कार्यात्मक व्युत्पन्न: Difference between revisions
(Created page with "{{Short description|Concept in calculus of variation}} विविधताओं की कलन में, गणितीय विश्लेषण का एक...") |
No edit summary |
||
Line 1: | Line 1: | ||
विविधताओं की कलन में, [[गणितीय विश्लेषण]] का एक क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> एक [[कार्यात्मक (गणित)]] में एक परिवर्तन से संबंधित है (इस अर्थ में एक कार्यात्मक एक फ़ंक्शन है जो कार्यों पर कार्य करता है) एक फ़ंक्शन (गणित) में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है। | विविधताओं की कलन में, [[गणितीय विश्लेषण]] का एक क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> एक [[कार्यात्मक (गणित)]] में एक परिवर्तन से संबंधित है (इस अर्थ में एक कार्यात्मक एक फ़ंक्शन है जो कार्यों पर कार्य करता है) एक फ़ंक्शन (गणित) में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है। | ||
भिन्नरूपों की गणना में, प्रकार्यों को आम तौर पर कार्यों के [[अभिन्न]] अंग, उनके कार्य के तर्क और उनके [[ यौगिक ]] के संदर्भ में व्यक्त किया जाता है। एक अभिन्न में {{math|''L''}एक कार्यात्मक का }, यदि कोई कार्य {{math|''f''}} इसमें एक और फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}} जो मनमाने ढंग से छोटा है, और परिणामी इंटीग्रैंड की शक्तियों में विस्तार किया गया है {{math|''δf''}}, का गुणांक {{math|''δf''}} पहले क्रम की अवधि में कार्यात्मक व्युत्पन्न कहा जाता है। | भिन्नरूपों की गणना में, प्रकार्यों को आम तौर पर कार्यों के [[अभिन्न]] अंग, उनके कार्य के तर्क और उनके [[ यौगिक ]] के संदर्भ में व्यक्त किया जाता है। एक अभिन्न में {{math|''L''}एक कार्यात्मक का }, यदि कोई कार्य {{math|''f''}} इसमें एक और फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}} जो मनमाने ढंग से छोटा है, और परिणामी इंटीग्रैंड की शक्तियों में विस्तार किया गया है {{math|''δf''}}, का गुणांक {{math|''δf''}} पहले क्रम की अवधि में कार्यात्मक व्युत्पन्न कहा जाता है। | ||
उदाहरण के लिए, कार्यात्मक पर विचार करें | उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math> | ||
<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math> | कहाँ {{math|''f'' ′(''x'') ≡ ''df/dx''}}. अगर {{math|''f''}} इसमें एक फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}}, और परिणामी इंटीग्रैंड {{math|''L''(''x, f +δf, f '+δf'' ′)}} की शक्तियों में विस्तारित है {{math|''δf''}}, फिर के मूल्य में परिवर्तन {{math|''J''}} पहले ऑर्डर करने के लिए {{math|''δf''}} को इस प्रकार व्यक्त किया जा सकता है:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math> | ||
कहाँ {{math|''f'' ′(''x'') ≡ ''df/dx''}}. अगर {{math|''f''}} इसमें एक फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}}, और परिणामी इंटीग्रैंड {{math|''L''(''x, f +δf, f '+δf'' ′)}} की शक्तियों में विस्तारित है {{math|''δf''}}, फिर के मूल्य में परिवर्तन {{math|''J''}} पहले ऑर्डर करने के लिए {{math|''δf''}} को इस प्रकार व्यक्त किया जा सकता है:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref> | |||
<math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math> | |||
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' ′}} को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था {{math|(''δf'') ′}}, और [[भागों द्वारा एकीकरण]] का उपयोग किया गया था। | जहां व्युत्पन्न में भिन्नता, {{math|''δf'' ′}} को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था {{math|(''δf'') ′}}, और [[भागों द्वारा एकीकरण]] का उपयोग किया गया था। | ||
Line 14: | Line 11: | ||
=== कार्यात्मक व्युत्पन्न === | === कार्यात्मक व्युत्पन्न === | ||
[[कई गुना]] दिया {{math|''M''}} प्रतिनिधित्व ([[निरंतर कार्य (टोपोलॉजी)]] / सुचारू कार्य) कार्य करता है {{math|''ρ''}} (कुछ सीमा स्थितियों आदि के साथ), और एक कार्यात्मक (गणित) {{math|''F''}} के रूप में परिभाषित | [[कई गुना]] दिया {{math|''M''}} प्रतिनिधित्व ([[निरंतर कार्य (टोपोलॉजी)]] / सुचारू कार्य) कार्य करता है {{math|''ρ''}} (कुछ सीमा स्थितियों आदि के साथ), और एक कार्यात्मक (गणित) {{math|''F''}} के रूप में परिभाषित<math display="block">F\colon M \to \mathbb{R} \quad \text{or} \quad F\colon M \to \mathbb{C} \, ,</math>का कार्यात्मक व्युत्पन्न {{math|''F''[''ρ'']}}, निरूपित {{math|''δF''/''δρ''}} द्वारा परिभाषित किया गया है<ref name="ParrYangP246A.2">{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.2}}.</ref><math display="block">\begin{align} | ||
<math display="block">F\colon M \to \mathbb{R} \quad \text{or} \quad F\colon M \to \mathbb{C} \, ,</math> | |||
का कार्यात्मक व्युत्पन्न {{math|''F''[''ρ'']}}, निरूपित {{math|''δF''/''δρ''}} द्वारा परिभाषित किया गया है<ref name=ParrYangP246A.2>{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.2}}.</ref> | |||
<math display="block">\begin{align} | |||
\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx | \int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx | ||
&= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\ | &= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\ | ||
&= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}, | &= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}, | ||
\end{align}</math> | \end{align}</math>कहाँ <math>\phi</math> एक मनमाना कार्य है। मात्रा <math>\varepsilon\phi</math> की भिन्नता कहलाती है {{math|''ρ''}}. | ||
कहाँ <math>\phi</math> एक मनमाना कार्य है। मात्रा <math>\varepsilon\phi</math> की भिन्नता कहलाती है {{math|''ρ''}}. | |||
दूसरे शब्दों में, | दूसरे शब्दों में,<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math>एक रेखीय कार्यात्मक है, इसलिए कोई व्यक्ति इस कार्यात्मक को कुछ माप (गणित) के विरुद्ध एकीकरण के रूप में प्रस्तुत करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है। | ||
<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math> | |||
एक रेखीय कार्यात्मक है, इसलिए कोई व्यक्ति इस कार्यात्मक को कुछ माप (गणित) के विरुद्ध एकीकरण के रूप में प्रस्तुत करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है। | |||
तब {{math|''δF''/''δρ''}} को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है। | तब {{math|''δF''/''δρ''}} को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है। | ||
एक समारोह के बारे में सोचता है {{math|''δF''/''δρ''}} की ढाल के रूप में {{math|''F''}} बिंदु पर {{math|''ρ''}} (यानी, कितना कार्यात्मक {{math|''F''}} बदल जाएगा अगर समारोह {{math|''ρ''}} बिंदु पर बदल जाता है {{math|''x''}}) और | एक समारोह के बारे में सोचता है {{math|''δF''/''δρ''}} की ढाल के रूप में {{math|''F''}} बिंदु पर {{math|''ρ''}} (यानी, कितना कार्यात्मक {{math|''F''}} बदल जाएगा अगर समारोह {{math|''ρ''}} बिंदु पर बदल जाता है {{math|''x''}}) और<math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math>बिंदु पर दिशात्मक व्युत्पन्न के रूप में {{math|''ρ''}} कम है {{math|''ϕ''}}. फिर सदिश कलन के अनुरूप, आंतरिक उत्पाद ढाल के साथ दिशात्मक व्युत्पन्न देता है। | ||
<math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math> | |||
बिंदु पर दिशात्मक व्युत्पन्न के रूप में {{math|''ρ''}} कम है {{math|''ϕ''}}. फिर सदिश कलन के अनुरूप, आंतरिक उत्पाद ढाल के साथ दिशात्मक व्युत्पन्न देता है। | |||
=== कार्यात्मक अंतर === | === कार्यात्मक अंतर === | ||
कार्यात्मक का अंतर (या भिन्नता या पहली भिन्नता)। <math>F\left[\rho\right]</math> है <ref name=ParrYangP246A.1>{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.1}}.</ref> < | कार्यात्मक का अंतर (या भिन्नता या पहली भिन्नता)। <math>F\left[\rho\right]</math> है <ref name=ParrYangP246A.1>{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.1}}.</ref> <ref group="Note">में अंतर कहलाता है {{harv|Parr|Yang|1989|p=246}}, भिन्नता या पहली भिन्नता {{harv|Courant|Hilbert|1953|p=186}}, और भिन्नता या अंतर {{harv|Gelfand|Fomin|2000|loc= p. 11, § 3.2}}.</रेफरी> | ||
<math display="block">\delta F [\rho; \phi] = \int \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx \ .</math> | <math display="block">\delta F [\rho; \phi] = \int \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx \ .</math> | ||
अनुमान के अनुसार, <math>\phi</math> में परिवर्तन है <math>\rho</math>, तो हमारे पास 'औपचारिक' है <math>\phi = \delta\rho</math>, और फिर यह एक फ़ंक्शन के [[कुल अंतर]] के रूप में समान है <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>, | अनुमान के अनुसार, <math>\phi</math> में परिवर्तन है <math>\rho</math>, तो हमारे पास 'औपचारिक' है <math>\phi = \delta\rho</math>, और फिर यह एक फ़ंक्शन के [[कुल अंतर]] के रूप में समान है <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>, | ||
<math display="block"> dF = \sum_{i=1} ^n \frac {\partial F} {\partial \rho_i} \ d\rho_i \ ,</math> | <math display="block"> dF = \sum_{i=1} ^n \frac {\partial F} {\partial \rho_i} \ d\rho_i \ ,</math> | ||
कहाँ <math>\rho_1,\rho_2,\dots,\rho_n</math> स्वतंत्र चर हैं। | कहाँ <math>\rho_1,\rho_2,\dots,\rho_n</math> स्वतंत्र चर हैं। | ||
पिछले दो समीकरणों की तुलना, कार्यात्मक व्युत्पन्न <math>\delta F/\delta\rho(x)</math> आंशिक व्युत्पन्न के समान भूमिका है <math>\partial F/\partial\rho_i</math>, जहां एकीकरण का चर <math>x</math> सारांश सूचकांक के एक सतत संस्करण की तरह है <math>i</math>.<ref name=ParrYangP246>{{harv|Parr|Yang|1989|p=246}}.</ref> | पिछले दो समीकरणों की तुलना, कार्यात्मक व्युत्पन्न <math>\delta F/\delta\rho(x)</math> आंशिक व्युत्पन्न के समान भूमिका है <math>\partial F/\partial\rho_i</math>, जहां एकीकरण का चर <math>x</math> सारांश सूचकांक के एक सतत संस्करण की तरह है <math>i</math>.<nowiki><ref name=ParrYangP246></nowiki>{{harv|Parr|Yang|1989|p=246}}.</ref> | ||
== गुण == | == गुण == | ||
किसी फ़ंक्शन के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां {{math|''F''[''ρ'']}} और {{math|''G''[''ρ'']}} कार्यात्मक हैं:<ref group="Note"> | किसी फ़ंक्शन के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां {{math|''F''[''ρ'']}} और {{math|''G''[''ρ'']}} कार्यात्मक हैं:<ref group="Note"> | ||
Line 54: | Line 40: | ||
**अगर {{math|''F''}} एक कार्यात्मक और है {{math|''G''}} एक और कार्यात्मक, फिर<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 6}}.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math> | **अगर {{math|''F''}} एक कार्यात्मक और है {{math|''G''}} एक और कार्यात्मक, फिर<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 6}}.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math> | ||
**अगर {{math|''G''}} एक साधारण भिन्न कार्य है (स्थानीय कार्यात्मक) {{math|''g''}}, तो यह कम हो जाता है<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 7}}.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math> | **अगर {{math|''G''}} एक साधारण भिन्न कार्य है (स्थानीय कार्यात्मक) {{math|''g''}}, तो यह कम हो जाता है<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 7}}.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math> | ||
== कार्यात्मक डेरिवेटिव का निर्धारण == | == कार्यात्मक डेरिवेटिव का निर्धारण == | ||
कार्यात्मकताओं के एक सामान्य वर्ग के लिए कार्यात्मक डेरिवेटिव निर्धारित करने के लिए एक सूत्र को फ़ंक्शन और उसके डेरिवेटिव के अभिन्न अंग के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का एक सामान्यीकरण है: वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्रवाई के सिद्धांत से दूसरे प्रकार के [[जोसेफ-लुई लाग्रेंज]] समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न पेश किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे [[सांख्यिकीय यांत्रिकी]] (19वीं सदी) से लिए गए हैं। | कार्यात्मकताओं के एक सामान्य वर्ग के लिए कार्यात्मक डेरिवेटिव निर्धारित करने के लिए एक सूत्र को फ़ंक्शन और उसके डेरिवेटिव के अभिन्न अंग के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का एक सामान्यीकरण है: वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्रवाई के सिद्धांत से दूसरे प्रकार के [[जोसेफ-लुई लाग्रेंज]] समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न पेश किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे [[सांख्यिकीय यांत्रिकी]] (19वीं सदी) से लिए गए हैं। | ||
=== सूत्र === | === सूत्र === | ||
एक कार्यात्मक दिया | एक कार्यात्मक दिया<math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math>और एक समारोह {{math|''ϕ''('''''r''''')}} जो एकीकरण के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न#परिभाषा से,<math display="block">\begin{align} | ||
<math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math> | |||
और एक समारोह {{math|''ϕ''('''''r''''')}} जो एकीकरण के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न#परिभाषा से, | |||
<math display="block">\begin{align} | |||
\int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} | \int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} | ||
& = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ | & = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ | ||
Line 71: | Line 52: | ||
& = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . | & = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . | ||
\end{align}</math> | \end{align}</math> | ||
[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''∂f'' /''∂∇''''ρ''}} एक मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।<ref group="Note">For a three-dimensional Cartesian coordinate system, | |||
[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''∂f'' /''∂∇''''ρ''}}''' एक मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।<ref group="Note">For a three-dimensional Cartesian coordinate system, | |||
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> | <math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> | ||
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref> | where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>''' | ||
डायवर्जेंस # गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। डायवर्जेंस प्रमेय और शर्त का उपयोग करके चौथी पंक्ति प्राप्त की गई थी {{math|1=''ϕ'' = 0}} एकीकरण के क्षेत्र की सीमा पर। तब से {{math|''ϕ''}} भी एक मनमाना कार्य है, अंतिम पंक्ति में भिन्नता के कलन के मूलभूत लेम्मा को लागू करते हुए, कार्यात्मक व्युत्पन्न है | डायवर्जेंस # गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। डायवर्जेंस प्रमेय और शर्त का उपयोग करके चौथी पंक्ति प्राप्त की गई थी {{math|1=''ϕ'' = 0}} एकीकरण के क्षेत्र की सीमा पर। तब से {{math|''ϕ''}} भी एक मनमाना कार्य है, अंतिम पंक्ति में भिन्नता के कलन के मूलभूत लेम्मा को लागू करते हुए, कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>कहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', ∇''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के मामले के लिए है {{math|''F''[''ρ'']}} इस खंड की शुरुआत में। अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए शुरुआती बिंदु के रूप में इस्तेमाल किया जा सकता है। (कार्यात्मक व्युत्पन्न#Coulomb स्थितिज ऊर्जा कार्यात्मक उदाहरण देखें।) | ||
<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math> | कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस मामले में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश डेरिवेटिव शामिल हैं। कार्यात्मक होगा,<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>जहां वेक्टर {{math|'''''r''''' ∈ '''R'''<sup>''n''</sup>}}, और {{math|∇<sup>(''i'')</sup>}} एक टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक ऑर्डर के आंशिक डेरिवेटिव ऑपरेटर हैं {{math|''i''}},<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|∇<sup>(2)</sup>}} has components, | ||
कहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', ∇''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के मामले के लिए है {{math|''F''[''ρ'']}} इस खंड की शुरुआत में। अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए शुरुआती बिंदु के रूप में इस्तेमाल किया जा सकता है। (कार्यात्मक व्युत्पन्न#Coulomb स्थितिज ऊर्जा कार्यात्मक उदाहरण देखें।) | |||
कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस मामले में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश डेरिवेटिव शामिल हैं। कार्यात्मक होगा, | |||
<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math> | |||
जहां वेक्टर {{math|'''''r''''' ∈ '''R'''<sup>''n''</sup>}}, और {{math|∇<sup>(''i'')</sup>}} एक टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक ऑर्डर के आंशिक डेरिवेटिव ऑपरेटर हैं {{math|''i''}}, | |||
<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|∇<sup>(2)</sup>}} has components, | |||
<math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref> | <math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref> | ||
कार्यात्मक व्युत्पन्न उपज की परिभाषा का एक समान अनुप्रयोग | कार्यात्मक व्युत्पन्न उपज की परिभाषा का एक समान अनुप्रयोग<math display="block">\begin{align} | ||
<math display="block">\begin{align} | |||
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ | \frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ | ||
&{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . | &{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . | ||
\end{align}</math> | \end{align}</math>पिछले दो समीकरणों में, {{math|''n<sup>i</sup>''}} टेंसर के घटक <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> के आंशिक व्युत्पन्न हैं {{math|''f''}} ρ के आंशिक डेरिवेटिव के संबंध में,<math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \qquad \qquad \text{where} \quad \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\, i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ , </math>और टेंसर स्केलर उत्पाद है,<math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math><ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is, | ||
पिछले दो समीकरणों में, {{math|''n<sup>i</sup>''}} टेंसर के घटक <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> के आंशिक व्युत्पन्न हैं {{math|''f''}} ρ के आंशिक डेरिवेटिव के संबंध में, | |||
<math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \qquad \qquad \text{where} \quad \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\, i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ , </math> | |||
और टेंसर स्केलर उत्पाद है, | |||
<math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math> <ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is, | |||
<math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \ \frac {\partial f} {\partial \rho_{\alpha \beta} } \qquad \text{where} \ \ \rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} } \ . </math></ref> | <math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \ \frac {\partial f} {\partial \rho_{\alpha \beta} } \qquad \text{where} \ \ \rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} } \ . </math></ref> | ||
=== उदाहरण === | === उदाहरण === | ||
====थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक==== | ====थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक==== | ||
1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में एक गैर-बाधित समान [[मुक्त इलेक्ट्रॉन मॉडल]] के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया: | 1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में एक गैर-बाधित समान [[मुक्त इलेक्ट्रॉन मॉडल]] के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:<math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math>के एकीकरण के बाद से {{math|''T''<sub>TF</sub>[''ρ'']}} का डेरिवेटिव शामिल नहीं है {{math|''ρ''('''''r''''')}}, का कार्यात्मक व्युत्पन्न {{math|''T''<sub>TF</sub>[''ρ'']}} है,<ref name="ParrYangP247A.6">{{harv|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref><math display="block">\begin{align} | ||
<math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math> | |||
के एकीकरण के बाद से {{math|''T''<sub>TF</sub>[''ρ'']}} का डेरिवेटिव शामिल नहीं है {{math|''ρ''('''''r''''')}}, का कार्यात्मक व्युत्पन्न {{math|''T''<sub>TF</sub>[''ρ'']}} है,<ref name=ParrYangP247A.6>{{harv|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref> | |||
<math display="block">\begin{align} | |||
\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } | \frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } | ||
& = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} \\ | & = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} \\ | ||
& = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, . | & = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, . | ||
\end{align}</math> | \end{align}</math> | ||
==== कूलम्ब स्थितिज ऊर्जा क्रियाशील ==== | ==== कूलम्ब स्थितिज ऊर्जा क्रियाशील ==== | ||
इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया | इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया<math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math>कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,<math display="block">\begin{align} | ||
<math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math> | |||
कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना, | |||
<math display="block">\begin{align} | |||
\int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} | \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} | ||
& {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\ | & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\ | ||
& {} = \int \frac {1} {|\boldsymbol{r}|} \, \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . | & {} = \int \frac {1} {|\boldsymbol{r}|} \, \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . | ||
\end{align}</math> | \end{align}</math>इसलिए,<math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math>इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के शास्त्रीय भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया<math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math>कार्यात्मक व्युत्पन्न#कार्यात्मक व्युत्पन्न से,<math display="block">\begin{align} | ||
इसलिए, | |||
<math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math> | |||
इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के शास्त्रीय भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया | |||
<math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> | |||
कार्यात्मक व्युत्पन्न#कार्यात्मक व्युत्पन्न से, | |||
<math display="block">\begin{align} | |||
\int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} | \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} | ||
& {} = \left [ \frac {d \ }{d\epsilon} \, J[\rho + \epsilon\phi] \right ]_{\epsilon = 0} \\ | & {} = \left [ \frac {d \ }{d\epsilon} \, J[\rho + \epsilon\phi] \right ]_{\epsilon = 0} \\ | ||
& {} = \left [ \frac {d \ }{d\epsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \epsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \epsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\epsilon = 0} \\ | & {} = \left [ \frac {d \ }{d\epsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \epsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \epsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\epsilon = 0} \\ | ||
& {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ | & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ | ||
\end{align}</math> | \end{align}</math>अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि {{math|'''''r'''''}} और {{math|'''''r′'''''}} दूसरे पद में अभिन्न के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,<math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math><nowiki>और इलेक्ट्रॉन-इलेक्ट्रॉन कूलम्ब संभावित ऊर्जा कार्यात्मक के कार्यात्मक व्युत्पन्न {{math|</nowiki>''J''}[ρ] है,<ref name="ParrYangP248A.11">{{harv|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref><math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math>दूसरा कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math> | ||
अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि {{math|'''''r'''''}} और {{math|'''''r′'''''}} दूसरे पद में अभिन्न के मान को बदले बिना आपस में बदला जा सकता है। इसलिए, | |||
<math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> | |||
और इलेक्ट्रॉन-इलेक्ट्रॉन कूलम्ब संभावित ऊर्जा कार्यात्मक के कार्यात्मक व्युत्पन्न {{math|''J''}[ρ] है,<ref name=ParrYangP248A.11>{{harv|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref> | |||
<math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math> | |||
दूसरा कार्यात्मक व्युत्पन्न है | |||
<math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math> | |||
====Weizsäcker काइनेटिक एनर्जी फंक्शनल==== | ====Weizsäcker काइनेटिक एनर्जी फंक्शनल==== | ||
1935 में कार्ल फ्रेडरिक वॉन वीज़सैकर | वॉन वीज़स्कर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में एक क्रमिक सुधार जोड़ने का प्रस्ताव दिया ताकि इसे एक आणविक इलेक्ट्रॉन बादल के लिए बेहतर बनाया जा सके: | 1935 में कार्ल फ्रेडरिक वॉन वीज़सैकर | वॉन वीज़स्कर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में एक क्रमिक सुधार जोड़ने का प्रस्ताव दिया ताकि इसे एक आणविक इलेक्ट्रॉन बादल के लिए बेहतर बनाया जा सके:<math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W} \ d\mathbf{r} \, ,</math>कहाँ<math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math>कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न#फॉर्मूला का उपयोग करना,<math display="block">\begin{align} | ||
<math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W} \ d\mathbf{r} \, ,</math> | |||
कहाँ | |||
<math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math> | |||
कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न#फॉर्मूला का उपयोग करना, | |||
<math display="block">\begin{align} | |||
\frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})} | \frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})} | ||
& = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ | & = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ | ||
& = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , | & = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , | ||
\end{align}</math> | \end{align}</math>और परिणाम है,<ref name="ParrYangP247A.9">{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.9}}.</ref><math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math> | ||
और परिणाम है,<ref name=ParrYangP247A.9>{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.9}}.</ref> | |||
<math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math> | |||
==== एंट्रॉपी ==== | ==== एंट्रॉपी ==== | ||
असतत यादृच्छिक चर की [[सूचना एन्ट्रापी]] संभाव्यता द्रव्यमान समारोह का एक कार्य है। | असतत यादृच्छिक चर की [[सूचना एन्ट्रापी]] संभाव्यता द्रव्यमान समारोह का एक कार्य है।<math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math>इस प्रकार, | ||
<math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math> | |||
इस प्रकार, | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) | \sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) | ||
Line 197: | Line 137: | ||
पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न <math>f(f(x))</math> द्वारा दिया गया है: | पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न <math>f(f(x))</math> द्वारा दिया गया है: | ||
<math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> | <math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> | ||
और | और<math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math>सामान्य रूप में:<math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math>अंदर डालते हुए {{math|1=''N'' = 0}} देता है:<math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math> | ||
<math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math> | |||
सामान्य रूप में: | == डेल्टा फ़ंक्शन का परीक्षण फ़ंक्शन के रूप में उपयोग करना == | ||
<math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math> | भौतिकी में, [[डिराक डेल्टा समारोह]] का उपयोग करना आम है <math>\delta(x-y)</math> एक सामान्य परीक्षण समारोह के स्थान पर <math>\phi(x)</math>, बिंदु पर कार्यात्मक व्युत्पन्न उपज के लिए <math>y</math> (यह संपूर्ण कार्यात्मक व्युत्पन्न का एक बिंदु है क्योंकि [[आंशिक व्युत्पन्न]] ढाल का एक घटक है):<ref>{{harvnb|Greiner|Reinhardt|1996|p=37}}</ref><math display="block">\frac{\delta F[\rho(x)]}{\delta \rho(y)}=\lim_{\varepsilon\to 0}\frac{F[\rho(x)+\varepsilon\delta(x-y)]-F[\rho(x)]}{\varepsilon}.</math> | ||
अंदर डालते हुए {{math|1=''N'' = 0}} देता है: | |||
<math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math> | |||
यह उन मामलों में काम करता है जब <math>F[\rho(x)+\varepsilon f(x)]</math> औपचारिक रूप से एक श्रृंखला (या कम से कम पहले क्रम तक) के रूप में विस्तारित किया जा सकता है <math>\varepsilon</math>. सूत्र हालांकि गणितीय रूप से कठोर नहीं है, क्योंकि <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> आमतौर पर परिभाषित भी नहीं किया जाता है। | यह उन मामलों में काम करता है जब <math>F[\rho(x)+\varepsilon f(x)]</math> औपचारिक रूप से एक श्रृंखला (या कम से कम पहले क्रम तक) के रूप में विस्तारित किया जा सकता है <math>\varepsilon</math>. सूत्र हालांकि गणितीय रूप से कठोर नहीं है, क्योंकि <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> आमतौर पर परिभाषित भी नहीं किया जाता है। | ||
Line 216: | Line 151: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist|group=Note}} | {{Reflist|group=Note}} | ||
== फुटनोट्स == | == फुटनोट्स == |
Revision as of 20:03, 2 May 2023
विविधताओं की कलन में, गणितीय विश्लेषण का एक क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)[1] एक कार्यात्मक (गणित) में एक परिवर्तन से संबंधित है (इस अर्थ में एक कार्यात्मक एक फ़ंक्शन है जो कार्यों पर कार्य करता है) एक फ़ंक्शन (गणित) में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है।
भिन्नरूपों की गणना में, प्रकार्यों को आम तौर पर कार्यों के अभिन्न अंग, उनके कार्य के तर्क और उनके यौगिक के संदर्भ में व्यक्त किया जाता है। एक अभिन्न में {{math|L}एक कार्यात्मक का }, यदि कोई कार्य f इसमें एक और फ़ंक्शन जोड़कर भिन्न होता है δf जो मनमाने ढंग से छोटा है, और परिणामी इंटीग्रैंड की शक्तियों में विस्तार किया गया है δf, का गुणांक δf पहले क्रम की अवधि में कार्यात्मक व्युत्पन्न कहा जाता है।
उदाहरण के लिए, कार्यात्मक पर विचार करें
परिभाषा
इस खंड में, कार्यात्मक व्युत्पन्न परिभाषित किया गया है। फिर कार्यात्मक अंतर को कार्यात्मक व्युत्पन्न के संदर्भ में परिभाषित किया गया है।
कार्यात्मक व्युत्पन्न
कई गुना दिया M प्रतिनिधित्व (निरंतर कार्य (टोपोलॉजी) / सुचारू कार्य) कार्य करता है ρ (कुछ सीमा स्थितियों आदि के साथ), और एक कार्यात्मक (गणित) F के रूप में परिभाषित
दूसरे शब्दों में,
एक समारोह के बारे में सोचता है δF/δρ की ढाल के रूप में F बिंदु पर ρ (यानी, कितना कार्यात्मक F बदल जाएगा अगर समारोह ρ बिंदु पर बदल जाता है x) और
कार्यात्मक अंतर
कार्यात्मक का अंतर (या भिन्नता या पहली भिन्नता)। है [3] [Note 2]
गुण
किसी फ़ंक्शन के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां F[ρ] और G[ρ] कार्यात्मक हैं:[Note 3]
कार्यात्मक डेरिवेटिव का निर्धारण
कार्यात्मकताओं के एक सामान्य वर्ग के लिए कार्यात्मक डेरिवेटिव निर्धारित करने के लिए एक सूत्र को फ़ंक्शन और उसके डेरिवेटिव के अभिन्न अंग के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का एक सामान्यीकरण है: वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्रवाई के सिद्धांत से दूसरे प्रकार के जोसेफ-लुई लाग्रेंज समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न पेश किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे सांख्यिकीय यांत्रिकी (19वीं सदी) से लिए गए हैं।
सूत्र
एक कार्यात्मक दिया
कुल व्युत्पन्न का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ ∂f /∂∇'ρ एक मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।[Note 4]
डायवर्जेंस # गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। डायवर्जेंस प्रमेय और शर्त का उपयोग करके चौथी पंक्ति प्राप्त की गई थी ϕ = 0 एकीकरण के क्षेत्र की सीमा पर। तब से ϕ भी एक मनमाना कार्य है, अंतिम पंक्ति में भिन्नता के कलन के मूलभूत लेम्मा को लागू करते हुए, कार्यात्मक व्युत्पन्न है
उदाहरण
थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक
1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में एक गैर-बाधित समान मुक्त इलेक्ट्रॉन मॉडल के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:
कूलम्ब स्थितिज ऊर्जा क्रियाशील
इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया
Weizsäcker काइनेटिक एनर्जी फंक्शनल
1935 में कार्ल फ्रेडरिक वॉन वीज़सैकर | वॉन वीज़स्कर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में एक क्रमिक सुधार जोड़ने का प्रस्ताव दिया ताकि इसे एक आणविक इलेक्ट्रॉन बादल के लिए बेहतर बनाया जा सके:
एंट्रॉपी
असतत यादृच्छिक चर की सूचना एन्ट्रापी संभाव्यता द्रव्यमान समारोह का एक कार्य है।
घातीय
होने देना
एक समारोह के कार्यात्मक व्युत्पन्न
एक फंक्शन को फंक्शनल की तरह इंटीग्रल के रूप में लिखा जा सकता है। उदाहरण के लिए,
पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न
पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न द्वारा दिया गया है:
डेल्टा फ़ंक्शन का परीक्षण फ़ंक्शन के रूप में उपयोग करना
भौतिकी में, डिराक डेल्टा समारोह का उपयोग करना आम है एक सामान्य परीक्षण समारोह के स्थान पर , बिंदु पर कार्यात्मक व्युत्पन्न उपज के लिए (यह संपूर्ण कार्यात्मक व्युत्पन्न का एक बिंदु है क्योंकि आंशिक व्युत्पन्न ढाल का एक घटक है):[11]
यह उन मामलों में काम करता है जब औपचारिक रूप से एक श्रृंखला (या कम से कम पहले क्रम तक) के रूप में विस्तारित किया जा सकता है . सूत्र हालांकि गणितीय रूप से कठोर नहीं है, क्योंकि आमतौर पर परिभाषित भी नहीं किया जाता है।
पिछले खंड में दी गई परिभाषा एक ऐसे संबंध पर आधारित है जो सभी परीक्षण कार्यों के लिए है , तो कोई सोच सकता है कि इसे तब भी धारण करना चाहिए जब एक विशिष्ट कार्य के रूप में चुना जाता है जैसे कि डायराक डेल्टा फ़ंक्शन। हालाँकि, बाद वाला एक वैध परीक्षण कार्य नहीं है (यह एक उचित कार्य भी नहीं है)।
परिभाषा में, कार्यात्मक व्युत्पन्न वर्णन करता है कि कैसे कार्यात्मक पूरे समारोह में एक छोटे से परिवर्तन के परिणामस्वरूप परिवर्तन . में परिवर्तन का विशेष रूप निर्दिष्ट नहीं है, लेकिन इसे पूरे अंतराल पर फैलाना चाहिए परिभाषित किया गया। डेल्टा फ़ंक्शन द्वारा दिए गए गड़बड़ी के विशेष रूप को नियोजित करने का अर्थ है केवल बिंदु में भिन्न है . इस बिंदु को छोड़कर इसमें कोई भिन्नता नहीं है .
टिप्पणियाँ
- ↑ According to Giaquinta & Hildebrandt (1996), p. 18, this notation is customary in physical literature.
- ↑ में अंतर कहलाता है (Parr & Yang 1989, p. 246), भिन्नता या पहली भिन्नता (Courant & Hilbert 1953, p. 186), और भिन्नता या अंतर (Gelfand & Fomin 2000, p. 11, § 3.2).</रेफरी>
अनुमान के अनुसार, में परिवर्तन है , तो हमारे पास 'औपचारिक' है , और फिर यह एक फ़ंक्शन के कुल अंतर के रूप में समान है ,कहाँ स्वतंत्र चर हैं। पिछले दो समीकरणों की तुलना, कार्यात्मक व्युत्पन्न आंशिक व्युत्पन्न के समान भूमिका है , जहां एकीकरण का चर सारांश सूचकांक के एक सतत संस्करण की तरह है .<ref name=ParrYangP246>(Parr & Yang 1989, p. 246).
- ↑
Here the notation
is introduced.
- ↑ For a three-dimensional Cartesian coordinate system,
where and , , are unit vectors along the x, y, z axes.
- ↑ For example, for the case of three dimensions (n = 3) and second order derivatives (i = 2), the tensor ∇(2) has components,
- ↑ For example, for the case n = 3 and i = 2, the tensor scalar product is,
फुटनोट्स
- ↑ 1.0 1.1 (Giaquinta & Hildebrandt 1996, p. 18)
- ↑ (Parr & Yang 1989, p. 246, Eq. A.2).
- ↑ (Parr & Yang 1989, p. 246, Eq. A.1).
- ↑ (Parr & Yang 1989, p. 247, Eq. A.3).
- ↑ (Parr & Yang 1989, p. 247, Eq. A.4).
- ↑ (Greiner & Reinhardt 1996, p. 38, Eq. 6).
- ↑ (Greiner & Reinhardt 1996, p. 38, Eq. 7).
- ↑ (Parr & Yang 1989, p. 247, Eq. A.6).
- ↑ (Parr & Yang 1989, p. 248, Eq. A.11).
- ↑ (Parr & Yang 1989, p. 247, Eq. A.9).
- ↑ Greiner & Reinhardt 1996, p. 37
संदर्भ
- Courant, Richard; Hilbert, David (1953). "Chapter IV. The Calculus of Variations". Methods of Mathematical Physics. Vol. I (First English ed.). New York, New York: Interscience Publishers, Inc. pp. 164–274. ISBN 978-0471504474. MR 0065391. Zbl 0001.00501..
- Frigyik, Béla A.; Srivastava, Santosh; Gupta, Maya R. (January 2008), Introduction to Functional Derivatives (PDF), UWEE Tech Report, vol. UWEETR-2008-0001, Seattle, WA: Department of Electrical Engineering at the University of Washington, p. 7, archived from the original (PDF) on 2017-02-17, retrieved 2013-10-23.
- Gelfand, I. M.; Fomin, S. V. (2000) [1963], Calculus of variations, translated and edited by Richard A. Silverman (Revised English ed.), Mineola, N.Y.: Dover Publications, ISBN 978-0486414485, MR 0160139, Zbl 0127.05402.
- Giaquinta, Mariano; Hildebrandt, Stefan (1996), Calculus of Variations 1. The Lagrangian Formalism, Grundlehren der Mathematischen Wissenschaften, vol. 310 (1st ed.), Berlin: Springer-Verlag, ISBN 3-540-50625-X, MR 1368401, Zbl 0853.49001.
- Greiner, Walter; Reinhardt, Joachim (1996), "Section 2.3 – Functional derivatives", Field quantization, With a foreword by D. A. Bromley, Berlin–Heidelberg–New York: Springer-Verlag, pp. 36–38, ISBN 3-540-59179-6, MR 1383589, Zbl 0844.00006.
- Parr, R. G.; Yang, W. (1989). "Appendix A, Functionals". Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press. pp. 246–254. ISBN 978-0195042795.
बाहरी संबंध
- "Functional derivative", Encyclopedia of Mathematics, EMS Press, 2001 [1994]