मीट्रिक ज्यामिति में, मीट्रिक स्पेसM का मीट्रिक लिफ़ाफ़ा या तंग अवधि एक अंतःक्षेपक मीट्रिक स्पेस है जिसमें M को जोड़ा जा सकता है। माना कुछ अर्थों में इस M के बिंदुओं के मध्य में प्रत्येक बिंदु होते हैं, जो यूक्लिडियन अंतरिक्ष में स्थापित बिंदु के उत्तल हल के समान होते हैं। तंग अवधि को कभी-कभी 'M' के अंतःक्षेपक एनवेलप या हाइपरकोनवेक्स हल के रूप में भी जाना जाता है। इसे अंतःक्षेपक हल भी कहा जाता है, परंतु बीजगणित में एक मॉड्यूल के अंतःक्षेपक हल के सापेक्ष भ्रमित नहीं होना चाहिए, तथा एक अवधारणा जिसमें मीट्रिक रिक्त स्पेस के अतिरिक्त 'R '-मॉड्यूल की श्रेणी के सापेक्ष समान विवरण होता है ।
तंग अवधि का वर्णन सबसे पहले इसबेल (1964) harvtxt error: no target: CITEREFइसबेल1964 (help) द्वारा वर्णित किया गया था , और इसका अध्ययन 1960 के दशक में होल्स्ज़्Tस्की द्वारा प्रारंभ किया गया था। इसके उपरांत में ड्रेस (1984) harvtxt error: no target: CITEREFड्रेस1984 (help) और क्रोबक और & लारमोर (1994) harvtxt error: no target: CITEREFक्रोबक_औरलारमोर1994 (help) ने स्वतंत्र रूप से पुनः खोजा था इस इतिहास के लिए चेपोई (1997) harvtxt error: no target: CITEREFचेपोई1997 (help) ने दर्शाया कि तंग अवधि T-सिद्धांत के केंद्रीय निर्माणों में से एक है।
एक मीट्रिक स्पेस की तंग अवधि को निम्नानुसार परिभाषित किया जा सकता है। माना (X,d) एक मीट्रिक स्पेस हैं, और T(X) को X पर 'चरम फलन' का समुच्चय बनाया जाता हैं, तथा हम X को 'एक्सट्रीमल फलन' कहते हैं, जिसका अर्थ X से 'R ' तक एक फलन f है जैसे कि
X में किसी x, y के लिए, d(x,y) ≤ f(x) + f(y), और
X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.[1]हैं।
विशेष रूप से (ऊपर विशेषता 1 में x = y लेने पर) प्रत्येक x के लिए f(x) ≥ 0। ऊपर दी गई पहली आवश्यकता की व्याख्या करने की यह एक विधि है जोकि f कुछ नए बिंदु से X के बिंदुओं तक संभावित दूरी के एक समुच्चय को परिभाषित करता है जो कि (X, d) में दूरियों के सापेक्ष त्रिकोण असमानता को पूरा करना चाहता है। दूसरी आवश्यकता बताती है कि त्रिभुज असमानता का उल्लंघन किए बिना इनमें से किसी भी दूरी को न्यूनतम नहीं किया जा सकता है।
(X, d) का 'तंग अवधि' मीट्रिक स्पेस (T (X), δ) है, जहां
ℓ∞ मानदंड से प्रेरित मीट्रिक के अनुरूप है। (यदि d बाध्य है, तो δ ℓ∞ मानदंड से प्रेरित मीट्रिक द्वारा प्रेरित उप-मीट्रिक मीट्रिक होता है। यदि d बाध्य नहीं है, तो X पर प्रत्येक चरम फलन असीमित होता है और इसलिए यह सच होगा कि T(X) में किसी भी f,g के लिए, अंतर का है अर्थात बाउंडेड है।
चरम फलनों की समतुल्य परिभाषाएँ
X से 'R ' तक एक फलन f के लिए पहली आवश्यकता को पूरा करने के लिए, दूसरी आवश्यकता के निम्नलिखित संस्करण समतुल्य हैं:
X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y में X}.होता हैं
f पूर्वोक्त पहली आवश्यकता के संबंध में बिंदुवार न्यूनतम है, अर्थात, X से 'R' तक किसी भी फलन g के लिए ऐसा है कि d(x,y) ≤ g(x) + g(y) प्रत्येक x,y के लिए X में , अगर g≤f बिन्दुवार, तो f=g होता है.[2]
X = ∅ या X में उपस्थित है जैसे X में प्रत्येक X के लिए, f (X) ≤ d (a, X) उपस्थित होता है।[3]
मूल गुण और उदाहरण
X में प्रत्येक X के लिए, होता हैं।
X में प्रत्येक X के लिए, अतिवादी होता है। (प्रमाण: समरूपता और त्रिभुज असमानता मेट्रिक स्पेस का उपयोग करते हैं।)
यदि X परिमित है, तो X से 'R' तक किसी भी फलन f के लिए जो पहली आवश्यकता को पूरा करता है,तथा दूसरी और आवश्यकता में इस शर्त के समान है कि X में प्रत्येक x के लिए, X में y उपस्थित है जैसे कि f(x) + f (y) = d (X, y) होता है। (अगर तो दोनों स्थितियाँ सत्य हैं। अगर तब श्रेष्ठता ग्रहण की जाती है, और पहली आवश्यकता तुल्यता को दर्शाती है।)
माना |X|=2, और विशिष्ट a, b चुनें जैसे कि X={a, b} चुनते हैं। तब का उत्तल हल है{{(a,1),(b,0)},{(a,0),(b,1)}}. [ शीर्षक: यदि X = {0,1}, तो {(0,1),(1,0)} का उत्तल हल है।][4]
X पर प्रत्येक चरम फलन f कातेतोव होता है:[5][6] f पहली आवश्यकता को संतुष्ट करता है और
T (X) समान है।तथा X के 1-लिप्सचिट्ज़ होने पर प्रत्येक चरम फलन से अनुसरण करता है।
X पर प्रत्येक केटोव फलन चरम नहीं होता है। उदाहरण के लिए, a, b को पृथक होने दें, और X = {a, b}, d = ([x≠y]) x,y में X तथा X पर असतत मीट्रिक बनाये, और f = {(a, 1), (b, 2)} दें। पुनः f कातेतोव है परंतु चरम फलन नहीं है। (यह लगभग वर्तमान में है कि f कटेटोव है, f चरम नहीं है क्योंकि इस खंड की तीसरी बुलेट विशेषता को विफल करता है।)
यदि d परिबद्ध है, तो T(X) में प्रत्येक f परिबद्ध है। वास्तव में, T(X) में प्रत्येक f के प्रति (टिप्पणी ) उपर्युक्त खंड में तीसरे समकक्ष विशेषता से अनुसरण करता है।) हैं।
यदि d अपरिबद्ध है, तो T(X) में प्रत्येक f अपरिबद्ध है।
बिंदुवार सीमा के अंतर्गत बंद है।तो किसी भी बिंदुवार अभिसरण के लिए होता हैं।अगर (X, d) जटिल है, तो (T (X), δ) भी जटिल है।[7][2] (प्रमाण: जटिल-मूल्य प्रमेय का अर्थ है कि d, एक फलन के रूप में निरंतर है मीटरी और सांस्थितिक स्पेस का सामान्यीकरण करते है| जटिल-मूल्य प्रमेय का तात्पर्य है कि d, एक फलन के रूप में निरंतर होना घिरा हुआ है, इसलिए C(X) का परिबद्ध उपसमुच्चय है। हमने दर्शया है कि T (X) समान है, इसलिए अर्जेला-एस्कोली प्रमेय का अर्थ है कि T (X) अपेक्षाकृत जटिल है। यद्यपि, पिछली बुलेट का तात्पर्य T(X) के अंतर्गत बंद है मानदंड, क्योंकी अभिसरण का अर्थ बिंदुवार अभिसरण है। इस प्रकार T (X) जटिल है।)
X से 'R' तक के किसी भी फलन g के लिए जो पहली आवश्यकता को पूरा करता है, T(X) में f जैसे कि f≤g बिंदुवार उपस्थित है।[2]
T(X) में किसी भी f,g के लिए अंतर से संबंधित , अर्थात, बंधा हुआ है।
कुराटोव्स्की मानचित्र[4]: 125 एक आइसोमेट्री है। (जब X=∅, परिणाम स्पष्ट होता है। जब X≠∅, विपरीत त्रिकोण असमानता का अर्थ परिणाम होता है।)
मान लीजिए कि T(X) में f है। X में किसी a के लिए, यदि f(a)=0, तो f=e(a).[8](X में प्रत्येक X के लिए हमारे पास है f की न्यूनतमता (उपरोक्त खंड में दूसरा समकक्ष लक्षण वर्णन) और तथ्य यह है कि इसके उपरांत की पहली आवश्यकता को पूरा करता है )
(X,d) हाइपरबॉलिक है यदि और केवल यदि (T(X),δ) हाइपरबॉलिक है।[8]
अतिउत्तल नहीं होता है।[2] ((T (X), δ) (X, d) का एक अतिउत्तल हल है।)
मन के सापेक्ष एक अतिउत्तल मीट्रिक स्पेस और होता हैं. अगर प्रत्येक के लिए मैं सापेक्ष तब अतिउत्तल नहीं है तो और (T(X),δ) वो आइसोमेट्री की परिभाषा हैं।[2]((X, d) का प्रत्येक हाइपरकॉन्वेक्स हल (T (X), δ) के सापेक्ष आइसोमेट्रिक होता है।)
उदाहरण
|X|=3, विशिष्ट a, b, c चुनें जैसे कि X={a,b,c}, और मान लीजिए कि i=d(a,b), j=d(a,c), k=d (b,c) हैं। तब