क्लेन ज्यामिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 52: Line 52:
|-
|-
! ''[[Projective geometry|प्रक्षेपी ज्यामिति]]''
! ''[[Projective geometry|प्रक्षेपी ज्यामिति]]''
| [[Real projective space]] <math>\mathbb{R}\mathrm{P}^n</math> || [[Projective group|प्रक्षेपीय]] [[Lorentz group|समूह]] <math>\mathrm{PGL}(n+1)</math>|| A subgroup <math>P</math> fixing a [[Flag (linear algebra)|flag]] <math>\{0\}\subset V_1\subset V_n</math> || [[Projective line]]s, [[cross-ratio]]  
| [[Real projective space|वास्तविक प्रक्षेपीय क्षेत्र]] <math>\mathbb{R}\mathrm{P}^n</math> || [[Projective group|प्रक्षेपीय]] [[Lorentz group|समूह]] <math>\mathrm{PGL}(n+1)</math>|| A subgroup <math>P</math> fixing a [[Flag (linear algebra)|flag]] <math>\{0\}\subset V_1\subset V_n</math> || [[Projective line]]s, [[cross-ratio]]  
|-
|-
! ''गोले पर अनुरूप ज्यामिति''
! ''गोले पर अनुरूप ज्यामिति''
Line 58: Line 58:
|-
|-
!  ''[[Hyperbolic geometry|अतिपरवलीय]] ज्यामिति''
!  ''[[Hyperbolic geometry|अतिपरवलीय]] ज्यामिति''
| [[Hyperbolic space|अतिपरवलयिक स्पेस]] <math>H(n)</math>, modelled e.g. as time-like lines in the [[Minkowski space|मिंकोवस्की स्पेस]] <math>\R^{1,n}</math> || ऑर्थोक्रोनस लोरेंत्ज़ समूह<math>\mathrm{O}(1,n)/\mathrm{O}(1)</math> || <math>\mathrm{O}(1)\times \mathrm{O}(n)</math> || Lines, circles, distances, angles
| [[Hyperbolic space|अतिपरवलयिक क्षेत्र]] <math>H(n)</math>, modelled e.g. as time-like lines in the [[Minkowski space|मिंकोवस्की क्षेत्र]] <math>\R^{1,n}</math> || ऑर्थोक्रोनस लोरेंत्ज़ समूह<math>\mathrm{O}(1,n)/\mathrm{O}(1)</math> || <math>\mathrm{O}(1)\times \mathrm{O}(n)</math> || Lines, circles, distances, angles
|-
|-
! ''[[Elliptic geometry|दीर्घवृत्तीय  ज्यामिति]]''  
! ''[[Elliptic geometry|दीर्घवृत्तीय  ज्यामिति]]''  
| Elliptic space, modelled e.g. as the lines through the origin in ''[[Euclidean space|यूक्लिडियन]]'' [[Euclidean space|स्पेस]] <math>\mathbb{R}^{n+1}</math>|| <math>\mathrm{O}(n+1)/\mathrm{O}(1)</math> || <math>\mathrm{O}(n)/\mathrm{O}(1)</math> || Lines, circles, distances, angles
| Elliptic space, modelled e.g. as the lines through the origin in ''[[Euclidean space|यूक्लिडियन]]'' [[Euclidean space|क्षेत्र]] <math>\mathbb{R}^{n+1}</math>|| <math>\mathrm{O}(n+1)/\mathrm{O}(1)</math> || <math>\mathrm{O}(n)/\mathrm{O}(1)</math> || Lines, circles, distances, angles
|-
|-
! ''[[Spherical geometry|गोलाकार ज्यामिति]]''
! ''[[Spherical geometry|गोलाकार ज्यामिति]]''
Line 67: Line 67:
|-
|-
! ''[[Affine geometry|एफ्फिन]][[Spherical geometry|ज्यामिति]]''
! ''[[Affine geometry|एफ्फिन]][[Spherical geometry|ज्यामिति]]''
| ''[[Affine space|एफ्फिन]]'' [[Affine space|स्पेस]] <math>A(n)\simeq\R^n</math>|| ''[[Affine group|एफ्फिन]]'' [[Affine group|group]] <math>\mathrm{Aff}(n)\simeq \R^n \rtimes \mathrm{GL}(n)</math>|| [[General linear group]] <math>\mathrm{GL}(n)</math> || Lines, quotient of surface areas of geometric shapes, [[center of mass]] of [[triangles]]
| ''[[Affine space|एफ्फिन]]'' [[Affine space|क्षेत्र]] <math>A(n)\simeq\R^n</math>|| ''[[Affine group|एफ्फिन]]'' [[Affine group|group]] <math>\mathrm{Aff}(n)\simeq \R^n \rtimes \mathrm{GL}(n)</math>|| [[General linear group]] <math>\mathrm{GL}(n)</math> || Lines, quotient of surface areas of geometric shapes, [[center of mass]] of [[triangles]]
|-
|-
! ''[[Euclidean geometry|यूक्लिडियन]] [[Spherical geometry|ज्यामिति]]''
! ''[[Euclidean geometry|यूक्लिडियन]] [[Spherical geometry|ज्यामिति]]''
|  ''[[Euclidean space|यूक्लिडियन]]'' [[Euclidean space|स्पेस]] <math>E(n)</math>|| ''[[Euclidean group|यूक्लिडियन]]'' [[Euclidean group|group]] <math>\mathrm{Euc}(n)\simeq \R^n \rtimes \mathrm{O}(n)</math>|| [[Orthogonal group]] <math>\mathrm{O}(n)</math> || Distances of [[Euclidean group|points]], [[angle]]s of [[Euclidean vector|vectors]], areas
|  ''[[Euclidean space|यूक्लिडियन]]'' [[Euclidean space|क्षेत्र]] <math>E(n)</math>|| ''[[Euclidean group|यूक्लिडियन]]'' [[Euclidean group|group]] <math>\mathrm{Euc}(n)\simeq \R^n \rtimes \mathrm{O}(n)</math>|| [[Orthogonal group]] <math>\mathrm{O}(n)</math> || Distances of [[Euclidean group|points]], [[angle]]s of [[Euclidean vector|vectors]], areas
|-
|-
|}
|}

Revision as of 13:36, 7 May 2023

गणित में, क्लेन ज्यामिति फेलिक्स क्लेन द्वारा अपने प्रभावशाली एर्लांगेन फलन के रूप में प्रेरित ज्यामिति का प्रकार है और विशेष रूप से यह एक सजातीय क्षेत्र 'X' के रूप में होती है, जो लाई समूह G द्वारा X पर सकर्मक क्रिया के रूप में कार्य करता है और जो ज्यामिति के समरूपता समूह के रूप में कार्य करता है।

गणितीय पृष्ठभूमि और अभिप्रेरण के लिए एर्लांगेन फलन को चित्र द्वारा दर्शाया गया है।

औपचारिक परिभाषा

क्लेन ज्यामिति एक जोड़ी (G, H) के रूप में है, जहां G एक लाइ समूह है और H G का एक संवृत सेट लाई उपसमूह है जैसे कि (बाएं) कोसेट स्पेस G/H सेजुड़ा हुआ स्थान है और इस प्रकार समूह G को ज्यामिति का मुख्य समूह' कहा जाता है और G/H को ज्यामिति का क्षेत्र या शब्दावली के दुरुपयोग के द्वारा क्लेन ज्यामिति कहा जाता है

और इस प्रकार क्लेन ज्यामिति का क्षेत्र X = G/H का आयाम एक स्मूथ मैनिफोल्ड के रूप में होता है

dim X = dim G − dim H.

X द्वारा दिए गए G पर की एक प्राकृतिक चिकनी समूह क्रिया के रूप में होती है, जो इसके द्वारा दी गई है

स्पष्ट रूप से यह क्रिया सकर्मक रूप में होती है (a = 1) जिसे कि X को G की क्रिया के लिए एक सजातीय समष्टि के रूप में मान सकते है और इस प्रकार इकाई कोसेट HX के स्टेबलाइजर H समूह सिद्धांत के रूप में होते है।

किसी भी संबद्ध स्मूथ मैनिफोल्ड X और एक लाई समूह G द्वारा X पर एक स्मूथ सकर्मक क्रिया को देखते है और इस प्रकार हम एक संबद्ध क्लेन ज्यामिति का निर्माण कर सकते हैं (G, H) आधार बिंदु x0 पर स्थिर करके X में और H को x0 का स्टेबलाइजर उपसमूह के रूप में G होते है। जो समूह H के आवश्यक रूप से G और एक्स का एक संवृत उपसमूह होता है, जो G/H के लिए स्वाभाविक रूप से भिन्न रूप में होता है।

दो क्लेन ज्यामिति (G1, H1) और (G2, H2) ज्यामितीय रूप से आइसोमॉर्फिक होता है। यदि कोई लाई समूह φ : G1G2 आइसोमोर्फिज्म है, तो φ(H1) = H2. विशेष रूप से यदि φ एक तत्व द्वारा संयुग्मन वर्ग है और इस प्रकार gG, हमने देखा कि (G, H) और (G, gHg−1) आइसोमॉर्फिक हैं। एक सजातीय स्थान X से जुड़ी क्लेन ज्यामिति तब समरूपता तक अद्वितीय होती है अर्थात यह चुने गए आधार बिंदु x0 से स्वतंत्र रूप में है।

बंडल विवरण

एक लाई समूह G और संवृत उपसमूह H को देखते हुए सही गुणन द्वारा दिए गए G पर H की प्राकृतिक समूह क्रिया होती है। यह क्रिया स्वतंत्र और उचित दोनों प्रकार की क्रिया है और इस प्रकार समूह सिद्धांत कक्षा G में H के बाएं सहसमुच्चय के रूप में होता है। कोई यह निष्कर्ष निकालता है कि G में बाएँ कोसेट स्थान G/H पर एक चिकने सिद्धांत H बंडल की संरचना है।

क्लेन ज्यामिति के प्रकार

प्रभावी ज्यामिति

G की क्रिया X = G/H के रूप में प्रभावी होने के लिए आवश्यक नहीं है। क्लेन ज्यामिति के कर्नेल को X पर G की क्रिया के कर्नेल के रूप में परिभाषित करके इस प्रकार दिखाया गया'है

कर्नेल K को G में H के कोर समूह के रूप में भी वर्णित किया जा सकता है अर्थात H का सबसे बड़ा उपसमूह जो G में सामान्य उपसमूह के रूप में होता है। यह G के सभी सामान्य उपसमूहों द्वारा उत्पन्न समूह है जो H में स्थित होता है।

एक क्लेन ज्यामिति को 'प्रभावी' कहा जाता है यदि K = 1 और स्थानीय रूप से प्रभावी होता है, यदि K असतत समूह के रूप में होते है। यदि (G, H) तब कर्नेल K के साथ एक क्लेन ज्यामिति है, तब (G/K, H/K) एक प्रभावी क्लेन ज्यामिति है जो प्रामाणिक रूप(G, H) से संबद्ध है।

ज्यामितीय रूप से उन्मुख ज्यामिति

एक क्लेन ज्यामिति (G, H) ज्यामितीय रूप से उन्मुख होती है, यदि G संबद्ध क्षेत्र के रूप में है। इसका अर्थ नहीं है कि G/H एक उन्मुखता के रूप में है। यदि H इससे जुड़ा हुआ है तो इसका अर्थ है कि G भी जुड़ा हुआ है ऐसा इसलिए है क्योंकि G/H जुड़ा हुआ माना जाता है और GG/H एक कंपन है।

किसी भी क्लेन ज्यामिति को देखते हुए (G, H), एक ज्यामितीय रूप से उन्मुख ज्यामिति के रूप में है। जो प्रामाणिक रूप से जुड़ी हुई है (G, H) समान आधार समष्टि G/H के साथ है। यह (G0, G0H) ज्यामिति है, जहां G0 , G का तत्समक घटक है। ध्यान दें कि G = G0 H.के रूप में होता है

रिडक्टिव ज्यामिति

एक क्लेन ज्यामिति (G, H) को रिडक्टिव और G/H को रिडक्टिव सजातीय क्षेत्र कहा जाता है यदि लाई बीजगणित के H में अपरिवर्तनीय पूरक .है।

उदाहरण

निम्न तालिका में मौलिक ज्यामिति का वर्णन होता है, जिसे क्लेन ज्यामिति के रूप में प्रतिरूपित किया गया है।

अंतर्निहित स्थान परिवर्तन समूह G उपसमूह H निश्चर
प्रक्षेपी ज्यामिति वास्तविक प्रक्षेपीय क्षेत्र प्रक्षेपीय समूह A subgroup fixing a flag Projective lines, cross-ratio
गोले पर अनुरूप ज्यामिति गोला लोरेंत्ज़ समूह -विमीय क्षेत्र के रूप में होते है A subgroup fixing a line in the null cone of the Minkowski metric Generalized circles, angles
अतिपरवलीय ज्यामिति अतिपरवलयिक क्षेत्र , modelled e.g. as time-like lines in the मिंकोवस्की क्षेत्र ऑर्थोक्रोनस लोरेंत्ज़ समूह Lines, circles, distances, angles
दीर्घवृत्तीय ज्यामिति Elliptic space, modelled e.g. as the lines through the origin in यूक्लिडियन क्षेत्र Lines, circles, distances, angles
गोलाकार ज्यामिति गोला आयतीय समूह के रूप में होते है Orthogonal group Lines (great circles), circles, distances of points, angles
एफ्फिनज्यामिति एफ्फिन क्षेत्र एफ्फिन group General linear group Lines, quotient of surface areas of geometric shapes, center of mass of triangles
यूक्लिडियन ज्यामिति यूक्लिडियन क्षेत्र यूक्लिडियन group Orthogonal group Distances of points, angles of vectors, areas


संदर्भ

  • R. W. Sharpe (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer-Verlag. ISBN 0-387-94732-9.