कार्यात्मक व्युत्पन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
विविधताओं की कलन में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यों पर कार्य करता है) [[कार्य]] में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है।
विविधताओं की कलन में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यों पर कार्य करता है) [[कार्य]] में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है।


विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के [[अभिन्न]] अंग, उनके कार्य के तर्क और उनके [[ यौगिक |यौगिक]]<nowiki> के संदर्भ में व्यक्त किया जाता है। अभिन्न में {{math|</nowiki>''L''} कार्यात्मक का }, यदि कोई कार्य {{math|''f''}} इसमें और व्युत्पन्न जोड़कर भिन्न होता है {{math|''δf''}} जो मनमाने ढंग से छोटा है, और परिणामी इंटीग्रैंड की शक्तियों में विस्तार किया गया है {{math|''δf''}}, का गुणांक {{math|''δf''}} पहले क्रम की अवधि में कार्यात्मक व्युत्पन्न कहा जाता है।
विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के [[समाकलक (इंटीग्रेटर)|समाकलक]], उनके कार्य के [[तर्क]] और उनके [[ यौगिक |यौगिक]] के संदर्भ में व्यक्त किया जाता है। समाकलन  में कार्यात्मक  ''L'' , यदि कोई कार्य {{math|''f''}} इसमें और व्युत्पन्न {{math|''δf''}} जोड़कर भिन्न होता है  जो अव्यवस्थित रूप  से छोटा है और परिणामी {{math|''δf''}}, का एकीकृत की शक्तियों में विस्तार किया गया है  पहले क्रम की अवधि में {{math|''δf''}} के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।


उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>
उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>कहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. यदि {{math|''f''}} इसमें व्युत्पन्न जोड़कर भिन्न होता है {{math|''δf''}}, और परिणामी एकीकृत {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में विस्तारित है {{math|''δf''}}, फिर के मूल्य में परिवर्तन {{math|''J''}} पहले ऑर्डर करने के लिए {{math|''δf''}} को इस प्रकार व्यक्त किया जा सकता है:<ref name="GiaquintaHildebrandtP18" /><ref group="Note">According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
कहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. यदि {{math|''f''}} इसमें व्युत्पन्न जोड़कर भिन्न होता है {{math|''δf''}}, और परिणामी इंटीग्रैंड {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में विस्तारित है {{math|''δf''}}, फिर के मूल्य में परिवर्तन {{math|''J''}} पहले ऑर्डर करने के लिए {{math|''δf''}} को इस प्रकार व्यक्त किया जा सकता है:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था {{math|(''δf'') &prime;}}, और [[भागों द्वारा एकीकरण]] का उपयोग किया गया था।
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था {{math|(''δf'') &prime;}}, और [[भागों द्वारा एकीकरण]] का उपयोग किया गया था।


Line 54: Line 53:




[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''&part;f'' /''&part;&nabla;''''ρ''}}''' मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।<ref group="Note">For a three-dimensional Cartesian coordinate system,
[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''&part;f'' /''&part;&nabla;''''ρ''}} मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।<ref group="Note">For a three-dimensional Cartesian coordinate system,
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
Line 126: Line 125:
फंक्शन को फंक्शनल की तरह इंटीग्रल के रूप में लिखा जा सकता है। उदाहरण के लिए,
फंक्शन को फंक्शनल की तरह इंटीग्रल के रूप में लिखा जा सकता है। उदाहरण के लिए,
<math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math>
<math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math>
चूंकि इंटीग्रैंड ρ के डेरिवेटिव पर निर्भर नहीं करता है, ρ के कार्यात्मक डेरिवेटिव{{math|('''''r''''')}} है,
चूंकि एकीकृत ρ के डेरिवेटिव पर निर्भर नहीं करता है, ρ के कार्यात्मक डेरिवेटिव{{math|('''''r''''')}} है,
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')}
\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')}

Revision as of 09:25, 3 May 2023

विविधताओं की कलन में, गणितीय विश्लेषण का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)[1] कार्यात्मक (गणित) में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यों पर कार्य करता है) कार्य में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है।

विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के समाकलक, उनके कार्य के तर्क और उनके यौगिक के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक L , यदि कोई कार्य f इसमें और व्युत्पन्न δf जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी δf, का एकीकृत की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में δf के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।

उदाहरण के लिए, कार्यात्मक पर विचार करें

कहाँ f ′(x) ≡ df/dx. यदि f इसमें व्युत्पन्न जोड़कर भिन्न होता है δf, और परिणामी एकीकृत L(x, f +δf, f '+δf ′) की शक्तियों में विस्तारित है δf, फिर के मूल्य में परिवर्तन J पहले ऑर्डर करने के लिए δf को इस प्रकार व्यक्त किया जा सकता है:[1][Note 1]
जहां व्युत्पन्न में भिन्नता, δf को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था (δf) ′, और भागों द्वारा एकीकरण का उपयोग किया गया था।

परिभाषा

इस खंड में, कार्यात्मक व्युत्पन्न परिभाषित किया गया है। फिर कार्यात्मक अंतर को कार्यात्मक व्युत्पन्न के संदर्भ में परिभाषित किया गया है।

कार्यात्मक व्युत्पन्न

कई गुना दिया M प्रतिनिधित्व (निरंतर कार्य (टोपोलॉजी) / सुचारू कार्य) कार्य करता है ρ (कुछ सीमा स्थितियों आदि के साथ), और कार्यात्मक (गणित) F के रूप में परिभाषित

का कार्यात्मक व्युत्पन्न F[ρ], निरूपित δF/δρ द्वारा परिभाषित किया गया है[2]
कहाँ मनमाना कार्य है। मात्रा की भिन्नता कहलाती है ρ.

दूसरे शब्दों में,

रेखीय कार्यात्मक है, इसलिए कोई व्यक्ति इस कार्यात्मक को कुछ माप (गणित) के विरुद्ध एकीकरण के रूप में प्रस्तुत करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है। तब δF/δρ को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है।

समारोह के बारे में सोचता है δF/δρ की ढाल के रूप में F बिंदु पर ρ (अर्थात, कितना कार्यात्मक F बदल जाएगा यदि समारोह ρ बिंदु पर बदल जाता है x) और

बिंदु पर दिशात्मक व्युत्पन्न के रूप में ρ कम है ϕ. फिर सदिश कलन के अनुरूप, आंतरिक उत्पाद ढाल के साथ दिशात्मक व्युत्पन्न देता है।

कार्यात्मक अंतर

कार्यात्मक का अंतर (या भिन्नता या पहली भिन्नता)। है [3] [Note 2]

गुण

किसी व्युत्पन्न के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां F[ρ] और G[ρ] कार्यात्मक हैं:[Note 3]

  • रैखिकता:[4]
    कहाँ λ, μ नियतांक हैं।
  • प्रॉडक्ट नियम:[5]
  • चेन नियम:
    • यदि F कार्यात्मक और है G और कार्यात्मक, फिर[6]
    • यदि G साधारण भिन्न कार्य है (स्थानीय कार्यात्मक) g, तो यह कम हो जाता है[7]

कार्यात्मक डेरिवेटिव का निर्धारण

कार्यात्मकताओं के सामान्य वर्ग के लिए कार्यात्मक डेरिवेटिव निर्धारित करने के लिए सूत्र को व्युत्पन्न और उसके डेरिवेटिव के अभिन्न अंग के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का सामान्यीकरण है: वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्रवाई के सिद्धांत से दूसरे प्रकार के जोसेफ-लुई लाग्रेंज समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न प्रस्तुत किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे सांख्यिकीय यांत्रिकी (19वीं सदी) से लिए गए हैं।

सूत्र

कार्यात्मक दिया

और समारोह ϕ(r) जो एकीकरण के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न#परिभाषा से,


कुल व्युत्पन्न का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ ∂f /∂∇'ρ मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।[Note 4] डायवर्जेंस # गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। डायवर्जेंस प्रमेय और शर्त का उपयोग करके चौथी पंक्ति प्राप्त की गई थी ϕ = 0 एकीकरण के क्षेत्र की सीमा पर। तब से ϕ भी मनमाना कार्य है, अंतिम पंक्ति में भिन्नता के कलन के मूलभूत लेम्मा को लागू करते हुए, कार्यात्मक व्युत्पन्न है

कहाँ ρ = ρ(r) और f = f (r, ρ, ∇ρ). यह सूत्र द्वारा दिए गए कार्यात्मक रूप के स्थितियों के लिए है F[ρ] इस खंड की शुरुआत में। अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। (कार्यात्मक व्युत्पन्न#Coulomb स्थितिज ऊर्जा कार्यात्मक उदाहरण देखें।) कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थितियों में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश डेरिवेटिव सम्मलित हैं। कार्यात्मक होगा,
जहां वेक्टर rRn, और (i) टेन्सर है जिसका ni घटक ऑर्डर के आंशिक डेरिवेटिव ऑपरेटर हैं i,
[Note 5] कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग
पिछले दो समीकरणों में, ni टेंसर के घटक के आंशिक व्युत्पन्न हैं f ρ के आंशिक डेरिवेटिव के संबंध में,
और टेंसर स्केलर उत्पाद है,
[Note 6]

उदाहरण

थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक

1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में गैर-बाधित समान मुक्त इलेक्ट्रॉन मॉडल के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:

के एकीकरण के बाद से TTF[ρ] का डेरिवेटिव सम्मलित नहीं है ρ(r), का कार्यात्मक व्युत्पन्न TTF[ρ] है,[8]

कूलम्ब स्थितिज ऊर्जा क्रियाशील

इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया

कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,
इसलिए,
इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के मौलिक भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया
कार्यात्मक व्युत्पन्न#कार्यात्मक व्युत्पन्न से,
अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि r और r′ दूसरे पद में अभिन्न के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,
और इलेक्ट्रॉन-इलेक्ट्रॉन कूलम्ब संभावित ऊर्जा कार्यात्मक के कार्यात्मक व्युत्पन्न {{math|J}[ρ] है,[9]
दूसरा कार्यात्मक व्युत्पन्न है

Weizsäcker काइनेटिक एनर्जी फंक्शनल

1935 में कार्ल फ्रेडरिक वॉन वीज़सैकर | वॉन वीज़स्कर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में क्रमिक सुधार जोड़ने का प्रस्ताव दिया जिससे कि इसे आणविक इलेक्ट्रॉन बादल के लिए बेहतर बनाया जा सके:

कहाँ
कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न#फॉर्मूला का उपयोग करना,
और परिणाम है,[10]

एंट्रॉपी

असतत यादृच्छिक चर की सूचना एन्ट्रापी संभाव्यता द्रव्यमान समारोह का कार्य है।

इस प्रकार,
इस प्रकार,


घातीय

होने देना

डेल्टा व्युत्पन्न का परीक्षण व्युत्पन्न के रूप में उपयोग करना,