छेदक घन का समाकलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{calculus|expanded=integral}}
{{calculus|expanded=समाकल}}
छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता <ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=गणना|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=यह एक पेचीदा और महत्वपूर्ण अभिन्न है जो अक्सर सामने आता है।|page=[https://archive.org/details/calculus4thediti00mich/page/382 382]}}</ref> प्रारंभिक कलन का [[अनिश्चितकालीन समाकल]] है।
छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता <ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=गणना|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=यह एक पेचीदा और महत्वपूर्ण अभिन्न है जो अक्सर सामने आता है।|page=[https://archive.org/details/calculus4thediti00mich/page/382 382]}}</ref> प्रारंभिक कलन का [[अनिश्चितकालीन समाकल]] है।



Revision as of 10:55, 30 April 2023

छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता [1] प्रारंभिक कलन का अनिश्चितकालीन समाकल है।

जहाँ प्रतिलोम गुडरमैनियन फ़ंक्शन है, जो छेदक फलन का समाकलन है।

ऐसे कई कारण हैं कि क्यों यह विशेष प्रतिपक्षी विशेष ध्यान देने योग्य है।

  • उच्च समता (गणित) के समाकलों को कम करने के लिए उपयोग की जाने वाली तकनीक, छेदिका की निम्नतर शक्तियों को कम करने के लिए इस सबसे सरल स्थिति में पूरी प्रकार से उपस्तिथ है। अन्य स्थितियों में भी इसी प्रकार से किए जाते हैं।
  • एकीकरण में अतिपरवलिक कार्यों की उपयोगिता को छेदक की विषम शक्तियों की स्थितियों में प्रदर्शित किया जा सकता है। (स्पर्शरेखा की शक्तियों को भी सम्मलित किया जा सकता है)
  • यह सामान्यतः प्रथम वर्ष के कलन पाठ्यक्रम में किए जाने वाले कई समाकल में से है जिसमें आगे बढ़ने का सबसे स्वाभाविक विधि भागों द्वारा एकीकृत करना और उसी समाकल पर लौटना सम्मलित है जो के साथ प्रारंभ हुआ (दूसरा ज्या या कोज्या फ़ंक्शन के साथ घातांक प्रकार्य के उत्पाद का समाकल है, ज्या या कोज्या फ़ंक्शन की शक्ति का एक और समाकल है।)
  • इस समाकल का उपयोग प्रपत्र के किसी भी समाकल के मूल्यांकन में किया जाता है
जहाँ स्थिरांक है। विशेष रूप से, यह की समस्याओं में प्रकट होता है

व्युत्पत्ति

भागों द्वारा एकीकरण

इस प्रतिपक्षी को भागों द्वारा एकीकरण द्वारा पाया जा सकता है, इस प्रकार है:[2]

जहाँ

तब

अगला जोड़ें दोनों पक्षों के लिए:[lower-alpha 1]

छेदक कार्य के समाकल का उपयोग करके, [2]

अंत में, दोनों पक्षों को 2 से विभाजित करें:

जिसे निकाला जाना था।[2]

किसी परिमेय फलन के समाकल में कमी

जहाँ , ताकि . यह आंशिक अंशों द्वारा अपघटन को स्वीकार करता है।

टर्म-दर-टर्म प्रतिविभेदन को मिलता है