट्राहेड्रॉन ऑर्थोसेन्ट्रिक है [[अगर और केवल अगर]] इसके परिचालित समांतर चतुर्भुज एक समचतुर्भुज है। वास्तव में, किसी भी चतुष्फलक में, विपरीत किनारों की एक जोड़ी लंबवत होती है यदि और केवल यदि परिबद्ध समांतर चतुर्भुज के संगत फलक समचतुर्भुज हों। यदि समांतर चतुर्भुज के चार फलक समचतुर्भुज हैं, तो सभी किनारों की लंबाई समान होती है और सभी छह फलक समचतुर्भुज होते हैं; यह इस प्रकार है कि यदि टेट्राहेड्रॉन में विपरीत किनारों के दो जोड़े लंबवत हैं, तो तीसरी जोड़ी भी है, और टेट्राहेड्रॉन ऑर्थोसेन्ट्रिक है।<ref name=Court/> | ||
एक चतुष्फलक {{mvar|ABCD}} ऑर्थोसेन्ट्रिक है अगर और केवल अगर विपरीत किनारों के वर्गों का योग विपरीत किनारों के तीन जोड़े के लिए समान है:<ref>Reiman, István, "International Mathematical Olympiad: 1976-1990", Anthem Press, 2005, pp. 175-176.</ref><ref name=Hazewinkel/> | एक चतुष्फलक {{mvar|ABCD}} ऑर्थोसेन्ट्रिक है अगर और केवल अगर विपरीत किनारों के वर्गों का योग विपरीत किनारों के तीन जोड़े के लिए समान है:<ref>Reiman, István, "International Mathematical Olympiad: 1976-1990", Anthem Press, 2005, pp. 175-176.</ref><ref name=Hazewinkel/> | ||
Line 15: | Line 16: | ||
== मात्रा == | == मात्रा == | ||
किनारों के | किनारों के सम्बन्ध में लक्षण वर्णन का तात्पर्य है कि यदि ऑर्थोसेन्ट्रिक टेट्राहेड्रोन के छह किनारों में से केवल चार ही ज्ञात हैं, तो शेष दो की गणना तब तक की जा सकती है जब तक कि वे एक दूसरे के विपरीत न हों। इसलिए ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन का [[आयतन]] चार किनारों ए, बी, सी, डी के रूप में व्यक्त किया जा सकता है। सूत्र है<ref name=Andreescu>Andreescu, Titu and Gelca, Razvan, "Mathematical Olympiad Challenges", Birkhäuser, second edition, 2009, pp. 30-31, 159.</ref> | ||
:<math>V=\frac{1}{6}\sqrt{4(c^2+d^2)s(s-a)(s-b)(s-c)-a^2b^2c^2}</math> | :<math>V=\frac{1}{6}\sqrt{4(c^2+d^2)s(s-a)(s-b)(s-c)-a^2b^2c^2}</math> | ||
जहाँ c और d विपरीत किनारे हैं, और <math>s=\tfrac{1}{2}(a+b+c)</math>. | जहाँ c और d विपरीत किनारे हैं, और <math>s=\tfrac{1}{2}(a+b+c)</math>. |
Revision as of 20:19, 24 April 2023
ज्यामिति में, ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन में विपरीत कोर के तीन युगल लंबवत होते हैं। इसे ऑर्थोगोनल टेट्राहेड्रॉन के रूप में भी जाना जाता है क्योंकि ऑर्थोगोनल का अर्थ समकोण होता है। सर्वप्रथम 1782 में साइमन एंटोनी जीन ल'हुइलियर द्वारा इसका अध्ययन किया गया था और गैस्टन अल्बर्ट गोहिरे डी लॉन्गचैम्प्स द्वारा ऑर्थोसेन्ट्रिक टेट्राहेड्रोन नाम दिया गया था। 1890 में डी लॉन्गचैम्प्स।[1]
ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन में चार ऊँचाई समवर्ती रेखाएँ हैं। इस सामान्य बिंदु को ऑर्थोसेंटर कहा जाता है, और इसकी संपत्ति है कि यह केन्द्रक के संबंध में परिचालित क्षेत्र के केंद्र का सममित बिंदु है।[1]इसलिए लम्बकेन्द्र चतुष्फलक के त्रिभुज के अनुरूप चतुष्फलक#गुणों के साथ मेल खाता है।
लक्षण वर्णन
सभी टेट्राहेड्रा को समांतर चतुर्भुज में अंकित किया जा सकता है। एक टेट्राहेड्रॉन ऑर्थोसेन्ट्रिक है अगर और केवल अगर इसके परिचालित समांतर चतुर्भुज एक समचतुर्भुज है। वास्तव में, किसी भी चतुष्फलक में, विपरीत किनारों की एक जोड़ी लंबवत होती है यदि और केवल यदि परिबद्ध समांतर चतुर्भुज के संगत फलक समचतुर्भुज हों। यदि समांतर चतुर्भुज के चार फलक समचतुर्भुज हैं, तो सभी किनारों की लंबाई समान होती है और सभी छह फलक समचतुर्भुज होते हैं; यह इस प्रकार है कि यदि टेट्राहेड्रॉन में विपरीत किनारों के दो जोड़े लंबवत हैं, तो तीसरी जोड़ी भी है, और टेट्राहेड्रॉन ऑर्थोसेन्ट्रिक है।[1]
एक चतुष्फलक ABCD ऑर्थोसेन्ट्रिक है अगर और केवल अगर विपरीत किनारों के वर्गों का योग विपरीत किनारों के तीन जोड़े के लिए समान है:[2][3]
वास्तव में, टेट्राहेड्रोन के ऑर्थोसेन्ट्रिक होने के लिए इस शर्त को पूरा करने के लिए विपरीत किनारों के केवल दो जोड़े के लिए पर्याप्त है।
टेट्राहेड्रॉन के ऑर्थोसेन्ट्रिक होने के लिए एक और आवश्यक और पर्याप्त शर्त यह है कि इसके तीन टेट्राहेड्रॉन#Properties_analogous_to_those_of_a_triangle की लंबाई समान है।[3]
मात्रा
किनारों के सम्बन्ध में लक्षण वर्णन का तात्पर्य है कि यदि ऑर्थोसेन्ट्रिक टेट्राहेड्रोन के छह किनारों में से केवल चार ही ज्ञात हैं, तो शेष दो की गणना तब तक की जा सकती है जब तक कि वे एक दूसरे के विपरीत न हों। इसलिए ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन का आयतन चार किनारों ए, बी, सी, डी के रूप में व्यक्त किया जा सकता है। सूत्र है[4]
जहाँ c और d विपरीत किनारे हैं, और .
यह भी देखें
- डिफेनोइड
- तिकोना चतुर्भुज
संदर्भ
- ↑ 1.0 1.1 1.2 Court, N. A. (October 1934), "Notes on the orthocentric tetrahedron", American Mathematical Monthly, 41 (8): 499–502, doi:10.2307/2300415, JSTOR 2300415.
- ↑ Reiman, István, "International Mathematical Olympiad: 1976-1990", Anthem Press, 2005, pp. 175-176.
- ↑ 3.0 3.1 Hazewinkel, Michiel, "Encyclopaedia of mathematics: Supplement, Volym 3", Kluwer Academic Publishers, 1997, p. 468.
- ↑ Andreescu, Titu and Gelca, Razvan, "Mathematical Olympiad Challenges", Birkhäuser, second edition, 2009, pp. 30-31, 159.