छेदक घन का समाकलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{calculus|expanded= | {{calculus|expanded=समाकल}} | ||
छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता <ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=गणना|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=यह एक पेचीदा और महत्वपूर्ण अभिन्न है जो अक्सर सामने आता है।|page=[https://archive.org/details/calculus4thediti00mich/page/382 382]}}</ref> प्रारंभिक कलन का [[अनिश्चितकालीन समाकल]] है। | छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता <ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=गणना|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=यह एक पेचीदा और महत्वपूर्ण अभिन्न है जो अक्सर सामने आता है।|page=[https://archive.org/details/calculus4thediti00mich/page/382 382]}}</ref> प्रारंभिक कलन का [[अनिश्चितकालीन समाकल]] है। | ||
Revision as of 10:55, 30 April 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
छेदक घन का समाकल लगातार और चुनौतीपूर्ण होता [1] प्रारंभिक कलन का अनिश्चितकालीन समाकल है।
जहाँ प्रतिलोम गुडरमैनियन फ़ंक्शन है, जो छेदक फलन का समाकलन है।
ऐसे कई कारण हैं कि क्यों यह विशेष प्रतिपक्षी विशेष ध्यान देने योग्य है।
- उच्च समता (गणित) के समाकलों को कम करने के लिए उपयोग की जाने वाली तकनीक, छेदिका की निम्नतर शक्तियों को कम करने के लिए इस सबसे सरल स्थिति में पूरी प्रकार से उपस्तिथ है। अन्य स्थितियों में भी इसी प्रकार से किए जाते हैं।
- एकीकरण में अतिपरवलिक कार्यों की उपयोगिता को छेदक की विषम शक्तियों की स्थितियों में प्रदर्शित किया जा सकता है। (स्पर्शरेखा की शक्तियों को भी सम्मलित किया जा सकता है)
- यह सामान्यतः प्रथम वर्ष के कलन पाठ्यक्रम में किए जाने वाले कई समाकल में से है जिसमें आगे बढ़ने का सबसे स्वाभाविक विधि भागों द्वारा एकीकृत करना और उसी समाकल पर लौटना सम्मलित है जो के साथ प्रारंभ हुआ (दूसरा ज्या या कोज्या फ़ंक्शन के साथ घातांक प्रकार्य के उत्पाद का समाकल है, ज्या या कोज्या फ़ंक्शन की शक्ति का एक और समाकल है।)
- इस समाकल का उपयोग प्रपत्र के किसी भी समाकल के मूल्यांकन में किया जाता है
- जहाँ स्थिरांक है। विशेष रूप से, यह की समस्याओं में प्रकट होता है
- चाप की लंबाई परवलय और आर्किमिडीयन सर्पिल
- घुमावदार का पृष्ठीय क्षेत्रफल ज्ञात करना।
व्युत्पत्ति
भागों द्वारा एकीकरण
इस प्रतिपक्षी को भागों द्वारा एकीकरण द्वारा पाया जा सकता है, इस प्रकार है:[2]
जहाँ
तब
अगला जोड़ें दोनों पक्षों के लिए:[lower-alpha 1]
छेदक कार्य के समाकल का उपयोग करके, [2]
अंत में, दोनों पक्षों को 2 से विभाजित करें:
जिसे निकाला जाना था।[2]
किसी परिमेय फलन के समाकल में कमी
जहाँ , ताकि . यह आंशिक अंशों द्वारा अपघटन को स्वीकार करता है।
टर्म-दर-टर्म प्रतिविभेदन को मिलता है
अतिपरवलिक कार्य
समाकल रूप का: पायथागॉरियन पहचान का उपयोग करके कम किया जा सकता है यदि समता (गणित) है और दोनों विषम हैं। यदि विषम है और सम है, अतिपरवलिक प्रतिस्थापन का उपयोग स्थिर एकीकरण को अतिपरवलिक शक्ति-कम करने वाले सूत्रों वाले भागों द्वारा प्रतिस्थापित करने के लिए किया जा सकता है।
ध्यान दें कि इस प्रतिस्थापन से सीधे अनुसरण करता है।
छेदक की उच्च विषम शक्तियाँ
जिस प्रकार ऊपर के भागों के एकीकरण ने पहली शक्ति के लिए छेदक के समाकल अंग को छेदक घन के समाकल अंग को कम कर दिया है, उसी प्रकार समान प्रक्रिया छेदक की उच्च विषम शक्तियों के समाकल अंग को कम कर देती है। यह छेदक कमी सूत्र है, जो वाक्य रचना का अनुसरण करता है:
स्पर्शरेखाओं की भी शक्तियों को द्विपद विस्तार का उपयोग करके छेदक के विषम बहुपद का निर्माण करके और इन सूत्रों का उपयोग सबसे बड़े पद पर और समान पदों के संयोजन द्वारा समायोजित किया जा सकता है।
यह भी देखें
टिप्पणियाँ
- ↑ The constants of integration are absorbed in the remaining integral term.
संदर्भ
- ↑ Spivak, Michael (2008). "Integration in Elementary Terms". गणना. p. 382.
यह एक पेचीदा और महत्वपूर्ण अभिन्न है जो अक्सर सामने आता है।
- ↑ 2.0 2.1 2.2 Stewart, James (2012). "Section 7.2: Trigonometric Integrals". कैलकुलस - अर्ली ट्रान्सेंडैंटल्स. United States: Cengage Learning. pp. 475–6. ISBN 978-0-538-49790-9.