रोगोवस्की कॉइल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
</ref><ref name=":2">Klaus Schon, ''High Impulse Voltage and Current Measurement Techniques: Fundamentals – Measuring Instruments – Measuring Methods'', Springer Science & Business Media, 2013, {{ISBN|3-319-00378-X}}, p. 193.</ref>
</ref><ref name=":2">Klaus Schon, ''High Impulse Voltage and Current Measurement Techniques: Fundamentals – Measuring Instruments – Measuring Methods'', Springer Science & Business Media, 2013, {{ISBN|3-319-00378-X}}, p. 193.</ref>


चूंकि कॉइल में प्रेरित [[वोल्टेज]] सीधे सुचालक में धारा के परिवर्तन (व्युत्पन्न) की दर के समानुपाती होता है, रोगोस्की कॉइल का उत्पादन में सामान्यतः संकेत प्रदान करने के लिए विद्युतीय  [[समाकलक (इंटीग्रेटर)|समाकलक]] परिपथ से जुड़ा होता है, जो धारा के समानुपाती होता है। अंकीय परिवर्त्तक के लिए अंतर्निहित अनुरूप वाले एकल चिप संकेत संसाधित्र है, जो अधिकांशतः इस उद्देश्य के लिए उपयोग किए जाते हैं।<ref name=":1" />इसे आउटपुट के साथ समानांतर में एक कम अधिष्ठापन रोकनेवाला रखकर "स्वयं एकीकृत" (उदाहरण के लिए, कोई बाहरी सर्किट नहीं) बनाया जा सकता है।<ref name=":0" />यह दृष्टिकोण संवेदन परिपथ को अधिक ध्वनि प्रतिरक्षा  बनाता है।
चूंकि कॉइल में प्रेरित [[वोल्टेज]] सीधे सुचालक में धारा के परिवर्तन (व्युत्पन्न) की दर के समानुपाती होता है, रोगोस्की कॉइल का उत्पादन में सामान्यतः संकेत प्रदान करने के लिए विद्युतीय  [[समाकलक (इंटीग्रेटर)|समाकलक]] परिपथ से जुड़ा होता है, जो धारा के समानुपाती होता है। अंकीय परिवर्त्तक के लिए अंतर्निहित अनुरूप वाले एकल चिप संकेत संसाधित्र है, जो अधिकांशतः इस उद्देश्य के लिए उपयोग किए जाते हैं।<ref name=":1" />इसे आउटपुट के साथ समानांतर में एक कम अधिष्ठापन रोकनेवाला रखकर "स्वयं एकीकृत" (उदाहरण के लिए, कोई बाहरी परिपथ  नहीं) बनाया जा सकता है।<ref name=":0" />यह दृष्टिकोण संवेदन परिपथ को अधिक ध्वनि प्रतिरक्षा  बनाता है।


== लाभ ==
== लाभ ==
Line 11: Line 11:
* यह एक बंद लूप नहीं है, क्योंकि दूसरा टर्मिनल टॉरॉयड कोर (सामान्यतः एक प्लास्टिक या रबर ट्यूब) के केंद्र के माध्यम से वापस जाता है और पहले टर्मिनल के साथ जुड़ा होता है। यह कॉइल को विवृत समाप्ति और लचीला होने की अनुमति देता है, जिससे इसे लाइव सुचालक के चारों ओर बिना परेशान किए लपेटा जा सकता है। चूंकि, उस स्थितियों में मापा सुचालक की स्थिति महत्वपूर्ण है। यह दिखाया गया है कि, लचीले सेंसर के साथ, त्रुटिहीनता पर स्थिति का प्रभाव 1 से 3% तक होता है। अन्य प्रविधि त्रुटिहीन लॉकिंग तंत्र के साथ दो कठोर घुमावदार भागों का उपयोग करती है।<ref name=":2" />  
* यह एक बंद लूप नहीं है, क्योंकि दूसरा टर्मिनल टॉरॉयड कोर (सामान्यतः एक प्लास्टिक या रबर ट्यूब) के केंद्र के माध्यम से वापस जाता है और पहले टर्मिनल के साथ जुड़ा होता है। यह कॉइल को विवृत समाप्ति और लचीला होने की अनुमति देता है, जिससे इसे लाइव सुचालक के चारों ओर बिना परेशान किए लपेटा जा सकता है। चूंकि, उस स्थितियों में मापा सुचालक की स्थिति महत्वपूर्ण है। यह दिखाया गया है कि, लचीले सेंसर के साथ, त्रुटिहीनता पर स्थिति का प्रभाव 1 से 3% तक होता है। अन्य प्रविधि त्रुटिहीन लॉकिंग तंत्र के साथ दो कठोर घुमावदार भागों का उपयोग करती है।<ref name=":2" />  
*इसकी कम प्रेरण के कारण, यह कई नैनोसेकंड तक तेजी से बदलती धाराओं का उत्तर दे सकता है।<ref name=":3">Slawomir Tumanski, ''Handbook of Magnetic Measurements'', CRC Press, 2011, {{ISBN|1-439-82952-7}}, p. 175.</ref>
*इसकी कम प्रेरण के कारण, यह कई नैनोसेकंड तक तेजी से बदलती धाराओं का उत्तर दे सकता है।<ref name=":3">Slawomir Tumanski, ''Handbook of Magnetic Measurements'', CRC Press, 2011, {{ISBN|1-439-82952-7}}, p. 175.</ref>
* क्योंकि इसमें संतृप्त करने के लिए कोई लोहे का कोर नहीं है, यह बड़ी धाराओं के अधीन होने पर भी अत्यधिक रैखिक है, जैसे कि [[विद्युत शक्ति संचरण]], [[वेल्डिंग]], या स्पंदित बिजली अनुप्रयोगों में उपयोग किया जाता है।<ref name=":3" />यह रैखिकता उच्च-धारा रोगोस्की कॉइल को बहुत छोटे संदर्भ धाराओं का उपयोग करके कैलिब्रेट करने में सक्षम बनाती है।<ref name=":1" />  
* क्योंकि इसमें संतृप्त करने के लिए कोई लोहे का कोर नहीं है, यह बड़ी धाराओं के अधीन होने पर भी अत्यधिक रैखिक है, जैसे कि [[विद्युत शक्ति संचरण]], [[वेल्डिंग]], या स्पंदित बिजली अनुप्रयोगों में उपयोग किया जाता है।<ref name=":3" />यह रैखिकता उच्च-धारा रोगोस्की कॉइल को बहुत छोटे संदर्भ धाराओं का उपयोग करके व्यास मापान करने में सक्षम बनाती है।<ref name=":1" />  
*माध्यमिक घुमावदार  के खुलने का कोई खतरा नहीं।<ref name=":3" />  
*माध्यमिक घुमावदार  के खुलने का कोई खतरा नहीं।<ref name=":3" />  
*कम निर्माण लागत।<ref name=":3" />  
*कम निर्माण लागत।<ref name=":3" />  
*तापमान क्षतिपूर्ति सरल है।<ref name=":1" />  
*तापमान क्षतिपूर्ति सरल है।<ref name=":1" />  
*बड़े धारा के लिए पारंपरिक धारा ट्रांसफॉर्मर को उत्पादन धारा को स्थिर रखने के लिए द्वितीयक मोड़ की संख्या में वृद्धि की आवश्यकता होती है। इसलिए, बड़े धारा के लिए रोगोस्की कॉइल समतुल्य रेटिंग धारा ट्रांसफॉर्मर से छोटा होता है।<ref>Stephen A. Dyer, ''Wiley Survey of Instrumentation and Measurement'', John Wiley & Sons, 2004, {{ISBN|0-471-22165-1}}, p. 265.</ref>
*बड़े धारा के लिए पारंपरिक धारा ट्रांसफॉर्मर उत्पादन धारा को स्थिर रखने के लिए द्वितीयक मोड़ की संख्या में वृद्धि की आवश्यकता होती है। इसलिए, बड़े धारा के लिए रोगोस्की कॉइल समतुल्य रेटिंग धारा ट्रांसफॉर्मर से छोटा होता है।<ref>Stephen A. Dyer, ''Wiley Survey of Instrumentation and Measurement'', John Wiley & Sons, 2004, {{ISBN|0-471-22165-1}}, p. 265.</ref>
== हानि ==
== हानि ==
इस प्रकार कॉइल के अन्य प्रकार के धारा ट्रांसफॉर्मर पर कुछ हानि भी हैं।
इस प्रकार कॉइल के अन्य प्रकार के धारा ट्रांसफॉर्मर पर कुछ हानि भी हैं।

Revision as of 22:39, 3 May 2023

रोगोस्की कॉइल तार का टॉरॉयड है जिसका उपयोग प्रत्यावर्ती धारा को मापने के लिए किया जाता है I(t) टोरॉयड से घिरे केबल के माध्यम से। चित्रण में धारा ले जाने वाली केबल को घेरते हुए रोगोस्की कॉइल को दिखाया गया है। कॉइल का उत्पादन, v(t), वोल्टेज प्राप्त करने के लिए हानिपूर्ण समाकलक परिपथ से जुड़ा है Vout(t) के समानुपातिक है I(t).

वाल्टर रोगोव्स्की के नाम पर रोगोस्की कॉइल, प्रत्यावर्ती धारा को मापना या उच्च गति धारा स्पंद को मापने के लिए विद्युत उपकरण है। इसमें कभी-कभी तार का कुंडलित वक्रता होता है, जिसके छोर से लीड कॉइल के एक केंद्र से होकर दूसरे छोर तक लौटता है, जिससे कि दोनों टर्मिनल कॉइल के एक ही सिरे पर हों। इस दृष्टिकोण को कभी-कभी विरोध घाव रोगोव्स्की के रूप में संदर्भित किया जाता है।

अन्य दृष्टिकोण पूर्ण टोरॉयड ज्यामिति का उपयोग करते हैं और इसमें केंद्रीय उत्तेजना का लाभ होता है न कि कॉइल में खड़ी तरंगों को उत्तेजित करना। पूरी असेंबली को सीधे सुचालक के चारों ओर लपेटा जाता है जिसकी धारा मापी जानी है। धातु (लोहा) का कोई कोर नहीं है। घुमावदार घनत्व, कॉइल का व्यास और घुमावदार की कठोरता बाहरी क्षेत्रों के लिए प्रतिरक्षा को संरक्षित करने और नपा हुआ सुचालक की स्थिति के लिए कम संवेदनशीलता के लिए महत्वपूर्ण हैं।[1][2][3]

चूंकि कॉइल में प्रेरित वोल्टेज सीधे सुचालक में धारा के परिवर्तन (व्युत्पन्न) की दर के समानुपाती होता है, रोगोस्की कॉइल का उत्पादन में सामान्यतः संकेत प्रदान करने के लिए विद्युतीय समाकलक परिपथ से जुड़ा होता है, जो धारा के समानुपाती होता है। अंकीय परिवर्त्तक के लिए अंतर्निहित अनुरूप वाले एकल चिप संकेत संसाधित्र है, जो अधिकांशतः इस उद्देश्य के लिए उपयोग किए जाते हैं।[2]इसे आउटपुट के साथ समानांतर में एक कम अधिष्ठापन रोकनेवाला रखकर "स्वयं एकीकृत" (उदाहरण के लिए, कोई बाहरी परिपथ नहीं) बनाया जा सकता है।[1]यह दृष्टिकोण संवेदन परिपथ को अधिक ध्वनि प्रतिरक्षा बनाता है।

लाभ

इस प्रकार के कॉइल में अन्य प्रकार के धारा ट्रांसफॉर्मर के लाभ हैं।

  • यह एक बंद लूप नहीं है, क्योंकि दूसरा टर्मिनल टॉरॉयड कोर (सामान्यतः एक प्लास्टिक या रबर ट्यूब) के केंद्र के माध्यम से वापस जाता है और पहले टर्मिनल के साथ जुड़ा होता है। यह कॉइल को विवृत समाप्ति और लचीला होने की अनुमति देता है, जिससे इसे लाइव सुचालक के चारों ओर बिना परेशान किए लपेटा जा सकता है। चूंकि, उस स्थितियों में मापा सुचालक की स्थिति महत्वपूर्ण है। यह दिखाया गया है कि, लचीले सेंसर के साथ, त्रुटिहीनता पर स्थिति का प्रभाव 1 से 3% तक होता है। अन्य प्रविधि त्रुटिहीन लॉकिंग तंत्र के साथ दो कठोर घुमावदार भागों का उपयोग करती है।[3]
  • इसकी कम प्रेरण के कारण, यह कई नैनोसेकंड तक तेजी से बदलती धाराओं का उत्तर दे सकता है।[4]
  • क्योंकि इसमें संतृप्त करने के लिए कोई लोहे का कोर नहीं है, यह बड़ी धाराओं के अधीन होने पर भी अत्यधिक रैखिक है, जैसे कि विद्युत शक्ति संचरण, वेल्डिंग, या स्पंदित बिजली अनुप्रयोगों में उपयोग किया जाता है।[4]यह रैखिकता उच्च-धारा रोगोस्की कॉइल को बहुत छोटे संदर्भ धाराओं का उपयोग करके व्यास मापान करने में सक्षम बनाती है।[2]
  • माध्यमिक घुमावदार के खुलने का कोई खतरा नहीं।[4]
  • कम निर्माण लागत।[4]
  • तापमान क्षतिपूर्ति सरल है।[2]
  • बड़े धारा के लिए पारंपरिक धारा ट्रांसफॉर्मर उत्पादन धारा को स्थिर रखने के लिए द्वितीयक मोड़ की संख्या में वृद्धि की आवश्यकता होती है। इसलिए, बड़े धारा के लिए रोगोस्की कॉइल समतुल्य रेटिंग धारा ट्रांसफॉर्मर से छोटा होता है।[5]

हानि

इस प्रकार कॉइल के अन्य प्रकार के धारा ट्रांसफॉर्मर पर कुछ हानि भी हैं।

  • धारा तरंग प्राप्त करने के लिए कॉइल का उत्पादन समाकलक परिपथ के माध्यम से पारित किया जाना चाहिए। समाकलक परिपथ को शक्ति की आवश्यकता होती है, सामान्यतः 3 से 24Vडीसी और कई वाणिज्यिक सेंसर इसे बैटरी से प्राप्त करते हैं।[6]
  • पारंपरिक विभाजन-कोर धारा ट्रांसफॉर्मर को समाकलक परिपथ की आवश्यकता नहीं होती है। समाकलक हानिपूर्ण है, इसलिए रोगोस्की कॉइल में डीसी के लिए अनुक्रिया नहीं होती है, न ही पारंपरिक धारा ट्रांसफॉर्मर (डीसी के लिए नील प्रभाव कॉइल्स देखें)। चूंकि, वे 1 Hz और उससे कम आवृत्ति घटकों के साथ बहुत धीमी गति से बदलती धाराओं को माप सकते हैं।[3]

अनुप्रयोग

त्रुटिहीन वेल्डिंग प्रणाली, आर्क पिघलने वाली भट्टी, या विद्युत चुम्बकीय लांचर में धारा पर्यवेक्षण के लिए रोगोस्की कॉइल का उपयोग किया जाता है। उनका उपयोग विद्युत जनित्र के लघु-परिपथ परीक्षण और विद्युत संयंत्रों की सुरक्षा प्रणालियों में सेंसर के रूप में भी किया जाता है। उपयोग का अन्य क्षेत्र उनकी उच्च रैखिकता के कारण हार्मोनिक धारा सामग्री का मापन है।[6]

सूत्र

स्विच्ड-मोड लोड के लिए आरसी उत्पादन का उदाहरण तरंग। जैसा कि ऊपर बताया गया है, उत्पादन तरंग रूप CH4 (हरा) धारा तरंग रूप CH2 (नीला) के व्युत्पन्न का प्रतिनिधित्व करता है; CH1 (पीला) 230 V AC मुख्य तरंग रूप है।

रोगोवस्की कॉइल द्वारा उत्पादित वोल्टेज है

जहाँ

  • छोटे लूपों में से का क्षेत्र है,
  • घुमावों की संख्या है,
  • घुमावदार की लंबाई है (अंगूठी की परिधि),
  • लूप में धारा सूत्रण के परिवर्तन की दर है,
  • वाल्ट·दूसरा /(एम्पेयर ·मीटर) मुक्त स्थान की पारगम्यता है,
  • टोरॉयड की प्रमुख त्रिज्या है,
  • इसकी छोटी त्रिज्या है।

यह सूत्र मानता है कि घुमाव समान दूरी पर हैं और ये घुमाव कॉइल की त्रिज्या के सापेक्ष छोटे हैं।

रोगोस्की कॉइल का उत्पादन तार धारा के व्युत्पतिलब्ध के समानुपाती होता है। उत्पादन अधिकांशतः एकीकृत होता है इसलिए उत्पादन तार के धारा के समानुपाती होता है।

व्यवहार में, उपकरण हानिपूर्ण समाकलक का उपयोग ब्याज की न्यूनतम आवृत्ति से बहुत कम समय के साथ करेगा। हानिपूर्ण समाकलक वोल्टेज समयोजन के प्रभाव को कम करेगा और एकीकरण की निरंतरता को शून्य पर विन्यस्त करेगा।

उच्च आवृत्तियों पर, रोगोव्स्की कॉइल का प्रेरण इसके उत्पादन को कम कर देगा।

टॉरॉयड का प्रेरण है[7]

समान उपकरण

1887 में ब्रिस्टल विश्वविद्यालय के आर्थर प्रिंस चैटॉक द्वारा रोगोस्की कॉइल के समान उपकरण का वर्णन किया गया था।[8] चट्टॉक ने इसका उपयोग धाराओं के अतिरिक्त चुंबकीय क्षेत्र को मापने के लिए किया। 1912 में वाल्टर रोगोव्स्की और डब्ल्यू स्टीनहॉस द्वारा निश्चित विवरण दिया गया था।[9]

हाल ही में, रोगोस्की कॉइल के सिद्धांत पर आधारित कम लागत वाले धारा सेंसर विकसित किए गए हैं।[10] ये सेंसर रोगोस्की कॉइल के सिद्धांतों को साझा करते हैं, जो बिना चुंबकीय कोर वाले ट्रांसफॉर्मर का उपयोग करके धारा के परिवर्तन की दर को मापते हैं। पारंपरिक रोगोस्की कॉइल से अंतर यह है कि सेंसर को टॉरॉयडल कॉइल के अतिरिक्त समतल कॉइल का उपयोग करके निर्मित किया जा सकता है। सेंसर के माप क्षेत्र के बाहर सुचालक के प्रभाव को अस्वीकार करने के लिए, ये समतल रोगोस्की धारा सेंसर बाहरी क्षेत्रों की प्रतिक्रिया को सीमित करने के लिए टॉरॉयडल ज्यामिति के अतिरिक्त गाढ़ा कॉइल ज्यामिति का उपयोग करते हैं। समतल रोगोस्की धारा सेंसर का मुख्य लाभ यह है कि कम लागत वाले मुद्रित परिपथ बोर्ड निर्माण का उपयोग करके त्रुटिहीनता के लिए आवश्यक कॉइल घुमावदार परिशुद्धता प्राप्त की जा सकती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 D.G. Pellinen, M.S. DiCipua, S.E. Sampayan, H. Gerbracht, and M. Wang, "Rogowski coil for measuring fast, highlevel pulsed currents," Rev.Sci.Instr. 51, 1535 (1980); http://dx.doi.org/10.1063/1.1136119.
  2. 2.0 2.1 2.2 2.3 John G. Webster, Halit Eren (ed.), Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement, CRC Press, 2014, ISBN 1-439-84891-2, pp. 16-6 to 16-7.
  3. 3.0 3.1 3.2 Klaus Schon, High Impulse Voltage and Current Measurement Techniques: Fundamentals – Measuring Instruments – Measuring Methods, Springer Science & Business Media, 2013, ISBN 3-319-00378-X, p. 193.
  4. 4.0 4.1 4.2 4.3 Slawomir Tumanski, Handbook of Magnetic Measurements, CRC Press, 2011, ISBN 1-439-82952-7, p. 175.
  5. Stephen A. Dyer, Wiley Survey of Instrumentation and Measurement, John Wiley & Sons, 2004, ISBN 0-471-22165-1, p. 265.
  6. 6.0 6.1 Krzysztof Iniewski, Smart Sensors for Industrial Applications, CRC Press, 2013, ISBN 1-466-56810-0, p. 346.
  7. "Toroid Inductor Formulas and Calculator".
  8. "On a magnetic potentiometer", Philosophical Magazine and Journal of Science, vol. XXIV, no. 5th Series, pp. 94–96, Jul-Dec 1887
  9. Walter Rogowski and W. Steinhaus in "Die Messung der magnetischen Spannung", Archiv für Elektrotechnik, 1912, 1, Pt.4, pp. 141–150.
  10. Patent for a planar Rogowski current sensor U.S. Patent 6,414,475, granted 2 Jul 2002.


बाहरी संबंध