मीट्रिक रिक्त स्थान की श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:


== तीर ==
== तीर ==
मेट में मोनोमोर्फिज्म इंजेक्टिव मेट्रिक हैं। एपिमोर्फिज्म वे मीट्रिक मानचित्र होते हैं, जिनके लिए मानचित्र के किसी मानचित्र के डोमेन में किसी मानचित्र की श्रेणी में सघन समुच्चय [[छवि (गणित)]] होती है। [[समाकृतिकता]] [[आइसोमेट्री]] हैं। अर्थात् मीट्रिक मैप्स जो [[इंजेक्शन]], [[विशेषण]] और दूरी-संरक्षण वाले हैं।
मेट में मोनोमोर्फिज्म इंजेक्टिव मेट्रिक हैं। एपिमोर्फिज्म वे मीट्रिक मानचित्र होते हैं, जिनके लिए मानचित्र के किसी मानचित्र के डोमेन में किसी मानचित्र की श्रेणी में सघन समुच्चय [[छवि (गणित)]] होती है। [[समाकृतिकता]] [[आइसोमेट्री]] हैं। अर्थात् मीट्रिक मैप्स जो [[इंजेक्शन]], [[विशेषण]] और दूरी-संरक्षण वाले हैं।


एक उदाहरण के रूप में परिमेय संख्याओं को [[वास्तविक संख्या]]ओं में सम्मिलित करना [[एकरूपता]] और [[अधिरूपता]] है। अर्थात् यह स्पष्ट रूप से एक तुल्याकारिता नहीं है। जिसका यह एक उदाहरण है कि मेट एक [[संतुलित श्रेणी]] नहीं है।
एक उदाहरण के रूप में परिमेय संख्याओं को [[वास्तविक संख्या]]ओं में सम्मिलित करना [[एकरूपता]] और [[अधिरूपता]] है। अर्थात् यह स्पष्ट रूप से एक तुल्याकारिता नहीं है। जिसका यह एक उदाहरण है कि मेट एक [[संतुलित श्रेणी]] नहीं है।


== ऑब्जेक्ट्स ==
== ऑब्जेक्ट्स ==
[[खाली सेट|खाली]] मीट्रिक स्थान मेट का [[प्रारंभिक वस्तु|प्राथमिक ऑब्जेक्ट]] है। कोई भी [[सिंगलटन (गणित)]] मीट्रिक स्पेस एक टर्मिनल ऑब्जेक्ट है क्योंकि प्रारंभिक वस्तु और [[टर्मिनल वस्तु]]एँ भिन्न होती हैं। मेट में कोई [[शून्य वस्तु]] नहीं होती है।
[[खाली सेट|खाली]] मीट्रिक स्थान मेट का [[प्रारंभिक वस्तु|प्राथमिक ऑब्जेक्ट]] है। कोई भी [[सिंगलटन (गणित)]] मीट्रिक स्पेस एक टर्मिनल ऑब्जेक्ट है क्योंकि प्रारंभिक वस्तु और [[टर्मिनल वस्तु]]एँ भिन्न होती हैं। मेट में कोई [[शून्य वस्तु]] नहीं होती है।


मेट में [[ इंजेक्शन वस्तु | इंजेक्शन वस्तुओं]] को [[ इंजेक्शन मीट्रिक स्थान |इंजेक्शन मीट्रिक स्थान]] कहा जाता है। इंजेक्शन मेट्रिक रिक्त स्थान की जानकारी दी गयी और अरोनज़ज्न और पनीचपाकडी (1956) द्वारा पहली बार अध्ययन किए गए। एक श्रेणी के रूप में मेट के अध्ययन से पहले उन्हें अपनी मीट्रिक गेंदों के एक [[हेली परिवार]] के संदर्भ में आंतरिक रूप से परिभाषित किया जा सकता है और इस वैकल्पिक परिभाषा के कारण अरोन्ज़जन और पैनिचपाकडी ने इन स्थानों को हाइपरकोनवेक्स स्पेस के नाम से सम्मानित किया गया है। किसी भी मेट्रिक स्पेस में सबसे छोटा इंजेक्टिव मेट्रिक स्पेस होता है। जिसमें इसे आइसोमेट्रिक रूप से [[एम्बेडिंग]] किया जा सकता है। जिसे इसका मेट्रिक कवर या [[ तंग अवधि ]] कहा जाता है।
मेट में [[ इंजेक्शन वस्तु |इंजेक्शन वस्तुओं]] को [[ इंजेक्शन मीट्रिक स्थान |इंजेक्शन मीट्रिक स्थान]] कहा जाता है। इंजेक्शन मेट्रिक रिक्त स्थान की जानकारी दी गयी और अरोनज़ज्न और पनीचपाकडी (1956) द्वारा पहली बार अध्ययन किए गए। एक श्रेणी के रूप में मेट के अध्ययन से पहले उन्हें अपनी मीट्रिक गेंदों के एक [[हेली परिवार]] के संदर्भ में आंतरिक रूप से परिभाषित किया जा सकता है और इस वैकल्पिक परिभाषा के कारण अरोन्ज़जन और पैनिचपाकडी ने इन स्थानों को हाइपरकोनवेक्स स्पेस के नाम से सम्मानित किया गया है। किसी भी मेट्रिक स्पेस में सबसे छोटा इंजेक्टिव मेट्रिक स्पेस होता है। जिसमें इसे आइसोमेट्रिक रूप से [[एम्बेडिंग]] किया जा सकता है। जिसे इसका मेट्रिक कवर या [[ तंग अवधि |तंग अवधि]] कहा जाता है।


== [[वफादार कारक|उत्पाद और कारक]] ==
== [[वफादार कारक|उत्पाद और कारक]] ==

Revision as of 00:05, 28 April 2023

श्रेणी सिद्धांत में मेट एक श्रेणी है। मेट एक ऐसी श्रेणी है, जिसमें मीट्रिक रिक्त स्थान इसकी वस्तुओं और मीट्रिक मानचित्र (मीट्रिक रिक्त स्थान के बीच निरंतर कार्य जो किसी भी युग्म के अनुसार दूरी को नहीं बढ़ाते हैं) के रूप में इसके आकारिकी के रूप में हैं। यह एक श्रेणी है क्योंकि दो मीट्रिक मानचित्रों की कार्य संरचना फिर से एक मीट्रिक मानचित्र है। इसबेल (1964)। द्वारा सर्वप्रथम विचार किया गया।

तीर

मेट में मोनोमोर्फिज्म इंजेक्टिव मेट्रिक हैं। एपिमोर्फिज्म वे मीट्रिक मानचित्र होते हैं, जिनके लिए मानचित्र के किसी मानचित्र के डोमेन में किसी मानचित्र की श्रेणी में सघन समुच्चय छवि (गणित) होती है। समाकृतिकता आइसोमेट्री हैं। अर्थात् मीट्रिक मैप्स जो इंजेक्शन, विशेषण और दूरी-संरक्षण वाले हैं।

एक उदाहरण के रूप में परिमेय संख्याओं को वास्तविक संख्याओं में सम्मिलित करना एकरूपता और अधिरूपता है। अर्थात् यह स्पष्ट रूप से एक तुल्याकारिता नहीं है। जिसका यह एक उदाहरण है कि मेट एक संतुलित श्रेणी नहीं है।

ऑब्जेक्ट्स

खाली मीट्रिक स्थान मेट का प्राथमिक ऑब्जेक्ट है। कोई भी सिंगलटन (गणित) मीट्रिक स्पेस एक टर्मिनल ऑब्जेक्ट है क्योंकि प्रारंभिक वस्तु और टर्मिनल वस्तुएँ भिन्न होती हैं। मेट में कोई शून्य वस्तु नहीं होती है।

मेट में इंजेक्शन वस्तुओं को इंजेक्शन मीट्रिक स्थान कहा जाता है। इंजेक्शन मेट्रिक रिक्त स्थान की जानकारी दी गयी और अरोनज़ज्न और पनीचपाकडी (1956) द्वारा पहली बार अध्ययन किए गए। एक श्रेणी के रूप में मेट के अध्ययन से पहले उन्हें अपनी मीट्रिक गेंदों के एक हेली परिवार के संदर्भ में आंतरिक रूप से परिभाषित किया जा सकता है और इस वैकल्पिक परिभाषा के कारण अरोन्ज़जन और पैनिचपाकडी ने इन स्थानों को हाइपरकोनवेक्स स्पेस के नाम से सम्मानित किया गया है। किसी भी मेट्रिक स्पेस में सबसे छोटा इंजेक्टिव मेट्रिक स्पेस होता है। जिसमें इसे आइसोमेट्रिक रूप से एम्बेडिंग किया जा सकता है। जिसे इसका मेट्रिक कवर या तंग अवधि कहा जाता है।

उत्पाद और कारक

मेट में मीट्रिक रिक्त स्थान के एक परिमित सेट का उत्पाद (श्रेणी सिद्धांत) एक मीट्रिक स्थान है। जिसमें रिक्त स्थान के कार्टेशियन उत्पाद को इसके बिंदुओं के रूप में रखा गया है। उत्पाद स्थान में दूरी को आधार स्थान में दूरियों के सर्वोच्च द्वारा दिया जाता है। अर्थात् यह समर्थन मानदंड वाला उत्पाद मीट्रिक है। मीट्रिक रिक्त स्थान के एक अनंत समुच्चय का उत्पाद उपस्थित नहीं हो सकता है क्योंकि आधार रिक्त स्थान में दूरियों में सर्वोच्चता नहीं हो सकती है। अर्थात् मेट पूर्ण श्रेणी नहीं है। किन्तु यह पूर्ण रूप से पूरित है। मेट में कोई प्रतिउत्पाद नहीं है।

याद न रहने वाला फ़ंक्टर मेट → समुच्चय की श्रेणी प्रत्येक मीट्रिक स्थान को उसके बिंदुओं के अंतर्निहित समुच्चय को असाइन करती है और प्रत्येक मीट्रिक मानचित्र को अंतर्निहित समुच्चय-सैद्धांतिक फलन असाइन करती है। यह फ़ैक्टर याद न रहने वाला कारक है और इसलिए मेट एक ठोस श्रेणी को प्रदर्शित करती है।

संबंधित श्रेणियां

मेट एकमात्र ऐसी श्रेणी नहीं है, जिसके ऑब्जेक्ट मेट्रिक स्पेस हैं। अन्य में एकसमान निरंतरता की श्रेणी, लिप्सचिट्ज़ निरंतरता की श्रेणी और क्वैसी-लिपशिट्ज मैपिंग की श्रेणी सम्मिलित है। मीट्रिक मानचित्र समान रूप से निरंतर और लिप्सचिट्ज़ दोनों हैं। जिसमें लिप्सचिट्ज़ स्थिरांक सबसे अधिक पाये जाते हैं।

यह भी देखें

संदर्भ

  • Aronszajn, N.; Panitchpakdi, P. (1956), "Extensions of uniformly continuous transformations and hyperconvex metric spaces", Pacific Journal of Mathematics, 6 (3): 405–439, doi:10.2140/pjm.1956.6.405.
  • Deza, Michel Marie; Deza, Elena (2009), "Category of metric spaces", Encyclopedia of Distances, Springer-Verlag, p. 38, ISBN 9783642002342.
  • Isbell, J. R. (1964), "Six theorems about injective metric spaces", Comment. Math. Helv., 39 (1): 65–76, doi:10.1007/BF02566944, S2CID 121857986.