अवकल फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Notion in calculus}}
{{Short description|Notion in calculus}}
{{other uses of|differential|topic=mathematics|Differential (mathematics)}}
{{other uses of|अवकलन|topic=गणित|अवकलन (गणित)}}
{{Calculus |Differential}}
{{Calculus |Differential}}


[[ गणना ]] में, डिफरेंशियल फंक्शन (गणित) में परिवर्तन के प्रमुख भाग#कैलकुलस का प्रतिनिधित्व करता है <math>y=f(x)</math> स्वतंत्र चर में परिवर्तन के संबंध में। अंतर <math>dy</math> द्वारा परिभाषित किया गया है
 
[[ गणना |गणना]] में, अवकलन फलन (गणित) स्वतंत्र चर में परिवर्तन के संबंध में फलन <math>y=f(x)</math> में परिवर्तन के मुख्य भाग का प्रतिनिधित्व करता है। अवकलन <math>dy</math> द्वारा परिभाषित किया गया है
:<math>dy = f'(x)\,dx,</math>
:<math>dy = f'(x)\,dx,</math>
कहाँ <math>f'(x)</math> के संबंध में f का व्युत्पन्न है <math>x</math>, और <math>dx</math> अतिरिक्त वास्तविक [[चर (गणित)]] है (ताकि <math>dy</math> का कार्य है <math>x</math> और <math>dx</math>). अंकन ऐसा है कि समीकरण
जहाँ <math>f'(x)</math> <math>x</math> के संबंध में f का व्युत्पन्न है, और <math>dx</math> एक अतिरिक्त वास्तविक [[चर (गणित)]] (जिससे <math>dy</math> <math>x</math> और <math>dx</math> का एक फलन हो) है। अंकन ऐसा है कि समीकरण


:<math>dy = \frac{dy}{dx}\, dx</math>
:<math>dy = \frac{dy}{dx}\, dx</math>
धारण करता है, जहां [[लीबनिज संकेतन]] में व्युत्पन्न का प्रतिनिधित्व किया जाता है <math>dy/dx</math>, और यह अंतर के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है
धारण करता है, जहां [[लीबनिज संकेतन]] <math>dy/dx</math> में व्युत्पन्न का प्रतिनिधित्व किया जाता है, और यह अवकलन के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है


:<math>df(x) = f'(x)\,dx.</math>
:<math>df(x) = f'(x)\,dx.</math>
चर का सटीक अर्थ <math>dy</math> और <math>dx</math> आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन चरों का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अंतर को विशेष अंतर रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अंतर को किसी फ़ंक्शन की वृद्धि के लिए [[रैखिक सन्निकटन]] के रूप में माना जाता है। परंपरागत रूप से, चर <math>dx</math> और <math>dy</math> बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है।
चर का सटीक अर्थ <math>dy</math> और <math>dx</math> आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन चरों का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अवकलन को विशेष अवकलन रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अवकलन को किसी फलन की वृद्धि के लिए [[रैखिक सन्निकटन]] के रूप में माना जाता है। परंपरागत रूप से, चर <math>dx</math> और <math>dy</math> बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है।


== इतिहास और उपयोग ==
== इतिहास और उपयोग ==
अंतर को पहली बार [[आइजैक न्यूटन]] द्वारा सहज या अनुमानी परिभाषा के माध्यम से पेश किया गया था और [[लाइबनिट्स]] द्वारा आगे बढ़ाया गया था, जिन्होंने अंतर के बारे में सोचा था।<math>dy</math> मूल्य में असीम रूप से छोटे (या अतिसूक्ष्म) परिवर्तन के रूप में<math>y</math> फ़ंक्शन का, असीम रूप से छोटे परिवर्तन के अनुरूप<math>dx</math> समारोह के तर्क में<math>x</math>. उस कारण से, के परिवर्तन की तात्कालिक दर <math>y</math> इसके संबंध में <math>x</math>, जो कि फलन के अवकलज का मान है, को भिन्न द्वारा निरूपित किया जाता है
अवकलन को पहली बार [[आइजैक न्यूटन]] द्वारा सहज या अनुमानी परिभाषा के माध्यम से प्रस्तुत किया गया था और [[लाइबनिट्स|गॉटफ्रीड लाइबनिट्स]] द्वारा आगे बढ़ाया गया था,जिन्होंने फ़ंक्शन के तर्क <math>x</math> में एक अनंत रूप से छोटे परिवर्तन <math>dx</math> के अनुरूप फ़ंक्शन के मान <math>y</math> में एक अनंत रूप से छोटे परिवर्तन (या अनंत) के रूप में अंतर <math>dy</math> के बारे में सोचा था। उस कारण से, <math>x</math> के संबंध में <math>x</math> के परिवर्तन की तात्कालिक दर, जो फ़ंक्शन के व्युत्पन्न का मान है, <math> \frac{dy}{dx} </math> को अंश द्वारा दर्शाया गया है


: <math> \frac{dy}{dx} </math>
डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल <math>dy/dx</math> अनंत रूप से छोटा नहीं है; किन्तु यह [[वास्तविक संख्या]] है।
डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल <math>dy/dx</math> असीम रूप से छोटा नहीं है; बल्कि यह [[वास्तविक संख्या]] है।


उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट [[विश्लेषक]] द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। [[ऑगस्टिन-लुई कॉची]] (#CITEREFCauchy1823) ने डिफरेंशियल को लाइबनिट्स के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना परिभाषित किया।<ref>For a detailed historical account of the differential, see {{harvnb|Boyer|1959}}, especially page 275 for Cauchy's contribution on the subject.  An abbreviated account appears in {{harvnb|Kline|1972|loc=Chapter 40}}.</ref><ref>Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities {{harv|Boyer|1959|pp=273–275}}, and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" ({{harvnb|Cauchy|1823|p=12}};  translation from {{harvnb|Boyer|1959|p=273}}).</ref> इसके बजाय, कॉची, जीन ले रोंड डी'अलेम्बर्ट | डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अंतर भागफलों की [[सीमा (गणित)]] के रूप में परिभाषित किया गया था, और अंतर तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अंतर को परिभाषित करने के लिए कोई भी स्वतंत्र था <math>dy</math> अभिव्यक्ति द्वारा
उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट [[विश्लेषक]] द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। [[ऑगस्टिन-लुई कॉची]] (1823) ने लीबनिज के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना अंतर को परिभाषित किया।<ref>For a detailed historical account of the differential, see {{harvnb|Boyer|1959}}, especially page 275 for Cauchy's contribution on the subject.  An abbreviated account appears in {{harvnb|Kline|1972|loc=Chapter 40}}.</ref><ref>Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities {{harv|Boyer|1959|pp=273–275}}, and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" ({{harvnb|Cauchy|1823|p=12}};  translation from {{harvnb|Boyer|1959|p=273}}).</ref> इसके अतिरिक्त, कॉची, जीन ले रोंड डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अवकलन भागफलों की [[सीमा (गणित)]] के रूप में परिभाषित किया गया था, और अवकलन तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अवकलन <math>dy</math> को परिभाषित करने के लिए कोई भी स्वतंत्र था अभिव्यक्ति द्वारा
:<math>dy = f'(x)\,dx</math>
:<math>dy = f'(x)\,dx</math>
जिसमें <math>dy</math> और <math>dx</math> परिमित वास्तविक मान लेने वाले बस नए चर हैं,<ref>{{harvnb|Boyer|1959|p=275}}</ref> नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।<ref>{{harvnb|Boyer|1959|p=12}}: "The differentials as thus defined are only new ''variables'', and not fixed infinitesimals..."</ref>
जिसमें <math>dy</math> और <math>dx</math> परिमित वास्तविक मान लेने वाले बस नए चर हैं,<ref>{{harvnb|Boyer|1959|p=275}}</ref> नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।<ref>{{harvnb|Boyer|1959|p=12}}: "The differentials as thus defined are only new ''variables'', and not fixed infinitesimals..."</ref>
के अनुसार {{harvtxt|Boyer|1959|p=12}}, कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को लागू करने के बजाय, मात्राएँ <math>dy</math> और <math>dx</math> अब किसी भी अन्य वास्तविक मात्रा के समान ही हेरफेर किया जा सकता है
के अनुसार {{harvtxt|Boyer|1959|p=12}}, कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को प्रायुक्त करने के अतिरिक्त, मात्राएँ <math>dy</math> और <math>dx</math> अब किसी भी अन्य वास्तविक मात्राएँ सार्थक विधि के समान ही हेरफेर किया जा सकता है। अवकलनों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,<ref>{{harvnb|Courant|1937a|loc=II, §9}}: "Here we remark merely in passing that it is possible to use this approximate representation of the increment <math>\Delta y</math> by the linear expression <math>hf(x)</math> to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."</ref> चूंकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः [[कार्ल वीयरस्ट्रास]] के कारण थी।<ref>{{harvnb|Boyer|1959|p=284}}</ref>
सार्थक तरीके से। अंतरों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,<ref>{{harvnb|Courant|1937a|loc=II, §9}}: "Here we remark merely in passing that it is possible to use this approximate representation of the increment <math>\Delta y</math> by the linear expression <math>hf(x)</math> to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."</ref> हालांकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः [[कार्ल वीयरस्ट्रास]] के कारण थी।<ref>{{harvnb|Boyer|1959|p=284}}</ref>
 
भौतिक उपचारों में, जैसे कि [[ऊष्मप्रवैगिकी]] के सिद्धांत पर लागू होने वाले, असीम दृश्य अभी भी प्रबल है।  {{harvtxt|Courant|John|1999|p=184}} इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ निम्नानुसार सुलझाएं। अंतर परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक सटीकता की डिग्री से छोटे होते हैं जिसके लिए उनका इरादा होता है। इस प्रकार भौतिक अतिसूक्ष्मों को सटीक अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है।
भौतिक उपचारों में, जैसे कि [[ऊष्मप्रवैगिकी]] के सिद्धांत पर प्रायुक्त होने वाले, अनंत दृश्य अभी भी प्रबल है।  {{harvtxt|कुरेंट  |जॉन|1999|p=184}} इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ इस प्रकार मिलाते हैं। अवकलन परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक शुद्धता की डिग्री से छोटे होते हैं जिसके लिए उनका लक्ष्य होता है। इस प्रकार भौतिक अतिसूक्ष्मों को त्रुटिहीन अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है।


[[गणितीय विश्लेषण]] और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि समारोह के अंतर की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। [[वास्तविक विश्लेषण]] में, किसी फ़ंक्शन की वृद्धि के प्रमुख भाग के रूप में सीधे अंतर से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फ़ंक्शन का अंतर वेतन वृद्धि का रैखिक कार्य है <math>\Delta x</math>. यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अंतर (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट व्युत्पन्न | फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फ़ंक्शन का अंतर स्पर्शरेखा सदिश (असीम रूप से छोटा विस्थापन) का रैखिक कार्य है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फ़ंक्शन का [[बाहरी व्युत्पन्न]]। गैर-मानक कैलकुलस में, अंतरों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर आधार पर रखा जा सकता है (देखें अंतर (इनफिनिटिमल))।
[[गणितीय विश्लेषण]] और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि फलन के अवकलन की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। [[वास्तविक विश्लेषण]] में, किसी फलन की वृद्धि के प्रमुख भाग के रूप में सीधे अवकलन से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फलन का अवकलन वेतन वृद्धि <math>\Delta x</math> का रैखिक कार्य है। यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अवकलन (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फलन का अवकलन स्पर्शरेखा सदिश (अनंत रूप से छोटा विस्थापन) का रैखिक कार्य है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फलन का [[बाहरी व्युत्पन्न]]। गैर-मानक कैलकुलस में, अवकलनों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर आधार पर रखा जा सकता है (देखें अवकलन (इनफिनिटिमल))।


== परिभाषा ==
== परिभाषा ==


[[File:Sentido geometrico del diferencial de una funcion.png|thumb|upright=1.25|समारोह का अंतर <math>f(x)</math> बिंदु पर <math>x_0</math>.]]डिफरेंशियल कैलकुलस के आधुनिक उपचारों में डिफरेंशियल को इस प्रकार परिभाषित किया गया है।<ref>See, for instance, the influential treatises of {{harvnb|Courant|1937a}}, {{harvnb|Kline|1977}}, {{harvnb|Goursat|1904}}, and {{harvnb|Hardy|1908}}.  Tertiary sources for this definition include also {{harvnb|Tolstov|2001}} and {{harvnb|Itô|1993|loc=§106}}.</ref> समारोह का अंतर <math>f(x)</math> वास्तविक चर का <math>x</math> कार्य है <math>df</math> दो स्वतंत्र वास्तविक चर के <math>x</math> और <math>\Delta x</math> द्वारा दिए गए
[[File:Sentido geometrico del diferencial de una funcion.png|thumb|upright=1.25|फलन का अवकलन <math>f(x)</math> बिंदु पर <math>x_0</math>.]]अवकलन कैलकुलस के आधुनिक उपचारों में अवकलन को इस प्रकार परिभाषित किया गया है।<ref>See, for instance, the influential treatises of {{harvnb|Courant|1937a}}, {{harvnb|Kline|1977}}, {{harvnb|Goursat|1904}}, and {{harvnb|Hardy|1908}}.  Tertiary sources for this definition include also {{harvnb|Tolstov|2001}} and {{harvnb|Itô|1993|loc=§106}}.</ref> फलन का अवकलन <math>f(x)</math> वास्तविक चर का <math>x</math> कार्य है <math>df</math> दो स्वतंत्र वास्तविक चर के <math>x</math> और <math>\Delta x</math> द्वारा दिए गए


:<math>df(x, \Delta x) \stackrel{\mathrm{def}}{=} f'(x)\,\Delta x.</math>
:<math>df(x, \Delta x) \stackrel{\mathrm{def}}{=} f'(x)\,\Delta x.</math>
या दोनों तर्कों को दबा दिया जा सकता है, यानी कोई देख सकता है <math>df(x)</math> या केवल <math>df</math>. अगर <math>y=f(x)</math>, अवकलन को इस रूप में भी लिखा जा सकता है <math>dy</math>. तब से <math>dx(x,\Delta x)=\Delta x</math>, यह लिखने के लिए पारंपरिक है <math>dx=\Delta x</math> ताकि निम्नलिखित समानता हो:
या दोनों तर्कों को दबा दिया जा सकता है, यानी कोई देख सकता है <math>df(x)</math> या केवल <math>df</math>. अगर <math>y=f(x)</math>, अवकलन को इस रूप में भी लिखा जा सकता है <math>dy</math>. तब से <math>dx(x,\Delta x)=\Delta x</math>, यह लिखने के लिए पारंपरिक है <math>dx=\Delta x</math> जिससे निम्नलिखित समानता हो:


:<math>df(x) = f'(x) \, dx</math>
:<math>df(x) = f'(x) \, dx</math>
अंतर की यह धारणा मोटे तौर पर तब लागू होती है जब किसी फ़ंक्शन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मूल्य <math>\Delta x</math> काफी छोटा है। अधिक सटीक, अगर <math>f</math> पर अवकलनीय फलन है <math>x</math>, फिर में अंतर <math>y</math>-मूल्य
अवकलन की यह धारणा सामान्यतः तब प्रायुक्त होती है जब किसी फलन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मान <math>\Delta x</math> काफी छोटा है। अधिक सटीक, अगर <math>f</math> पर अवकलनीय फलन है <math>x</math>, फिर में अवकलन <math>y</math>-मान


:<math>\Delta y \stackrel{\rm{def}}{=} f(x+\Delta x) - f(x)</math>
:<math>\Delta y \stackrel{\rm{def}}{=} f(x+\Delta x) - f(x)</math>
Line 47: Line 47:
जिसमें त्रुटि के सापेक्ष वांछित के रूप में छोटा किया जा सकता है <math>\Delta x</math> विवश करके <math>\Delta x</math> पर्याप्त रूप से छोटा होना; यानी,
जिसमें त्रुटि के सापेक्ष वांछित के रूप में छोटा किया जा सकता है <math>\Delta x</math> विवश करके <math>\Delta x</math> पर्याप्त रूप से छोटा होना; यानी,
:<math>\frac{\Delta y - dy}{\Delta x}\to 0</math>
:<math>\frac{\Delta y - dy}{\Delta x}\to 0</math>
जैसा <math>\Delta x\rightarrow 0</math>. इस कारण से, किसी फ़ंक्शन के अंतर को मुख्य भाग के रूप में जाना जाता है | [[प्रमुख भाग]]रैखिक) भाग फ़ंक्शन के वेतन वृद्धि में होता है: अंतर वेतन वृद्धि का रैखिक कार्य है <math>\Delta x</math>, और यद्यपि त्रुटि <math>\varepsilon</math> अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है <math>\Delta x</math> शून्य हो जाता है।
जैसा <math>\Delta x\rightarrow 0</math>. इस कारण से, किसी फलन के अवकलन को मुख्य भाग के रूप में जाना जाता है | [[प्रमुख भाग]]रैखिक) भाग फलन के वेतन वृद्धि में होता है: अवकलन वेतन वृद्धि का रैखिक कार्य है <math>\Delta x</math>, और यद्यपि त्रुटि <math>\varepsilon</math> अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है <math>\Delta x</math> शून्य हो जाता है।


== कई चरों में अंतर ==
== कई चरों में अवकलन ==
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 85: Line 85:


: <math> y = f(x_1,\dots,x_n), </math>
: <math> y = f(x_1,\dots,x_n), </math>
किसी वेरिएबल ''x'' के संबंध में ''y'' का आंशिक अंतर<sub>1</sub> परिवर्तन dx के परिणामस्वरूप y में परिवर्तन का मुख्य भाग है<sub>1</sub> उस चर में। आंशिक अंतर इसलिए है
किसी वेरिएबल ''x'' के संबंध में ''y'' का आंशिक अवकलन<sub>1</sub> परिवर्तन dx के परिणामस्वरूप y में परिवर्तन का मुख्य भाग है<sub>1</sub> उस चर में। आंशिक अवकलन इसलिए है


: <math> \frac{\partial y}{\partial x_1} dx_1 </math>
: <math> \frac{\partial y}{\partial x_1} dx_1 </math>
x के संबंध में y का आंशिक डेरिवेटिव शामिल है<sub>1</sub>. सभी स्वतंत्र चरों के संबंध में आंशिक अंतरों का योग कुल अंतर है
x के संबंध में y का आंशिक डेरिवेटिव शामिल है<sub>1</sub>. सभी स्वतंत्र चरों के संबंध में आंशिक अवकलनों का योग कुल अवकलन है


: <math> dy = \frac{\partial y}{\partial x_1} dx_1 + \cdots + \frac{\partial y}{\partial x_n} dx_n, </math>
: <math> dy = \frac{\partial y}{\partial x_1} dx_1 + \cdots + \frac{\partial y}{\partial x_n} dx_n, </math>
Line 99: Line 99:
&{}= \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n + \varepsilon_1\Delta x_1 +\cdots+\varepsilon_n\Delta x_n
&{}= \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n + \varepsilon_1\Delta x_1 +\cdots+\varepsilon_n\Delta x_n
\end{align}</math>
\end{align}</math>
जहां त्रुटि शब्द ε<sub>&nbsp;''i''</sub> वृद्धि Δx के रूप में शून्य हो जाती है<sub>''i''</sub> संयुक्त रूप से शून्य हो जाते हैं। कुल अंतर को तब कड़ाई से परिभाषित किया जाता है
जहां त्रुटि शब्द ε<sub>&nbsp;''i''</sub> वृद्धि Δx के रूप में शून्य हो जाती है<sub>''i''</sub> संयुक्त रूप से शून्य हो जाते हैं। कुल अवकलन को तब कड़ाई से परिभाषित किया जाता है


:<math>dy = \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n.</math>
:<math>dy = \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n.</math>
Line 111: Line 111:
जिसमें कुल त्रुटि को वांछित के सापेक्ष छोटा किया जा सकता है <math>\sqrt{\Delta x_1^2+\cdots +\Delta x_n^2}</math> पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके।
जिसमें कुल त्रुटि को वांछित के सापेक्ष छोटा किया जा सकता है <math>\sqrt{\Delta x_1^2+\cdots +\Delta x_n^2}</math> पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके।


=== त्रुटि अनुमान के लिए कुल अंतर का अनुप्रयोग ===
=== त्रुटि अनुमान के लिए कुल अवकलन का अनुप्रयोग ===
मापन में, [[प्रायोगिक अनिश्चितता विश्लेषण]] में कुल अंतर का उपयोग किया जाता है <math>\Delta f</math> समारोह का <math>f</math> त्रुटियों के आधार पर <math>\Delta x,\Delta y,\ldots </math> मापदंडों का <math>x, y, \ldots</math>. यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है:
मापन में, [[प्रायोगिक अनिश्चितता विश्लेषण]] में कुल अवकलन का उपयोग किया जाता है <math>\Delta f</math> फलन का <math>f</math> त्रुटियों के आधार पर <math>\Delta x,\Delta y,\ldots </math> मापदंडों का <math>x, y, \ldots</math>. यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है:


:<math>\Delta f(x)=f'(x)\Delta x</math>
:<math>\Delta f(x)=f'(x)\Delta x</math>
Line 118: Line 118:


:<math>\Delta f = f_x \Delta x + f_y \Delta y + \cdots</math>
:<math>\Delta f = f_x \Delta x + f_y \Delta y + \cdots</math>
ऐसा इसलिए है क्योंकि व्युत्पन्न <math>f_x</math> विशेष पैरामीटर के संबंध में <math>x</math> समारोह की संवेदनशीलता देता है <math>f</math> में बदलाव के लिए <math>x</math>, विशेष रूप से त्रुटि <math>\Delta x</math>. जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मूल्यों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे:
ऐसा इसलिए है क्योंकि व्युत्पन्न <math>f_x</math> विशेष पैरामीटर के संबंध में <math>x</math> फलन की संवेदनशीलता देता है <math>f</math> में बदलाव के लिए <math>x</math>, विशेष रूप से त्रुटि <math>\Delta x</math>. जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मानों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे:


:होने देना <math>f(a,b)=ab</math>;
:होने देना <math>f(a,b)=ab</math>;


:<math>\Delta f=f_a\Delta a+f_b\Delta b</math>; डेरिवेटिव का मूल्यांकन
:<math>\Delta f=f_a\Delta a+f_b\Delta b</math>; डेरिवेटिव का मानांकन


:Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है
:Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है
Line 130: Line 130:
कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है।
कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है।


यह समझने के लिए कि यह किस प्रकार कार्य पर निर्भर करता है, उस मामले पर विचार करें जहां कार्य है <math>f(a,b)=a\ln b</math> बजाय। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है
यह समझने के लिए कि यह किस प्रकार कार्य पर निर्भर करता है, उस मामले पर विचार करें जहां कार्य है <math>f(a,b)=a\ln b</math> अतिरिक्त। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है
:Δf/f = Δa/a + Δb/(b ln b)
:Δf/f = Δa/a + Δb/(b ln b)
अतिरिक्त 'के साथ{{nowrap|ln ''b''}}' कारक साधारण उत्पाद के मामले में नहीं मिला। यह अतिरिक्त कारक त्रुटि को छोटा बनाता है, जैसे {{nowrap|ln ''b''}} नंगे b जितना बड़ा नहीं है।
अतिरिक्त 'के साथ{{nowrap|ln ''b''}}' कारक साधारण उत्पाद के मामले में नहीं मिला। यह अतिरिक्त कारक त्रुटि को छोटा बनाता है, जैसे {{nowrap|ln ''b''}} नंगे b जितना बड़ा नहीं है।


== उच्च-क्रम अंतर ==
== उच्च-क्रम अवकलन ==
किसी एकल चर x के फ़ंक्शन y = f(x) के उच्च-क्रम के अंतरों को इसके माध्यम से परिभाषित किया जा सकता है:<ref>{{harvnb|Cauchy|1823}}. See also, for instance,  {{harvnb|Goursat|1904|loc=I, §14}}.</ref>
किसी एकल चर x के फलन y = f(x) के उच्च-क्रम के अवकलनों को इसके माध्यम से परिभाषित किया जा सकता है:<ref>{{harvnb|Cauchy|1823}}. See also, for instance,  {{harvnb|Goursat|1904|loc=I, §14}}.</ref>
:<math>d^2y = d(dy) = d(f'(x)dx) = (df'(x))dx = f''(x)\,(dx)^2,</math>
:<math>d^2y = d(dy) = d(f'(x)dx) = (df'(x))dx = f''(x)\,(dx)^2,</math>
और, सामान्य तौर पर,
और, सामान्य तौर पर,
Line 141: Line 141:
अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है
अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है
:<math>f^{(n)}(x) = \frac{d^n f}{dx^n}.</math>
:<math>f^{(n)}(x) = \frac{d^n f}{dx^n}.</math>
जब स्वतंत्र चर x को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अंतर भी शामिल होने चाहिए। इस प्रकार, उदाहरण के लिए,
जब स्वतंत्र चर x को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अवकलन भी शामिल होने चाहिए। इस प्रकार, उदाहरण के लिए,
:<math>
:<math>
\begin{align}
\begin{align}
Line 149: Line 149:
इत्यादि।
इत्यादि।


इसी तरह के विचार कई चरों के कार्यों के उच्च क्रम के अंतर को परिभाषित करने के लिए लागू होते हैं। उदाहरण के लिए, यदि f दो चरों x और y का फलन है, तो
इसी तरह के विचार कई चरों के कार्यों के उच्च क्रम के अवकलन को परिभाषित करने के लिए प्रायुक्त होते हैं। उदाहरण के लिए, यदि f दो चरों x और y का फलन है, तो
:<math>d^nf = \sum_{k=0}^n \binom{n}{k}\frac{\partial^n f}{\partial x^k \partial y^{n-k}}(dx)^k(dy)^{n-k},</math>
:<math>d^nf = \sum_{k=0}^n \binom{n}{k}\frac{\partial^n f}{\partial x^k \partial y^{n-k}}(dx)^k(dy)^{n-k},</math>
कहाँ <math display="inline">\binom{n}{k}</math> [[द्विपद गुणांक]] है। अधिक चर में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के बजाय उपयुक्त [[बहुपद गुणांक]] विस्तार के साथ।<ref>{{harvnb|Goursat|1904|loc=I, §14}}</ref>
जहाँ <math display="inline">\binom{n}{k}</math> [[द्विपद गुणांक]] है। अधिक चर में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के अतिरिक्त उपयुक्त [[बहुपद गुणांक]] विस्तार के साथ।<ref>{{harvnb|Goursat|1904|loc=I, §14}}</ref>
कई चरों में उच्च क्रम के अंतर भी अधिक जटिल हो जाते हैं जब स्वतंत्र चरों को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक चरों पर निर्भर रहने की अनुमति है, के पास है
कई चरों में उच्च क्रम के अवकलन भी अधिक जटिल हो जाते हैं जब स्वतंत्र चरों को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक चरों पर निर्भर रहने की अनुमति है, के पास है
:<math>d^2f = \left(\frac{\partial^2f}{\partial x^2}(dx)^2+2\frac{\partial^2f}{\partial x\partial y}dx\,dy + \frac{\partial^2f}{\partial y^2}(dy)^2\right) + \frac{\partial f}{\partial x}d^2x + \frac{\partial f}{\partial y}d^2y.</math>
:<math>d^2f = \left(\frac{\partial^2f}{\partial x^2}(dx)^2+2\frac{\partial^2f}{\partial x\partial y}dx\,dy + \frac{\partial^2f}{\partial y^2}(dy)^2\right) + \frac{\partial f}{\partial x}d^2x + \frac{\partial f}{\partial y}d^2y.</math>
इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अंतरों के उपयोग की व्यापक रूप से आलोचना की गई थी {{harvnb|Hadamard|1935}}, जिन्होंने निष्कर्ष निकाला:
इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अवकलनों के उपयोग की व्यापक रूप से आलोचना की गई थी {{harvnb|Hadamard|1935}}, जिन्होंने निष्कर्ष निकाला:
: अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है?
: अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है?
::<math>d^2z = r\,dx^2 + 2s\,dx\,dy + t\,dy^2\,?</math>
::<math>d^2z = r\,dx^2 + 2s\,dx\,dy + t\,dy^2\,?</math>
: ए मोन एविस, रिएन डू टाउट।
: ए मोन एविस, रिएन डू टाउट।


वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के बावजूद, उच्च क्रम के अंतर विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे।<ref>In particular to [[infinite dimensional holomorphy]] {{harv|Hille|Phillips|1974}} and [[numerical analysis]] via the calculus of [[finite differences]].</ref>
वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के बावजूद, उच्च क्रम के अवकलन विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे।<ref>In particular to [[infinite dimensional holomorphy]] {{harv|Hille|Phillips|1974}} and [[numerical analysis]] via the calculus of [[finite differences]].</ref>
इन संदर्भों में, वृद्धि Δx पर लागू फलन f के nवें क्रम के अंतर को इसके द्वारा परिभाषित किया जाता है
इन संदर्भों में, वृद्धि Δx पर प्रायुक्त फलन f के nवें क्रम के अवकलन को इसके द्वारा परिभाषित किया जाता है
:<math>d^nf(x,\Delta x) = \left.\frac{d^n}{dt^n} f(x+t\Delta x)\right|_{t=0}</math>
:<math>d^nf(x,\Delta x) = \left.\frac{d^n}{dt^n} f(x+t\Delta x)\right|_{t=0}</math>
या समकक्ष अभिव्यक्ति, जैसे
या समकक्ष अभिव्यक्ति, जैसे
:<math>\lim_{t\to 0}\frac{\Delta^n_{t\Delta x} f}{t^n}</math>
:<math>\lim_{t\to 0}\frac{\Delta^n_{t\Delta x} f}{t^n}</math>
कहाँ <math>\Delta^n_{t\Delta x} f</math> वृद्धि tΔx के साथ nवां [[आगे का अंतर]] है।
जहाँ <math>\Delta^n_{t\Delta x} f</math> वृद्धि tΔx के साथ nवां [[आगे का अंतर|आगे का अवकलन]] है।


यह परिभाषा तब भी समझ में आती है जब f कई चरों का कार्य है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अंतर सदिश वृद्धि Δx में डिग्री n का सजातीय कार्य है। इसके अलावा, बिंदु x पर f की [[टेलर श्रृंखला]] द्वारा दी गई है
यह परिभाषा तब भी समझ में आती है जब f कई चरों का कार्य है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अवकलन सदिश वृद्धि Δx में डिग्री n का सजातीय कार्य है। इसके अलावा, बिंदु x पर f की [[टेलर श्रृंखला]] द्वारा दी गई है
:<math>f(x+\Delta x)\sim f(x) + df(x,\Delta x) + \frac{1}{2}d^2f(x,\Delta x) + \cdots + \frac{1}{n!}d^nf(x,\Delta x) + \cdots</math>
:<math>f(x+\Delta x)\sim f(x) + df(x,\Delta x) + \frac{1}{2}d^2f(x,\Delta x) + \cdots + \frac{1}{n!}d^nf(x,\Delta x) + \cdots</math>
उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है।
उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है।


== गुण ==
== गुण ==
अंतर के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे तरीके से अनुसरण करते हैं। इसमे शामिल है:<ref>{{harvnb|Goursat|1904|loc=I, §17}}</ref>
अवकलन के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे तरीके से अनुसरण करते हैं। इसमे शामिल है:<ref>{{harvnb|Goursat|1904|loc=I, §17}}</ref>
* [[रैखिकता]]: स्थिरांक a और b और अवकलनीय फलन f और g के लिए,
* [[रैखिकता]]: स्थिरांक a और b और अवकलनीय फलन f और g के लिए,
::<math>d(af+bg) = a\,df + b\,dg.</math>
::<math>d(af+bg) = a\,df + b\,dg.</math>
* उत्पाद नियम: दो अलग-अलग कार्यों f और g के लिए,
* उत्पाद नियम: दो अलग-अलग कार्यों f और g के लिए,
::<math>d(fg) = f\,dg+g\,df.</math>
::<math>d(fg) = f\,dg+g\,df.</math>
इन दो गुणों के साथ ऑपरेशन डी [[सार बीजगणित]] में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम लागू करते हैं
इन दो गुणों के साथ ऑपरेशन डी [[सार बीजगणित]] में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम प्रायुक्त करते हैं
::<math> d( f^n ) = n f^{n-1} df </math>
::<math> d( f^n ) = n f^{n-1} df </math>
इसके अलावा, व्यापकता के बढ़ते स्तर में [[श्रृंखला नियम]] के विभिन्न रूप धारण करते हैं:<ref>{{harvnb|Goursat|1904|loc=I, §§14,16}}</ref>
इसके अलावा, व्यापकता के बढ़ते स्तर में [[श्रृंखला नियम]] के विभिन्न रूप धारण करते हैं:<ref>{{harvnb|Goursat|1904|loc=I, §§14,16}}</ref>
Line 188: Line 188:
&= \frac{\partial y}{\partial x_1} \frac{dx_1}{dt}\,dt + \cdots + \frac{\partial y}{\partial x_n} \frac{dx_n}{dt}\,dt.
&= \frac{\partial y}{\partial x_1} \frac{dx_1}{dt}\,dt + \cdots + \frac{\partial y}{\partial x_n} \frac{dx_n}{dt}\,dt.
\end{align}</math>
\end{align}</math>
:अनुमानिक रूप से, कई चरों के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से असीम रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है।
:अनुमानिक रूप से, कई चरों के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से अनंत रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है।


* अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती चर x होते हैं<sub>''i''</sub> से अधिक चरों पर निर्भर करते हैं।
* अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती चर x होते हैं<sub>''i''</sub> से अधिक चरों पर निर्भर करते हैं।
Line 194: Line 194:
== सामान्य सूत्रीकरण ==
== सामान्य सूत्रीकरण ==
{{See also|Fréchet derivative|Gateaux derivative}}
{{See also|Fréchet derivative|Gateaux derivative}}
समारोह के लिए अंतर की सुसंगत धारणा विकसित की जा सकती है {{nowrap|''f'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} दो [[यूक्लिडियन अंतरिक्ष]] स्थान के बीच। माना x,Δx ∈ R<sup>n</sup> यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है
फलन के लिए अवकलन की सुसंगत धारणा विकसित की जा सकती है {{nowrap|''f'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} दो [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन अवकलनिक्ष]] स्थान के बीच। माना x,Δx ∈ R<sup>n</sup> यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है
:<math>\Delta f = f(\mathbf{x}+\Delta\mathbf{x}) - f(\mathbf{x}).</math>
:<math>\Delta f = f(\mathbf{x}+\Delta\mathbf{x}) - f(\mathbf{x}).</math>
यदि कोई m × n [[मैट्रिक्स (गणित)]] A मौजूद है, जैसे कि
यदि कोई m × n [[मैट्रिक्स (गणित)]] A मौजूद है, जैसे कि
:<math>\Delta f = A\Delta\mathbf{x} + \|\Delta\mathbf{x}\|\boldsymbol{\varepsilon}</math>
:<math>\Delta f = A\Delta\mathbf{x} + \|\Delta\mathbf{x}\|\boldsymbol{\varepsilon}</math>
जिसमें वेक्टर ''ε'' → 0 के रूप में Δx → 0, फिर ''f'' परिभाषा के अनुसार बिंदु x पर अवकलनीय है। मैट्रिक्स ''ए'' को कभी-कभी [[ जैकबियन मैट्रिक्स ]] के रूप में जाना जाता है, और [[रैखिक परिवर्तन]] जो वेतन वृद्धि Δx ∈ R से जुड़ा होता है<sup>n</sup> सदिश AΔ'x' ∈ 'R'<sup>m</sup>, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच समारोह के लिए काम करने के लिए ही निर्माण किया जा सकता है।
जिसमें वेक्टर ''ε'' → 0 के रूप में Δx → 0, फिर ''f'' परिभाषा के अनुसार बिंदु x पर अवकलनीय है। मैट्रिक्स ''ए'' को कभी-कभी [[ जैकबियन मैट्रिक्स ]] के रूप में जाना जाता है, और [[रैखिक परिवर्तन]] जो वेतन वृद्धि Δx ∈ R से जुड़ा होता है<sup>n</sup> सदिश AΔ'x' ∈ 'R'<sup>m</sup>, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच फलन के लिए काम करने के लिए ही निर्माण किया जा सकता है।


और उपयोगी दृष्टिकोण अंतर को सीधे प्रकार के [[दिशात्मक व्युत्पन्न]] के रूप में परिभाषित करना है:
और उपयोगी दृष्टिकोण अवकलन को सीधे प्रकार के [[दिशात्मक व्युत्पन्न]] के रूप में परिभाषित करना है:


:<math>df(\mathbf{x},\mathbf{h}) = \lim_{t\to 0}\frac{f(\mathbf{x}+t\mathbf{h})-f(\mathbf{x})}{t} = \left.\frac{d}{dt}f(\mathbf{x}+t\mathbf{h})\right|_{t=0},</math>
:<math>df(\mathbf{x},\mathbf{h}) = \lim_{t\to 0}\frac{f(\mathbf{x}+t\mathbf{h})-f(\mathbf{x})}{t} = \left.\frac{d}{dt}f(\mathbf{x}+t\mathbf{h})\right|_{t=0},</math>
जो उच्च क्रम के अंतर को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के बजाय वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अंतर की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक कार्य होना चाहिए। अंतरिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट [[स्पर्शरेखा स्थान]] के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक कार्य देता है: अंतर रूप। इस व्याख्या के साथ, एफ के अंतर को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अंतर ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अलावा, f का आउटपुट मान भी स्थिति (यूक्लिडियन अंतरिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस तरीके से अंतर का इलाज करता है, तो इसे पुशफॉर्वर्ड (अंतर) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है।
जो उच्च क्रम के अवकलन को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के अतिरिक्त वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अवकलन की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक कार्य होना चाहिए। अवकलनिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट [[स्पर्शरेखा स्थान]] के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक कार्य देता है: अवकलन रूप। इस व्याख्या के साथ, एफ के अवकलन को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अवकलन ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अलावा, f का आउटपुट मान भी स्थिति (यूक्लिडियन अवकलनिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस तरीके से अवकलन का इलाज करता है, तो इसे पुशफॉर्वर्ड (अवकलन) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है।


== अन्य दृष्टिकोण ==
== अन्य दृष्टिकोण ==
{{Main|Differential (infinitesimal)}}
{{Main|Differential (infinitesimal)}}
यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अंतर (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें मौजूद हैं ताकि किसी फ़ंक्शन के अंतर को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे शामिल है:
यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अवकलन (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें मौजूद हैं जिससे किसी फलन के अवकलन को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे शामिल है:


* डिफरेंशियल को प्रकार के डिफरेंशियल फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फ़ंक्शन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ असीम वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अंतर ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है।
* अवकलन को प्रकार के अवकलन फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फलन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ अनंत वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अवकलन ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है।
* क्रमविनिमेय वलयों के [[ nilpotent ]] तत्वों के रूप में अवकलन। यह दृष्टिकोण [[बीजगणितीय ज्यामिति]] में लोकप्रिय है।<ref>{{Harvnb|Eisenbud|Harris|1998}}.</ref>
* क्रमविनिमेय वलयों के [[ nilpotent ]] तत्वों के रूप में अवकलन। यह दृष्टिकोण [[बीजगणितीय ज्यामिति]] में लोकप्रिय है।<ref>{{Harvnb|Eisenbud|Harris|1998}}.</ref>
* सेट थ्योरी के स्मूथ मॉडल में डिफरेंशियल्स। इस दृष्टिकोण को [[ सिंथेटिक अंतर ज्यामिति ]] या [[चिकना अत्यल्प विश्लेषण]] के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि [[ टोपोस सिद्धांत ]] के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल पेश किए जाते हैं।<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Moerdijk|Reyes|1991}}.</ref>
* सेट थ्योरी के स्मूथ मॉडल में अवकलन्स। इस दृष्टिकोण को [[ सिंथेटिक अंतर ज्यामिति | सिंथेटिक अवकलन ज्यामिति]] या [[चिकना अत्यल्प विश्लेषण]] के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि [[ टोपोस सिद्धांत ]] के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल प्रस्तुत किए जाते हैं।<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Moerdijk|Reyes|1991}}.</ref>
* [[अति वास्तविक संख्या]] सिस्टम में इनफिनिटिमल्स के रूप में डिफरेंशियल, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और असीम रूप से बड़ी संख्याएँ होती हैं। यह [[अब्राहम रॉबिन्सन]] द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।<ref name="nonstd">See {{Harvnb|Robinson|1996}} and {{Harvnb|Keisler|1986}}.</ref>
* [[अति वास्तविक संख्या]] सिस्टम में इनफिनिटिमल्स के रूप में अवकलन, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और अनंत रूप से बड़ी संख्याएँ होती हैं। यह [[अब्राहम रॉबिन्सन]] द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।<ref name="nonstd">See {{Harvnb|Robinson|1996}} and {{Harvnb|Keisler|1986}}.</ref>




== उदाहरण और अनुप्रयोग ==
== उदाहरण और अनुप्रयोग ==
गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए [[संख्यात्मक विश्लेषण]] में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र [[संख्यात्मक स्थिरता]] {{harv|Courant|1937a}}. मान लीजिए कि चर x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर लागू संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस हद तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के भीतर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है:
गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए [[संख्यात्मक विश्लेषण]] में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र [[संख्यात्मक स्थिरता]] {{harv|Courant|1937a}}. मान लीजिए कि चर x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर प्रायुक्त संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस हद तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के भीतर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है:
:<math>\Delta y = f'(x)\Delta x + \frac{(\Delta x)^2}{2}f''(\xi)</math>
:<math>\Delta y = f'(x)\Delta x + \frac{(\Delta x)^2}{2}f''(\xi)</math>
कहाँ {{nowrap|1=''ξ'' = ''x'' + ''θ''Δ''x''}} कुछ के लिए {{nowrap|0 < ''θ'' < 1}}. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, ताकि Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से अनुमानित हो {{nowrap|1=''dy'' = ''f'''(''x'')Δ''x''}}.
जहाँ {{nowrap|1=''ξ'' = ''x'' + ''θ''Δ''x''}} कुछ के लिए {{nowrap|0 < ''θ'' < 1}}. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, जिससे Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से अनुमानित हो {{nowrap|1=''dy'' = ''f'''(''x'')Δ''x''}}.


[[अंतर समीकरण]] को फिर से लिखने के लिए अंतर अक्सर उपयोगी होता है
[[अंतर समीकरण|अवकलन समीकरण]] को फिर से लिखने के लिए अवकलन अक्सर उपयोगी होता है


: <math> \frac{dy}{dx} = g(x) </math>
: <math> \frac{dy}{dx} = g(x) </math>

Revision as of 14:20, 1 May 2023


गणना में, अवकलन फलन (गणित) स्वतंत्र चर में परिवर्तन के संबंध में फलन में परिवर्तन के मुख्य भाग का प्रतिनिधित्व करता है। अवकलन द्वारा परिभाषित किया गया है

जहाँ के संबंध में f का व्युत्पन्न है, और एक अतिरिक्त वास्तविक चर (गणित) (जिससे और का एक फलन हो) है। अंकन ऐसा है कि समीकरण

धारण करता है, जहां लीबनिज संकेतन में व्युत्पन्न का प्रतिनिधित्व किया जाता है, और यह अवकलन के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है

चर का सटीक अर्थ और आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन चरों का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अवकलन को विशेष अवकलन रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अवकलन को किसी फलन की वृद्धि के लिए रैखिक सन्निकटन के रूप में माना जाता है। परंपरागत रूप से, चर और बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है।

इतिहास और उपयोग

अवकलन को पहली बार आइजैक न्यूटन द्वारा सहज या अनुमानी परिभाषा के माध्यम से प्रस्तुत किया गया था और गॉटफ्रीड लाइबनिट्स द्वारा आगे बढ़ाया गया था,जिन्होंने फ़ंक्शन के तर्क में एक अनंत रूप से छोटे परिवर्तन के अनुरूप फ़ंक्शन के मान में एक अनंत रूप से छोटे परिवर्तन (या अनंत) के रूप में अंतर के बारे में सोचा था। उस कारण से, के संबंध में के परिवर्तन की तात्कालिक दर, जो फ़ंक्शन के व्युत्पन्न का मान है, को अंश द्वारा दर्शाया गया है

डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल अनंत रूप से छोटा नहीं है; किन्तु यह वास्तविक संख्या है।

उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट विश्लेषक द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। ऑगस्टिन-लुई कॉची (1823) ने लीबनिज के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना अंतर को परिभाषित किया।[1][2] इसके अतिरिक्त, कॉची, जीन ले रोंड डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अवकलन भागफलों की सीमा (गणित) के रूप में परिभाषित किया गया था, और अवकलन तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अवकलन को परिभाषित करने के लिए कोई भी स्वतंत्र था अभिव्यक्ति द्वारा

जिसमें और परिमित वास्तविक मान लेने वाले बस नए चर हैं,[3] नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।[4] के अनुसार Boyer (1959, p. 12), कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को प्रायुक्त करने के अतिरिक्त, मात्राएँ और अब किसी भी अन्य वास्तविक मात्राएँ सार्थक विधि के समान ही हेरफेर किया जा सकता है। अवकलनों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,[5] चूंकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः कार्ल वीयरस्ट्रास के कारण थी।[6]

भौतिक उपचारों में, जैसे कि ऊष्मप्रवैगिकी के सिद्धांत पर प्रायुक्त होने वाले, अनंत दृश्य अभी भी प्रबल है। कुरेंट & जॉन (1999, p. 184) इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ इस प्रकार मिलाते हैं। अवकलन परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक शुद्धता की डिग्री से छोटे होते हैं जिसके लिए उनका लक्ष्य होता है। इस प्रकार भौतिक अतिसूक्ष्मों को त्रुटिहीन अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है।

गणितीय विश्लेषण और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि फलन के अवकलन की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। वास्तविक विश्लेषण में, किसी फलन की वृद्धि के प्रमुख भाग के रूप में सीधे अवकलन से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फलन का अवकलन वेतन वृद्धि का रैखिक कार्य है। यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अवकलन (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फलन का अवकलन स्पर्शरेखा सदिश (अनंत रूप से छोटा विस्थापन) का रैखिक कार्य है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फलन का बाहरी व्युत्पन्न। गैर-मानक कैलकुलस में, अवकलनों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर आधार पर रखा जा सकता है (देखें अवकलन (इनफिनिटिमल))।

परिभाषा

फलन का अवकलन बिंदु पर .

अवकलन कैलकुलस के आधुनिक उपचारों में अवकलन को इस प्रकार परिभाषित किया गया है।[7] फलन का अवकलन वास्तविक चर का कार्य है दो स्वतंत्र वास्तविक चर के और द्वारा दिए गए

या दोनों तर्कों को दबा दिया जा सकता है, यानी कोई देख सकता है या केवल . अगर , अवकलन को इस रूप में भी लिखा जा सकता है . तब से , यह लिखने के लिए पारंपरिक है जिससे निम्नलिखित समानता हो:

अवकलन की यह धारणा सामान्यतः तब प्रायुक्त होती है जब किसी फलन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मान काफी छोटा है। अधिक सटीक, अगर पर अवकलनीय फलन है , फिर में अवकलन -मान

संतुष्ट

जहां त्रुटि सन्निकटन में संतुष्ट जैसा . दूसरे शब्दों में, किसी की अनुमानित पहचान होती है

जिसमें त्रुटि के सापेक्ष वांछित के रूप में छोटा किया जा सकता है विवश करके पर्याप्त रूप से छोटा होना; यानी,

जैसा . इस कारण से, किसी फलन के अवकलन को मुख्य भाग के रूप में जाना जाता है | प्रमुख भागरैखिक) भाग फलन के वेतन वृद्धि में होता है: अवकलन वेतन वृद्धि का रैखिक कार्य है , और यद्यपि त्रुटि अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है शून्य हो जाता है।

कई चरों में अवकलन

Operator / Function
Differential 1: 2:

3:

Partial derivative
Total derivative

अगले Goursat (1904, I, §15), से अधिक स्वतंत्र चर के कार्यों के लिए,

किसी वेरिएबल x के संबंध में y का आंशिक अवकलन1 परिवर्तन dx के परिणामस्वरूप y में परिवर्तन का मुख्य भाग है1 उस चर में। आंशिक अवकलन इसलिए है

x के संबंध में y का आंशिक डेरिवेटिव शामिल है1. सभी स्वतंत्र चरों के संबंध में आंशिक अवकलनों का योग कुल अवकलन है

जो y में परिवर्तन का मुख्य भाग है जो स्वतंत्र चरों x में परिवर्तनों के परिणामस्वरूप होता हैi.

अधिक सटीक रूप से, बहुभिन्नरूपी कलन के संदर्भ में, निम्नलिखित Courant (1937b), यदि f अवकलनीय फलन है, तो Fréchet व्युत्पन्न द्वारा, वृद्धि

जहां त्रुटि शब्द ε i वृद्धि Δx के रूप में शून्य हो जाती हैi संयुक्त रूप से शून्य हो जाते हैं। कुल अवकलन को तब कड़ाई से परिभाषित किया जाता है

चूंकि, इस परिभाषा के साथ,

किसी के पास

जैसा कि चर के मामले में, अनुमानित तत्समक धारण करता है

जिसमें कुल त्रुटि को वांछित के सापेक्ष छोटा किया जा सकता है पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके।

त्रुटि अनुमान के लिए कुल अवकलन का अनुप्रयोग

मापन में, प्रायोगिक अनिश्चितता विश्लेषण में कुल अवकलन का उपयोग किया जाता है फलन का त्रुटियों के आधार पर मापदंडों का . यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है:

और यह कि सभी चर स्वतंत्र हैं, फिर सभी चरों के लिए,

ऐसा इसलिए है क्योंकि व्युत्पन्न विशेष पैरामीटर के संबंध में फलन की संवेदनशीलता देता है में बदलाव के लिए , विशेष रूप से त्रुटि . जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मानों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे:

होने देना ;
; डेरिवेटिव का मानांकन
Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है
Δf/f = Δa/a + Δb/b

कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है।

यह समझने के लिए कि यह किस प्रकार कार्य पर निर्भर करता है, उस मामले पर विचार करें जहां कार्य है अतिरिक्त। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है

Δf/f = Δa/a + Δb/(b ln b)

अतिरिक्त 'के साथln b' कारक साधारण उत्पाद के मामले में नहीं मिला। यह अतिरिक्त कारक त्रुटि को छोटा बनाता है, जैसे ln b नंगे b जितना बड़ा नहीं है।

उच्च-क्रम अवकलन

किसी एकल चर x के फलन y = f(x) के उच्च-क्रम के अवकलनों को इसके माध्यम से परिभाषित किया जा सकता है:[8]

और, सामान्य तौर पर,

अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है

जब स्वतंत्र चर x को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अवकलन भी शामिल होने चाहिए। इस प्रकार, उदाहरण के लिए,

इत्यादि।

इसी तरह के विचार कई चरों के कार्यों के उच्च क्रम के अवकलन को परिभाषित करने के लिए प्रायुक्त होते हैं। उदाहरण के लिए, यदि f दो चरों x और y का फलन है, तो

जहाँ द्विपद गुणांक है। अधिक चर में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के अतिरिक्त उपयुक्त बहुपद गुणांक विस्तार के साथ।[9] कई चरों में उच्च क्रम के अवकलन भी अधिक जटिल हो जाते हैं जब स्वतंत्र चरों को स्वयं अन्य चरों पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक चरों पर निर्भर रहने की अनुमति है, के पास है

इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अवकलनों के उपयोग की व्यापक रूप से आलोचना की गई थी Hadamard 1935, जिन्होंने निष्कर्ष निकाला:

अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है?
ए मोन एविस, रिएन डू टाउट।

वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के बावजूद, उच्च क्रम के अवकलन विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे।[10] इन संदर्भों में, वृद्धि Δx पर प्रायुक्त फलन f के nवें क्रम के अवकलन को इसके द्वारा परिभाषित किया जाता है

या समकक्ष अभिव्यक्ति, जैसे

जहाँ वृद्धि tΔx के साथ nवां आगे का अवकलन है।

यह परिभाषा तब भी समझ में आती है जब f कई चरों का कार्य है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अवकलन सदिश वृद्धि Δx में डिग्री n का सजातीय कार्य है। इसके अलावा, बिंदु x पर f की टेलर श्रृंखला द्वारा दी गई है

उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है।

गुण

अवकलन के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे तरीके से अनुसरण करते हैं। इसमे शामिल है:[11]

  • रैखिकता: स्थिरांक a और b और अवकलनीय फलन f और g के लिए,
  • उत्पाद नियम: दो अलग-अलग कार्यों f और g के लिए,

इन दो गुणों के साथ ऑपरेशन डी सार बीजगणित में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम प्रायुक्त करते हैं

इसके अलावा, व्यापकता के बढ़ते स्तर में श्रृंखला नियम के विभिन्न रूप धारण करते हैं:[12]

  • यदि y = f(u) वेरिएबल u का अवकलनीय फलन है और u = g(x) x का अवकलनीय फलन है, तो
  • अगर y = f(x1, ..., xn) और सभी चर x1, ..., एक्सn दूसरे वेरिएबल t पर निर्भर करते हैं, फिर चेन रूल # चेन रूल द्वारा कई वेरिएबल्स के लिए, के पास है
अनुमानिक रूप से, कई चरों के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से अनंत रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है।
  • अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती चर x होते हैंi से अधिक चरों पर निर्भर करते हैं।

सामान्य सूत्रीकरण

फलन के लिए अवकलन की सुसंगत धारणा विकसित की जा सकती है f : RnRm दो यूक्लिडियन अवकलनिक्ष स्थान के बीच। माना x,Δx ∈ Rn यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है

यदि कोई m × n मैट्रिक्स (गणित) A मौजूद है, जैसे कि

जिसमें वेक्टर ε → 0 के रूप में Δx → 0, फिर f परिभाषा के अनुसार बिंदु x पर अवकलनीय है। मैट्रिक्स को कभी-कभी जैकबियन मैट्रिक्स के रूप में जाना जाता है, और रैखिक परिवर्तन जो वेतन वृद्धि Δx ∈ R से जुड़ा होता हैn सदिश AΔ'x' ∈ 'R'm, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच फलन के लिए काम करने के लिए ही निर्माण किया जा सकता है।

और उपयोगी दृष्टिकोण अवकलन को सीधे प्रकार के दिशात्मक व्युत्पन्न के रूप में परिभाषित करना है:

जो उच्च क्रम के अवकलन को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के अतिरिक्त वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अवकलन की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक कार्य होना चाहिए। अवकलनिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट स्पर्शरेखा स्थान के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक कार्य देता है: अवकलन रूप। इस व्याख्या के साथ, एफ के अवकलन को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अवकलन ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अलावा, f का आउटपुट मान भी स्थिति (यूक्लिडियन अवकलनिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस तरीके से अवकलन का इलाज करता है, तो इसे पुशफॉर्वर्ड (अवकलन) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है।

अन्य दृष्टिकोण

यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अवकलन (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें मौजूद हैं जिससे किसी फलन के अवकलन को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे शामिल है:

  • अवकलन को प्रकार के अवकलन फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फलन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ अनंत वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अवकलन ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है।
  • क्रमविनिमेय वलयों के nilpotent तत्वों के रूप में अवकलन। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।[13]
  • सेट थ्योरी के स्मूथ मॉडल में अवकलन्स। इस दृष्टिकोण को सिंथेटिक अवकलन ज्यामिति या चिकना अत्यल्प विश्लेषण के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि टोपोस सिद्धांत के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल प्रस्तुत किए जाते हैं।[14]
  • अति वास्तविक संख्या सिस्टम में इनफिनिटिमल्स के रूप में अवकलन, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और अनंत रूप से बड़ी संख्याएँ होती हैं। यह अब्राहम रॉबिन्सन द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।[15]


उदाहरण और अनुप्रयोग

गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए संख्यात्मक विश्लेषण में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र संख्यात्मक स्थिरता (Courant 1937a). मान लीजिए कि चर x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर प्रायुक्त संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस हद तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के भीतर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है:

जहाँ ξ = x + θΔx कुछ के लिए 0 < θ < 1. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, जिससे Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से अनुमानित हो dy = f'(xx.

अवकलन समीकरण को फिर से लिखने के लिए अवकलन अक्सर उपयोगी होता है

प्रपत्र में

विशेष रूप से जब कोई चरों को अलग करना चाहता है।

टिप्पणियाँ

  1. For a detailed historical account of the differential, see Boyer 1959, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in Kline 1972, Chapter 40.
  2. Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities (Boyer 1959, pp. 273–275), and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" (Cauchy 1823, p. 12; translation from Boyer 1959, p. 273).
  3. Boyer 1959, p. 275
  4. Boyer 1959, p. 12: "The differentials as thus defined are only new variables, and not fixed infinitesimals..."
  5. Courant 1937a, II, §9: "Here we remark merely in passing that it is possible to use this approximate representation of the increment by the linear expression to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."
  6. Boyer 1959, p. 284
  7. See, for instance, the influential treatises of Courant 1937a, Kline 1977, Goursat 1904, and Hardy 1908. Tertiary sources for this definition include also Tolstov 2001 and Itô 1993, §106.
  8. Cauchy 1823. See also, for instance, Goursat 1904, I, §14.
  9. Goursat 1904, I, §14
  10. In particular to infinite dimensional holomorphy (Hille & Phillips 1974) and numerical analysis via the calculus of finite differences.
  11. Goursat 1904, I, §17
  12. Goursat 1904, I, §§14,16
  13. Eisenbud & Harris 1998.
  14. See Kock 2006 and Moerdijk & Reyes 1991.
  15. See Robinson 1996 and Keisler 1986.


यह भी देखें

  • विभेदीकरण के लिए संकेतन

संदर्भ


बाहरी संबंध