संरचनात्मक ध्वनिकी: Difference between revisions
Line 7: | Line 7: | ||
:<math> { \partial^2 u \over \partial x ^2 } = {1 \over c_L^2} { \partial^2 u \over \partial t ^2 } </math> | :<math> { \partial^2 u \over \partial x ^2 } = {1 \over c_L^2} { \partial^2 u \over \partial t ^2 } </math> | ||
जहाँ <math>u</math> विस्थापन और <math>c_L</math> अनुदैर्ध्य तरंग गति है। इसका एक आयाम में [[ध्वनिक तरंग समीकरण]] के समान रूप है। | जहाँ <math>u</math> विस्थापन और <math>c_L</math> अनुदैर्ध्य तरंग गति है। इसका एक आयाम में [[ध्वनिक तरंग समीकरण]] के समान रूप है। <math>c_L</math> संरचना के अनुसार गुणों (आयतन मापांक <math>B</math> और [[घनत्व]] <math>\rho</math>) द्वारा निर्धारित किया जाता है | ||
:<math> { c_L } = { \sqrt { B \over \rho } } </math> | :<math> { c_L } = { \sqrt { B \over \rho } } </math> | ||
जब संरचना के दो आयाम [[तरंग दैर्ध्य]] ( | जब संरचना के दो आयाम [[तरंग दैर्ध्य]] (सामान्यतः बीम कहा जाता है) के संबंध में छोटे होते हैं, तो तरंग गति <math>B</math> के स्थान पर [[ यंग मापांक |यंग मापांक]] <math>E</math> द्वारा निर्धारित होती है और इसके फलस्वरूप अनंत मीडिया की तुलना में धीमी होती हैं। | ||
अपरूपण तरंगें अपरूपण कठोरता के कारण उत्पन्न होती हैं और एक समान समीकरण का अनुसरण करती हैं, लेकिन अनुप्रस्थ दिशा में होने वाले विस्थापन के साथ, तरंग गति के लंबवत होती है। | '''अपरूपण तरंगें अपरूपण कठोरता के कारण उत्पन्न होती हैं और एक समान समीकरण का अनुसरण करती हैं, लेकिन अनुप्रस्थ दिशा में होने वाले विस्थापन के साथ, तरंग गति के लंबवत होती है।''' | ||
:<math> { \partial^2 w \over \partial x ^2 } = {1 \over c_s^2} { \partial^2 w \over \partial t ^2 } </math> | :<math> { \partial^2 w \over \partial x ^2 } = {1 \over c_s^2} { \partial^2 w \over \partial t ^2 } </math> | ||
अपरूपण तरंग गति अपरूपण मापांक | अपरूपण तरंग गति अपरूपण मापांक <math>G</math> द्वारा नियंत्रित होती है जो <math>E</math> और <math>B</math> से कम होती है जिससे अपरूपण तरंगें अनुदैर्ध्य तरंगों की तुलना में धीमी हो जाती हैं। | ||
===बीम और प्लेट में | ===बीम और प्लेट में बंकन तरंग=== | ||
अधिकांश ध्वनि विकिरण झुकने (या फ्लेक्सुरल) तरंगों के कारण होता है, जो संरचना को ट्रांसवर्सली विकृत करते हैं जैसे वे फैलते हैं। | '''अधिकांश ध्वनि विकिरण झुकने (या फ्लेक्सुरल) तरंगों के कारण होता है, जो संरचना को ट्रांसवर्सली विकृत करते हैं जैसे वे फैलते हैं।''' बंकन तरंगें संपीड़न या कतरनी तरंगों की तुलना में अधिक जटिल होती हैं और भौतिक गुणों के साथ-साथ ज्यामितीय गुणों पर निर्भर करती हैं। परिक्षेपी होने के कारण भिन्न-भिन्न आवृत्तियाँ भिन्न-भिन्न गति से यात्रा करती हैं। | ||
=== मॉडलिंग कंपन === | === मॉडलिंग कंपन === | ||
जटिल संरचनाओं के कंपन की भविष्यवाणी करने के लिए परिमित तत्व विश्लेषण का उपयोग किया जा सकता है। एक परिमित तत्व कंप्यूटर प्रोग्राम तत्व ज्यामिति और भौतिक गुणों के आधार पर द्रव्यमान, कठोरता और भिगोना मेट्रिसेस को इकट्ठा करेगा, और लागू भार के आधार पर कंपन प्रतिक्रिया के लिए हल करेगा। | जटिल संरचनाओं के कंपन की भविष्यवाणी करने के लिए परिमित तत्व विश्लेषण का उपयोग किया जा सकता है। '''एक परिमित तत्व कंप्यूटर प्रोग्राम तत्व ज्यामिति और भौतिक गुणों के आधार पर द्रव्यमान, कठोरता और भिगोना मेट्रिसेस को इकट्ठा करेगा, और लागू भार के आधार पर कंपन प्रतिक्रिया के लिए हल करेगा।''' | ||
:<math> { [ -\omega^2 \mathbf{M} + j \omega \mathbf{B} + (1 + j \eta ) \mathbf{K} ] } { \mathbf{d} = \mathbf{F} } </math> | :<math> { [ -\omega^2 \mathbf{M} + j \omega \mathbf{B} + (1 + j \eta ) \mathbf{K} ] } { \mathbf{d} = \mathbf{F} } </math> | ||
Line 29: | Line 29: | ||
== ध्वनि-संरचना अंतःक्रिया<ref>{{citation |url=https://www.researchgate.net/publication/243716469 |title=STRUCTURAL ACOUSTICS Tutorial II, SOUND—STRUCTURE INTERACTION |accessdate=2021-01-28 |author=Stephen A. Hambric and John B. Fahnline, Applied Research Lab at The Pennsylvania State University}}</ref>== | == ध्वनि-संरचना अंतःक्रिया<ref>{{citation |url=https://www.researchgate.net/publication/243716469 |title=STRUCTURAL ACOUSTICS Tutorial II, SOUND—STRUCTURE INTERACTION |accessdate=2021-01-28 |author=Stephen A. Hambric and John B. Fahnline, Applied Research Lab at The Pennsylvania State University}}</ref>== | ||
=== द्रव-संरचना | === द्रव-संरचना अंतःक्रिया === | ||
जब एक कंपन संरचना | '''जब एक कंपन संरचना तरल पदार्थ के संपर्क में होती है तो अंतराफलक पर सामान्य कण वेग को संरक्षित किया जाना चाहिए (अर्थात समतुल्य होना चाहिए)। यह संरचना से कुछ ऊर्जा को तरल पदार्थ में भागने का कारण बनता है, जिनमें से कुछ ध्वनि के रूप में विकीर्ण होती हैं, जिनमें से कुछ संरचना के पास रहती हैं और दूर नहीं जाती हैं।''' अधिकांश अभियान्त्रिकी अनुप्रयोगों के लिए, विब्रो-ध्वनिकी में सम्मिलित द्रव-संरचना की पारस्परिक क्रिया का संख्यात्मक अनुकरण परिमित तत्व विधि और [[सीमा तत्व विधि]] का योग करके प्राप्त किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:48, 3 May 2023
संरचनात्मक ध्वनिकी संरचनाओं में यांत्रिक तरंग का अध्ययन है और लहर कैसे आसन्न मीडिया के साथ बातचीत करते हैं और विकीर्ण करते हैं। संरचनात्मक ध्वनिकी के क्षेत्र को प्रायः यूरोप और एशिया में विब्रो ध्वनिकी कहा जाता है।[citation needed] जो लोग संरचनात्मक ध्वनिकी के क्षेत्र में कार्य करते हैं उन्हें संरचनात्मक ध्वनि-विज्ञानी के रूप में जाना जाता है।[citation needed] संरचनात्मक ध्वनिकी का क्षेत्र शोर, पारगमन, अंतर्जलीय ध्वानिकी और भौतिक ध्वनिकी सहित ध्वनिकी के कई अन्य क्षेत्रों से निकटता से संबंधित हो सकता है।
संरचनाओं में कंपन[1]
संपीड़न और कतरनी तरंगें (समानुवर्ती, सजातीय सामग्री)
संपीड़न तरंगें,(अक्सर अनुदैर्ध्य तरंगों के रूप में संदर्भित) तरंग गति के समान दिशा (या विपरीत) में प्रसार और संकुचित करती हैं। तरंग समीकरण x दिशा में तरंग की गति को निर्धारित करता है।
जहाँ विस्थापन और अनुदैर्ध्य तरंग गति है। इसका एक आयाम में ध्वनिक तरंग समीकरण के समान रूप है। संरचना के अनुसार गुणों (आयतन मापांक और घनत्व ) द्वारा निर्धारित किया जाता है
जब संरचना के दो आयाम तरंग दैर्ध्य (सामान्यतः बीम कहा जाता है) के संबंध में छोटे होते हैं, तो तरंग गति के स्थान पर यंग मापांक द्वारा निर्धारित होती है और इसके फलस्वरूप अनंत मीडिया की तुलना में धीमी होती हैं।
अपरूपण तरंगें अपरूपण कठोरता के कारण उत्पन्न होती हैं और एक समान समीकरण का अनुसरण करती हैं, लेकिन अनुप्रस्थ दिशा में होने वाले विस्थापन के साथ, तरंग गति के लंबवत होती है।
अपरूपण तरंग गति अपरूपण मापांक द्वारा नियंत्रित होती है जो और से कम होती है जिससे अपरूपण तरंगें अनुदैर्ध्य तरंगों की तुलना में धीमी हो जाती हैं।
बीम और प्लेट में बंकन तरंग
अधिकांश ध्वनि विकिरण झुकने (या फ्लेक्सुरल) तरंगों के कारण होता है, जो संरचना को ट्रांसवर्सली विकृत करते हैं जैसे वे फैलते हैं। बंकन तरंगें संपीड़न या कतरनी तरंगों की तुलना में अधिक जटिल होती हैं और भौतिक गुणों के साथ-साथ ज्यामितीय गुणों पर निर्भर करती हैं। परिक्षेपी होने के कारण भिन्न-भिन्न आवृत्तियाँ भिन्न-भिन्न गति से यात्रा करती हैं।
मॉडलिंग कंपन
जटिल संरचनाओं के कंपन की भविष्यवाणी करने के लिए परिमित तत्व विश्लेषण का उपयोग किया जा सकता है। एक परिमित तत्व कंप्यूटर प्रोग्राम तत्व ज्यामिति और भौतिक गुणों के आधार पर द्रव्यमान, कठोरता और भिगोना मेट्रिसेस को इकट्ठा करेगा, और लागू भार के आधार पर कंपन प्रतिक्रिया के लिए हल करेगा।
ध्वनि-संरचना अंतःक्रिया[2]
द्रव-संरचना अंतःक्रिया
जब एक कंपन संरचना तरल पदार्थ के संपर्क में होती है तो अंतराफलक पर सामान्य कण वेग को संरक्षित किया जाना चाहिए (अर्थात समतुल्य होना चाहिए)। यह संरचना से कुछ ऊर्जा को तरल पदार्थ में भागने का कारण बनता है, जिनमें से कुछ ध्वनि के रूप में विकीर्ण होती हैं, जिनमें से कुछ संरचना के पास रहती हैं और दूर नहीं जाती हैं। अधिकांश अभियान्त्रिकी अनुप्रयोगों के लिए, विब्रो-ध्वनिकी में सम्मिलित द्रव-संरचना की पारस्परिक क्रिया का संख्यात्मक अनुकरण परिमित तत्व विधि और सीमा तत्व विधि का योग करके प्राप्त किया जा सकता है।
यह भी देखें
- ध्वनि विज्ञान
- ध्वनिक तरंग समीकरण
- लैम्ब तरंग
- रैखिक प्रत्यास्थता
- रव नियंत्रण
- ध्वनि
- पृष्ठ ध्वनि तरंग
- तरंग
- तरंग समीकरण
संदर्भ
- ↑ Stephen A. Hambric, Applied Research Lab at The Pennsylvania State University, STRUCTURAL ACOUSTICS Tutorial I, Vibrations in structures, retrieved 2021-01-28
- ↑ Stephen A. Hambric and John B. Fahnline, Applied Research Lab at The Pennsylvania State University, STRUCTURAL ACOUSTICS Tutorial II, SOUND—STRUCTURE INTERACTION, retrieved 2021-01-28
- Fahy F., Gardonio P. (2007). Sound Structure Interaction (2nd ed.). Academic Press. pp. 60–61. ISBN 978-3-540-67458-0.
बाहरी संबंध
- asa.aip.org Archived 1996-11-19 at the Wayback Machine—Website of the Acoustical Society of America