लाप्लास ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Calculus |Vector}}
{{Calculus |Vector}}
गणित में, लाप्लास ऑपरेटर या लाप्लासियन यूक्लिडियन स्पेस पर स्केलर फ़ील्ड के ढाल के विचलन द्वारा दिया गया अंतर ऑपरेटर है। यह आमतौर पर प्रतीकों द्वारा दर्शाया जाता है <math>\nabla\cdot\nabla</math>, <math>\nabla^2</math> (कहां <math>\nabla</math> डेल है), या <math>\Delta</math>. कार्तीय समन्वय प्रणाली में, लाप्लासियन को प्रत्येक स्वतंत्र चर के संबंध में फ़ंक्शन के दूसरे आंशिक डेरिवेटिव के योग द्वारा दिया जाता है। अन्य समन्वय प्रणालियों में, जैसे कि बेलनाकार निर्देशांक और गोलाकार निर्देशांक, लाप्लासियन का भी  उपयोगी रूप है। अनौपचारिक रूप से, लाप्लासियन {{math|Δ''f''&hairsp;(''p'')}}  समारोह का {{math|''f''}}  बिंदु पर {{math|''p''}} के औसत मूल्य से मापता है {{math|''f''}} छोटे गोले या गेंदों पर केंद्रित {{math|''p''}} से विचलित होता है {{math|''f''&hairsp;(''p'')}}.
गणित में, लाप्लास ऑपरेटर या लाप्लासियन अवकल संकारक है जो यूक्लिडियन स्थान पर एक अदिश फलन के प्रवणता के विचलन द्वारा दिया जाता है। यह सामान्यतः  प्रतीकों <math>\nabla\cdot\nabla</math>, <math>\nabla^2</math>   (जहां  <math>\nabla</math> डेल है), या <math>\Delta</math> द्वारा दर्शाया जाता है। कार्तीय समन्वय प्रणाली में, लाप्लासियन को प्रत्येक स्वतंत्र चर के संबंध में फ़ंक्शन के दूसरे आंशिक व्युत्पन्न  के योग द्वारा दिया जाता है। अन्य समन्वय प्रणालियों में, जैसे कि बेलनाकार निर्देशांक और गोलाकार निर्देशांक, लाप्लासियन का भी  उपयोगी रूप है। अनौपचारिक रूप से, लाप्लासियन {{math|Δ''f''&hairsp;(''p'')}}  फलन का {{math|''f''}}  बिंदु पर {{math|''p''}} के औसत मूल्य से मापता है {{math|''f''}} छोटे गोले या गेंदों पर केंद्रित {{math|''p''}} से विचलित {{math|''f''&hairsp;(''p'')}} होता है  ।


लाप्लास ऑपरेटर का नाम फ्रांसीसी गणितज्ञ पियरे-साइमन डी लाप्लास (1749-1827) के नाम पर रखा गया है, जिन्होंने पहली बार आकाशीय यांत्रिकी के अध्ययन के लिए ऑपरेटर को लागू किया था: किसी दिए गए द्रव्यमान घनत्व वितरण के कारण गुरुत्वाकर्षण क्षमता का लाप्लासियन  निरंतर गुणक है। वह घनत्व वितरण। लाप्लास के समीकरण के समाधान {{math|1=Δ''f'' = 0}} हार्मोनिक फ़ंक्शन कहलाते हैं और निर्वात के क्षेत्रों में संभावित गुरुत्वाकर्षण क्षमता का प्रतिनिधित्व करते हैं।
लाप्लास ऑपरेटर का नाम फ्रांसीसी गणितज्ञ पियरे-साइमन डी लाप्लास (1749-1827) के नाम पर रखा गया है, जिन्होंने पहली बार आकाशीय यांत्रिकी के अध्ययन के लिए ऑपरेटर को लागू किया था: किसी दिए गए द्रव्यमान घनत्व वितरण के कारण गुरुत्वाकर्षण क्षमता का लाप्लासियन  निरंतर गुणक है। वह घनत्व वितरण। लाप्लास के समीकरण के समाधान {{math|1=Δ''f'' = 0}} हार्मोनिक फ़ंक्शन कहलाते हैं और निर्वात के क्षेत्रों में संभावित गुरुत्वाकर्षण क्षमता का प्रतिनिधित्व करते हैं।
Line 11: Line 11:
जहां बाद की सूचनाएं औपचारिक रूप से लिखने से प्राप्त होती हैं:
जहां बाद की सूचनाएं औपचारिक रूप से लिखने से प्राप्त होती हैं:
<math display="block">\nabla  = \left ( \frac{\partial }{\partial x_1} , \ldots , \frac{\partial }{\partial x_n} \right ).</math>
<math display="block">\nabla  = \left ( \frac{\partial }{\partial x_1} , \ldots , \frac{\partial }{\partial x_n} \right ).</math>
स्पष्ट रूप से, के लाप्लासियन {{math|''f''}} इस प्रकार कार्तीय निर्देशांक में सभी अमिश्रित दूसरे आंशिक डेरिवेटिव का योग है {{math|''x<sub>i</sub>''}}:
स्पष्ट रूप से, के लाप्लासियन {{math|''f''}} इस प्रकार कार्तीय निर्देशांक में सभी अमिश्रित दूसरे आंशिक व्युत्पन्न  का योग है {{math|''x<sub>i</sub>''}}:
{{NumBlk||<math display="block">\Delta f = \sum_{i=1}^n \frac {\partial^2 f}{\partial x^2_i}</math>|{{EqRef|2}}}}
{{NumBlk||<math display="block">\Delta f = \sum_{i=1}^n \frac {\partial^2 f}{\partial x^2_i}</math>|{{EqRef|2}}}}


Line 52: Line 52:
भौतिकी में दिखने वाले लाप्लासियन के लिए  और प्रेरणा यह है कि इसका समाधान {{math|1=Δ''f'' = 0}}  क्षेत्र में {{math|''U''}} ऐसे कार्य हैं जो डिरिचलेट ऊर्जा को कार्यात्मक (गणित) स्थिर बिंदु बनाते हैं:
भौतिकी में दिखने वाले लाप्लासियन के लिए  और प्रेरणा यह है कि इसका समाधान {{math|1=Δ''f'' = 0}}  क्षेत्र में {{math|''U''}} ऐसे कार्य हैं जो डिरिचलेट ऊर्जा को कार्यात्मक (गणित) स्थिर बिंदु बनाते हैं:
<math display="block"> E(f) = \frac{1}{2} \int_U \lVert \nabla f \rVert^2 \,dx.</math>
<math display="block"> E(f) = \frac{1}{2} \int_U \lVert \nabla f \rVert^2 \,dx.</math>
इसे देखने के लिए, मान लीजिए {{math|''f'' : ''U'' → '''R'''}}  समारोह है, और {{math|''u'' : ''U'' → '''R'''}}  ऐसा कार्य है जो की सीमा पर गायब हो जाता है {{mvar|U}}. फिर:
इसे देखने के लिए, मान लीजिए {{math|''f'' : ''U'' → '''R'''}}  फलन है, और {{math|''u'' : ''U'' → '''R'''}}  ऐसा कार्य है जो की सीमा पर गायब हो जाता है {{mvar|U}}. फिर:
<math display="block">\left. \frac{d}{d\varepsilon}\right|_{\varepsilon = 0} E(f+\varepsilon u) = \int_U \nabla f \cdot \nabla u \, dx = -\int_U u \, \Delta f\, dx </math>
<math display="block">\left. \frac{d}{d\varepsilon}\right|_{\varepsilon = 0} E(f+\varepsilon u) = \int_U \nabla f \cdot \nabla u \, dx = -\int_U u \, \Delta f\, dx </math>
जहां अंतिम समानता ग्रीन की पहली पहचान का उपयोग करती है। यह गणना दर्शाती है कि यदि {{math|1=Δ''f'' = 0}}, तब {{math|''E''}} चारों ओर स्थिर है {{math|''f''}}. इसके विपरीत यदि {{math|''E''}} चारों ओर स्थिर है {{math|''f''}}, तब {{math|1=Δ''f'' = 0}} विविधताओं की कलन की मौलिक लेम्मा द्वारा।
जहां अंतिम समानता ग्रीन की पहली पहचान का उपयोग करती है। यह गणना दर्शाती है कि यदि {{math|1=Δ''f'' = 0}}, तब {{math|''E''}} चारों ओर स्थिर है {{math|''f''}}. इसके विपरीत यदि {{math|''E''}} चारों ओर स्थिर है {{math|''f''}}, तब {{math|1=Δ''f'' = 0}} विविधताओं की कलन की मौलिक लेम्मा द्वारा।
Line 98: Line 98:
गोलाकार निर्देशांक में {{mvar|N}} आयाम, parametrization के साथ {{math|1=''x'' = ''rθ'' ∈ '''R'''<sup>''N''</sup>}} साथ {{mvar|r}}  सकारात्मक वास्तविक त्रिज्या का प्रतिनिधित्व करना और {{mvar|θ}} इकाई क्षेत्र का  तत्व {{math|[[N sphere|''S''<sup>''N''−1</sup>]]}},
गोलाकार निर्देशांक में {{mvar|N}} आयाम, parametrization के साथ {{math|1=''x'' = ''rθ'' ∈ '''R'''<sup>''N''</sup>}} साथ {{mvar|r}}  सकारात्मक वास्तविक त्रिज्या का प्रतिनिधित्व करना और {{mvar|θ}} इकाई क्षेत्र का  तत्व {{math|[[N sphere|''S''<sup>''N''−1</sup>]]}},
<math display="block"> \Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{N-1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \Delta_{S^{N-1}} f</math>
<math display="block"> \Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{N-1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \Delta_{S^{N-1}} f</math>
कहां {{math|Δ<sub>''S''<sup>''N''−1</sup></sub>}} लाप्लास-बेल्ट्रामी ऑपरेटर है {{math|(''N'' − 1)}}-गोला, गोलाकार लाप्लासियन के रूप में जाना जाता है। दो रेडियल डेरिवेटिव शब्दों को समान रूप से फिर से लिखा जा सकता है:
कहां {{math|Δ<sub>''S''<sup>''N''−1</sup></sub>}} लाप्लास-बेल्ट्रामी ऑपरेटर है {{math|(''N'' − 1)}}-गोला, गोलाकार लाप्लासियन के रूप में जाना जाता है। दो रेडियल व्युत्पन्न  शब्दों को समान रूप से फिर से लिखा जा सकता है:
<math display="block">\frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial f}{\partial r} \right).</math>
<math display="block">\frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial f}{\partial r} \right).</math>
परिणाम के रूप में, पर परिभाषित  समारोह के गोलाकार लाप्लासियन {{math|''S''<sup>''N''−1</sup> ⊂ '''R'''<sup>''N''</sup>}} तक विस्तारित फ़ंक्शन के सामान्य लाप्लासियन के रूप में गणना की जा सकती है {{math|'''R'''<sup>''N''</sup>∖{0}<nowiki/>}} ताकि यह किरणों के साथ स्थिर हो, यानी डिग्री शून्य का सजातीय कार्य।
परिणाम के रूप में, पर परिभाषित  फलन के गोलाकार लाप्लासियन {{math|''S''<sup>''N''−1</sup> ⊂ '''R'''<sup>''N''</sup>}} तक विस्तारित फ़ंक्शन के सामान्य लाप्लासियन के रूप में गणना की जा सकती है {{math|'''R'''<sup>''N''</sup>∖{0}<nowiki/>}} ताकि यह किरणों के साथ स्थिर हो, यानी डिग्री शून्य का सजातीय कार्य।


== यूक्लिडियन आक्रमण ==
== यूक्लिडियन आक्रमण ==
Line 172: Line 172:
लाप्लास ऑपरेटर का  अन्य सामान्यीकरण जो छद्म-रिमेंनियन मैनिफोल्ड्स पर उपलब्ध है, बाहरी व्युत्पन्न का उपयोग करता है, जिसके संदर्भ में जियोमीटर के लाप्लासियन को व्यक्त किया जाता है
लाप्लास ऑपरेटर का  अन्य सामान्यीकरण जो छद्म-रिमेंनियन मैनिफोल्ड्स पर उपलब्ध है, बाहरी व्युत्पन्न का उपयोग करता है, जिसके संदर्भ में जियोमीटर के लाप्लासियन को व्यक्त किया जाता है
<math display="block"> \Delta f = \delta d f .</math>
<math display="block"> \Delta f = \delta d f .</math>
यहां {{mvar|δ}} कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी डेरिवेटिव के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है {{mvar|α}} द्वारा
यहां {{mvar|δ}} कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी व्युत्पन्न  के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है {{mvar|α}} द्वारा
<math display="block">\Delta \alpha = \delta d \alpha + d \delta \alpha .</math>
<math display="block">\Delta \alpha = \delta d \alpha + d \delta \alpha .</math>
इसे लाप्लास-बेल्ट्रामी ऑपरेटर#लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।
इसे लाप्लास-बेल्ट्रामी ऑपरेटर#लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।
Line 183: Line 183:
यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के तहत अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग  नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। D'Alembert ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।
यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के तहत अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग  नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। D'Alembert ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।


का अतिरिक्त कारक {{math|''c''}} भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है;  समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, {{mvar|x}} दिशा मीटर में मापी गई जबकि {{mvar|y}} दिशा सेंटीमीटर में मापी गई। दरअसल, सैद्धांतिक भौतिक विज्ञानी आमतौर पर ऐसी इकाइयों में काम करते हैं {{math|1=[[Natural units|''c'' = 1]]}} समीकरण को सरल बनाने के लिए।
का अतिरिक्त कारक {{math|''c''}} भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है;  समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, {{mvar|x}} दिशा मीटर में मापी गई जबकि {{mvar|y}} दिशा सेंटीमीटर में मापी गई। दरअसल, सैद्धांतिक भौतिक विज्ञानी सामान्यतः  ऐसी इकाइयों में काम करते हैं {{math|1=[[Natural units|''c'' = 1]]}} समीकरण को सरल बनाने के लिए।


डी'अलेम्बर्ट ऑपरेटर छद्म-रीमैनियन मैनिफोल्ड्स पर  हाइपरबोलिक ऑपरेटर के लिए सामान्यीकृत करता है।
डी'अलेम्बर्ट ऑपरेटर छद्म-रीमैनियन मैनिफोल्ड्स पर  हाइपरबोलिक ऑपरेटर के लिए सामान्यीकृत करता है।

Revision as of 09:46, 17 May 2023

गणित में, लाप्लास ऑपरेटर या लाप्लासियन अवकल संकारक है जो यूक्लिडियन स्थान पर एक अदिश फलन के प्रवणता के विचलन द्वारा दिया जाता है। यह सामान्यतः प्रतीकों , (जहां डेल है), या द्वारा दर्शाया जाता है। कार्तीय समन्वय प्रणाली में, लाप्लासियन को प्रत्येक स्वतंत्र चर के संबंध में फ़ंक्शन के दूसरे आंशिक व्युत्पन्न के योग द्वारा दिया जाता है। अन्य समन्वय प्रणालियों में, जैसे कि बेलनाकार निर्देशांक और गोलाकार निर्देशांक, लाप्लासियन का भी उपयोगी रूप है। अनौपचारिक रूप से, लाप्लासियन Δf (p) फलन का f बिंदु पर p के औसत मूल्य से मापता है f छोटे गोले या गेंदों पर केंद्रित p से विचलित f (p) होता है ।

लाप्लास ऑपरेटर का नाम फ्रांसीसी गणितज्ञ पियरे-साइमन डी लाप्लास (1749-1827) के नाम पर रखा गया है, जिन्होंने पहली बार आकाशीय यांत्रिकी के अध्ययन के लिए ऑपरेटर को लागू किया था: किसी दिए गए द्रव्यमान घनत्व वितरण के कारण गुरुत्वाकर्षण क्षमता का लाप्लासियन निरंतर गुणक है। वह घनत्व वितरण। लाप्लास के समीकरण के समाधान Δf = 0 हार्मोनिक फ़ंक्शन कहलाते हैं और निर्वात के क्षेत्रों में संभावित गुरुत्वाकर्षण क्षमता का प्रतिनिधित्व करते हैं।

लाप्लासियन भौतिक घटनाओं का वर्णन करने वाले कई अंतर समीकरणों में होता है। प्वासों का समीकरण विद्युत क्षमता और गुरुत्वाकर्षण क्षमता का वर्णन करता है; प्रसार समीकरण ऊष्मा समीकरण और द्रव यांत्रिकी का वर्णन करता है, तरंग समीकरण तरंग समीकरण का वर्णन करता है, और क्वांटम यांत्रिकी में श्रोडिंगर समीकरण। इमेज प्रोसेसिंग और कंप्यूटर विज़न में, लाप्लासियन ऑपरेटर का उपयोग विभिन्न कार्यों के लिए किया गया है, जैसे ब्लॉब डिटेक्शन और एज डिटेक्शन। लाप्लासियन सबसे सरल अण्डाकार संचालिका है और हॉज सिद्धांत के साथ-साथ डी रम कोहोलॉजी के परिणामों के मूल में है।

परिभाषा

लाप्लास संचालिका द्वितीय-क्रम अवकल समीकरण है। n-आयामी यूक्लिडियन अंतरिक्ष में द्वितीय-क्रम अवकल संचालिका है, जिसे अपसरण के रूप में परिभाषित किया गया है () ढाल का (). इस प्रकार यदि व्युत्पन्न|दो बार-विभेदक वास्तविक-मूल्यवान फलन है, फिर का लाप्लासियन द्वारा परिभाषित वास्तविक-मूल्यवान कार्य है:

 

 

 

 

(1)

जहां बाद की सूचनाएं औपचारिक रूप से लिखने से प्राप्त होती हैं:

स्पष्ट रूप से, के लाप्लासियन f इस प्रकार कार्तीय निर्देशांक में सभी अमिश्रित दूसरे आंशिक व्युत्पन्न का योग है xi:

 

 

 

 

(2)

दूसरे क्रम के अंतर ऑपरेटर के रूप में, लाप्लास ऑपरेटर मैप करता है [[Continuously differentiable|Ck]] करने के लिए कार्य करता है Ck−2 के लिए कार्य करता है k ≥ 2. यह लीनियर ऑपरेटर है Δ : Ck(Rn) → Ck−2(Rn), या अधिक सामान्यतः, ऑपरेटर Δ : Ck(Ω) → Ck−2(Ω) किसी भी खुले सेट के लिए Ω ⊆ Rn.

प्रेरणा

प्रसार

प्रसार के भौतिकी सिद्धांत में, लाप्लास ऑपरेटर प्रसार संतुलन के गणितीय विवरण में स्वाभाविक रूप से उत्पन्न होता है।[1] विशेष रूप से, अगर u कुछ मात्रा के संतुलन पर घनत्व है जैसे रासायनिक एकाग्रता, फिर शुद्ध प्रवाह u सीमा के माध्यम से V किसी भी चिकने क्षेत्र का V शून्य है, बशर्ते भीतर कोई स्रोत या सिंक न हो V:

कहां n की सीमा के लिए सामान्य बाहरी इकाई है V. विचलन प्रमेय द्वारा,
चूंकि यह सभी चिकने क्षेत्रों के लिए है V, कोई दिखा सकता है कि इसका तात्पर्य है:
इस समीकरण के बाईं ओर लाप्लास ऑपरेटर और संपूर्ण समीकरण है Δu = 0 लाप्लास के समीकरण के रूप में जाना जाता है। लाप्लास समीकरण के समाधान, यानी ऐसे कार्य जिनके लाप्लासियन समान रूप से शून्य हैं, इस प्रकार प्रसार के तहत संभावित संतुलन घनत्व का प्रतिनिधित्व करते हैं।

लाप्लास ऑपरेटर के पास गैर-संतुलन प्रसार के लिए भौतिक व्याख्या है, जिस हद तक बिंदु स्रोत या रासायनिक एकाग्रता के सिंक का प्रतिनिधित्व करता है, अर्थ में प्रसार समीकरण द्वारा सटीक बनाया गया है। लाप्लासियन की इस व्याख्या को औसत के बारे में निम्नलिखित तथ्य से भी समझाया गया है।

औसत

दो बार लगातार अलग-अलग फ़ंक्शन दिया गया , बिंदु और वास्तविक संख्या , हम जाने का औसत मान हो गेंद पर त्रिज्या के साथ पर केंद्रित है , और का औसत मान हो त्रिज्या के साथ गोले ( गेंद की सीमा) के ऊपर पर केंद्रित है . तो हमारे पास हैं:[2]

और


क्षमता से जुड़ा घनत्व

यदि φ चार्ज वितरण से जुड़े इलेक्ट्रोस्टैटिक क्षमता को दर्शाता है q, तब आवेश वितरण स्वयं के लाप्लासियन के ऋणात्मक द्वारा दिया जाता है φ:

कहां ε0 विद्युत स्थिरांक है।

यह गॉस के नियम का परिणाम है। दरअसल, अगर V सीमा के साथ कोई चिकना क्षेत्र है V, फिर गॉस के नियम द्वारा इलेक्ट्रोस्टैटिक क्षेत्र का प्रवाह E सीमा के पार संलग्न प्रभार के समानुपाती होता है:

जहाँ पहली समानता विचलन प्रमेय के कारण है। चूंकि इलेक्ट्रोस्टैटिक क्षेत्र क्षमता का (नकारात्मक) ढाल है, यह देता है:
चूंकि यह सभी क्षेत्रों के लिए है V, हमारे पास यह होना चाहिए
उसी दृष्टिकोण का तात्पर्य है कि गुरुत्वाकर्षण क्षमता के लाप्लासियन का ऋणात्मक द्रव्यमान वितरण है। अक्सर चार्ज (या द्रव्यमान) वितरण दिया जाता है, और संबंधित क्षमता अज्ञात होती है। उपयुक्त सीमा स्थितियों के अधीन संभावित फलन का पता लगाना प्वासों के समीकरण को हल करने के बराबर है।

ऊर्जा न्यूनीकरण

भौतिकी में दिखने वाले लाप्लासियन के लिए और प्रेरणा यह है कि इसका समाधान Δf = 0 क्षेत्र में U ऐसे कार्य हैं जो डिरिचलेट ऊर्जा को कार्यात्मक (गणित) स्थिर बिंदु बनाते हैं:

इसे देखने के लिए, मान लीजिए f : UR फलन है, और u : UR ऐसा कार्य है जो की सीमा पर गायब हो जाता है U. फिर:
जहां अंतिम समानता ग्रीन की पहली पहचान का उपयोग करती है। यह गणना दर्शाती है कि यदि Δf = 0, तब E चारों ओर स्थिर है f. इसके विपरीत यदि E चारों ओर स्थिर है f, तब Δf = 0 विविधताओं की कलन की मौलिक लेम्मा द्वारा।

समन्वय भाव

दो आयाम

लाप्लास ऑपरेटर दो आयामों में दिया जाता है:

कार्तीय निर्देशांक में,

कहां x और y के मानक कार्तीय निर्देशांक हैं xy-विमान।

ध्रुवीय निर्देशांक में,

कहां r रेडियल दूरी का प्रतिनिधित्व करता है और θ कोण।

तीन आयाम

तीन आयामों में, विभिन्न समन्वय प्रणालियों में लाप्लासियन के साथ काम करना आम है।

कार्तीय निर्देशांक में,

बेलनाकार निर्देशांक में,
कहां रेडियल दूरी का प्रतिनिधित्व करता है, φ दिगंश कोण और z ऊँचाईं।

गोलाकार निर्देशांक में:

या

कहां φ अज़ीमुथल कोण का प्रतिनिधित्व करता है और θ आंचल कोण या समांतरता|सह-अक्षांश।सामान्य वक्रीय निर्देशांक में (ξ1, ξ2, ξ3):

जहां आइंस्टीन सम्मेलन सम्मेलन, gmn व्युत्क्रम मीट्रिक टेन्सर है और Γl mn चयनित निर्देशांकों के लिए क्रिस्टोफ़ेल प्रतीक हैं।

N आयाम

मनमाना वक्रीय निर्देशांक में N आयाम (ξ1, …, ξN), हम व्युत्क्रम मीट्रिक टेन्सर के संदर्भ में लाप्लासियन लिख सकते हैं, :

Voss-हरमन वेइल सूत्र से[3] विचलन के लिए # सामान्य निर्देशांक।

गोलाकार निर्देशांक में N आयाम, parametrization के साथ x = RN साथ r सकारात्मक वास्तविक त्रिज्या का प्रतिनिधित्व करना और θ इकाई क्षेत्र का तत्व SN−1,

कहां ΔSN−1 लाप्लास-बेल्ट्रामी ऑपरेटर है (N − 1)-गोला, गोलाकार लाप्लासियन के रूप में जाना जाता है। दो रेडियल व्युत्पन्न शब्दों को समान रूप से फिर से लिखा जा सकता है:
परिणाम के रूप में, पर परिभाषित फलन के गोलाकार लाप्लासियन SN−1RN तक विस्तारित फ़ंक्शन के सामान्य लाप्लासियन के रूप में गणना की जा सकती है RN∖{0} ताकि यह किरणों के साथ स्थिर हो, यानी डिग्री शून्य का सजातीय कार्य।

यूक्लिडियन आक्रमण

लाप्लासियन सभी यूक्लिडियन परिवर्तनों के तहत अपरिवर्तनीय है: घूर्णन और अनुवाद (गणित)। दो आयामों में, उदाहरण के लिए, इसका अर्थ है कि:

सभी θ, ए, और बी के लिए। मनमाने आयामों में,
जब भी ρ घूर्णन होता है, और इसी तरह:
जब भी τ अनुवाद है। (अधिक आम तौर पर, यह सच रहता है जब ρ प्रतिबिंब (गणित) जैसे ओर्थोगोनल परिवर्तन होता है।)

वास्तव में, सभी स्केलर रेखीय अंतर ऑपरेटरों का बीजगणित, निरंतर गुणांक के साथ, जो सभी यूक्लिडियन परिवर्तनों के साथ यात्रा करता है, लाप्लास ऑपरेटर द्वारा उत्पन्न बहुपद बीजगणित है।

स्पेक्ट्रल सिद्धांत

लाप्लास ऑपरेटर के वर्णक्रमीय सिद्धांत में सभी eigenvalues ​​​​शामिल हैं λ जिसके लिए संबंधित ईजेनफंक्शन है f साथ:

इसे हेल्महोल्ट्ज़ समीकरण के रूप में जाना जाता है।

यदि Ω में परिबद्ध डोमेन है Rn, तब लाप्लासियन के ईजेनफंक्शन हिल्बर्ट अंतरिक्ष के लिए अलौकिक आधार हैं L2(Ω). यह परिणाम अनिवार्य रूप से कॉम्पैक्ट ऑपरेटर स्व-आसन्न ऑपरेटरों पर वर्णक्रमीय प्रमेय से अनुसरण करता है, जो लाप्लासियन के व्युत्क्रम पर लागू होता है (जो कॉम्पैक्ट है, पॉइंकेयर असमानता और रेलीच-कोंड्राचोव प्रमेय द्वारा)।[4] यह भी दिखाया जा सकता है कि eigenfunctions असीम रूप से अलग-अलग कार्य हैं।[5] आम तौर पर, ये परिणाम लाप्लास-बेल्ट्रामी ऑपरेटर के लिए सीमा के साथ किसी भी कॉम्पैक्ट रिमेंनियन मैनिफोल्ड पर, या वास्तव में किसी भी अण्डाकार ऑपरेटर की डिरिचलेट ईजेनवेल्यू समस्या के लिए सीमित डोमेन पर चिकनी गुणांक के साथ होते हैं। कब Ω एन-क्षेत्र है|n-स्फीयर, लाप्लासियन के ईजेनफंक्शन गोलाकार हार्मोनिक्स हैं।

वेक्टर लाप्लासियन

वेक्टर लाप्लास ऑपरेटर, द्वारा भी निरूपित , सदिश क्षेत्र पर परिभाषित अवकल संकारक है।[6] सदिश लाप्लासियन अदिश लाप्लासियन के समान है; जबकि अदिश लाप्लासियन अदिश क्षेत्र पर लागू होता है और अदिश मात्रा लौटाता है, सदिश लाप्लासियन सदिश क्षेत्र पर लागू होता है, सदिश मात्रा लौटाता है। जब ऑर्थोनॉर्मल कार्टेशियन निर्देशांक में गणना की जाती है, तो लौटाया गया वेक्टर फ़ील्ड प्रत्येक वेक्टर घटक पर लागू स्केलर लाप्लासियन के वेक्टर फ़ील्ड के बराबर होता है।

सदिश क्षेत्र का सदिश लाप्लासियन की तरह परिभाषित किया गया है

कार्टेशियन निर्देशांक में, यह बहुत सरल रूप में कम हो जाता है
कहां , , और वेक्टर क्षेत्र के घटक हैं , और प्रत्येक वेक्टर फ़ील्ड घटक के ठीक बाईं ओर (स्केलर) लाप्लास ऑपरेटर है। इसे लैग्रेंज के सूत्र की विशेष स्थिति के रूप में देखा जा सकता है; वेक्टर ट्रिपल उत्पाद देखें।

अन्य समन्वय प्रणालियों में वेक्टर लाप्लासियन की अभिव्यक्तियों के लिए डेल को बेलनाकार और गोलाकार निर्देशांक में देखें।

सामान्यीकरण

किसी भी टेंसर क्षेत्र का लाप्लासियन (टेंसर में स्केलर और वेक्टर शामिल हैं) को टेंसर के ग्रेडिएंट के विचलन के रूप में परिभाषित किया गया है:

विशेष मामले के लिए जहां अदिश (गणित) (शून्य डिग्री का टेन्सर) है, लाप्लासियन परिचित रूप लेता है।

यदि वेक्टर (पहली डिग्री का टेन्सर) है, ग्रेडिएंट सहसंयोजक व्युत्पन्न है जिसके परिणामस्वरूप दूसरी डिग्री का टेंसर होता है, और इसका विचलन फिर से वेक्टर होता है। उपरोक्त सदिश लाप्लासियन के सूत्र का उपयोग टेन्सर गणित से बचने के लिए किया जा सकता है और सदिश के ढाल के लिए नीचे दिखाए गए जैकोबियन मैट्रिक्स के विचलन के बराबर दिखाया जा सकता है:

और, उसी तरह, डॉट उत्पाद, जो वेक्टर का मूल्यांकन करता है, वेक्टर के दूसरे वेक्टर (द्वितीय डिग्री का टेंसर) के ढाल द्वारा मैट्रिक्स के उत्पाद के रूप में देखा जा सकता है:
यह पहचान समन्वय निर्भर परिणाम है, और सामान्य नहीं है।

भौतिकी में प्रयोग करें

सदिश लाप्लासियन के उपयोग का उदाहरण न्यूटोनियन द्रव असंपीड्य प्रवाह के लिए नेवियर-स्टोक्स समीकरण है:

जहां शब्द वेग क्षेत्र के वेक्टर लाप्लासियन के साथ है तरल पदार्थ में चिपचिपापन तनाव (भौतिकी) का प्रतिनिधित्व करता है।

अन्य उदाहरण विद्युत क्षेत्र के लिए तरंग समीकरण है जिसे आवेशों और धाराओं की अनुपस्थिति में मैक्सवेल के समीकरणों से प्राप्त किया जा सकता है:

इस समीकरण को इस प्रकार भी लिखा जा सकता है:
कहां
क्लेन-गॉर्डन समीकरण में प्रयुक्त डी'अलेम्बर्टियन है।

सामान्यीकरण

लाप्लासियन के संस्करण को परिभाषित किया जा सकता है जहां भी डिरिचलेट ऊर्जा समझ में आती है, जो कि डिरिचलेट रूपों का सिद्धांत है। अतिरिक्त संरचना वाले रिक्त स्थान के लिए, लाप्लासियन के अधिक स्पष्ट विवरण इस प्रकार दिए जा सकते हैं।

लाप्लास-बेल्ट्रामी ऑपरेटर

लाप्लासियन को अण्डाकार ऑपरेटर के लिए भी सामान्यीकृत किया जा सकता है जिसे लाप्लास-बेल्ट्रामी ऑपरेटर कहा जाता है जिसे रीमैनियन मैनिफोल्ड पर परिभाषित किया गया है। लाप्लास-बेल्ट्रामी ऑपरेटर, जब फ़ंक्शन पर लागू होता है, ट्रेस (रैखिक बीजगणित) होता है (tr) फ़ंक्शन के हेसियन मैट्रिक्स का:

जहां मीट्रिक टेंसर के व्युत्क्रम के संबंध में ट्रेस लिया जाता है। लाप्लास-बेल्ट्रामी ऑपरेटर को ऑपरेटर (जिसे लाप्लास-बेल्ट्रामी ऑपरेटर भी कहा जाता है) के लिए सामान्यीकृत किया जा सकता है, जो समान सूत्र द्वारा टेन्सर क्षेत्रों पर संचालित होता है।

लाप्लास ऑपरेटर का अन्य सामान्यीकरण जो छद्म-रिमेंनियन मैनिफोल्ड्स पर उपलब्ध है, बाहरी व्युत्पन्न का उपयोग करता है, जिसके संदर्भ में जियोमीटर के लाप्लासियन को व्यक्त किया जाता है

यहां δ कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी व्युत्पन्न के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है α द्वारा
इसे लाप्लास-बेल्ट्रामी ऑपरेटर#लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।

डी'अलेम्बर्टियन

लाप्लासियन को गैर-यूक्लिडियन रिक्त स्थान के कुछ तरीकों से सामान्यीकृत किया जा सकता है, जहां यह अंडाकार ऑपरेटर, हाइपरबोलिक ऑपरेटर, या अल्ट्राहाइपरबोलिक ऑपरेटर हो सकता है।

मिन्कोव्स्की अंतरिक्ष में लाप्लास-बेल्ट्रामी ऑपरेटर डी'अलेम्बर्ट ऑपरेटर बन जाता है या डी'अलेम्बर्टियन:

यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के तहत अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। D'Alembert ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।

का अतिरिक्त कारक c भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है; समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, x दिशा मीटर में मापी गई जबकि y दिशा सेंटीमीटर में मापी गई। दरअसल, सैद्धांतिक भौतिक विज्ञानी सामान्यतः ऐसी इकाइयों में काम करते हैं c = 1 समीकरण को सरल बनाने के लिए।

डी'अलेम्बर्ट ऑपरेटर छद्म-रीमैनियन मैनिफोल्ड्स पर हाइपरबोलिक ऑपरेटर के लिए सामान्यीकृत करता है।

यह भी देखें

  • लाप्लास-बेल्ट्रामी संचालिका, यूक्लिडियन अंतरिक्ष में सबमनीफोल्ड का सामान्यीकरण और रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड।
  • वेक्टर लाप्लासियन ऑपरेटर, लाप्लासियन से सदिश क्षेत्रों का सामान्यीकरण।
  • डिफरेंशियल ज्योमेट्री में लाप्लास ऑपरेटर्स।
  • असतत लाप्लास ऑपरेटर, रेखांकन और ग्रिड पर परिभाषित निरंतर लाप्लासियन का परिमित-अंतर एनालॉग है।
  • लाप्लासियन इमेज प्रोसेसिंग और कंप्यूटर विज़न में सामान्य ऑपरेटर है (गॉसियन, ब्लॉब डिटेक्शन और स्केल स्पेस का लाप्लासियन देखें)।
  • रिमेंनियन ज्यामिति में सूत्रों की सूची में क्रिस्टोफेल प्रतीकों के संदर्भ में लाप्लासियन के लिए भाव शामिल हैं।
  • वेइल की लेम्मा (लाप्लास समीकरण)।
  • अर्नशॉ की प्रमेय जो दर्शाती है कि स्थिर स्थिर गुरुत्वाकर्षण, इलेक्ट्रोस्टैटिक या चुंबकीय निलंबन असंभव है।
  • डेल बेलनाकार और गोलाकार निर्देशांक में।
  • अन्य स्थितियों में लाप्लासियन को परिभाषित किया गया है: फ्रैक्टल्स पर विश्लेषण, टाइम स्केल कैलकुलस और डिस्क्रीट एक्सटीरियर कैलकुलस।

टिप्पणियाँ

  1. Evans 1998, §2.2
  2. Ovall, Jeffrey S. (2016-03-01). "द लाप्लासियन एंड मीन एंड एक्सट्रीम वैल्यूज़" (PDF). The American Mathematical Monthly. 123 (3): 287–291. doi:10.4169/amer.math.monthly.123.3.287. S2CID 124943537.
  3. Archived at Ghostarchive and the Wayback Machine: Grinfeld, Pavel. "The Voss-Weyl Formula". YouTube (in English). Retrieved 9 January 2018.
  4. Gilbarg & Trudinger 2001, Theorem 8.6
  5. Gilbarg & Trudinger 2001, Corollary 8.11
  6. MathWorld. "वेक्टर लाप्लासियन".


संदर्भ


आगे की पढाई


इस पेज में लापता आंतरिक लिंक की सूची

बाहरी कड़ियाँ

श्रेणी:विभेदक संचालक श्रेणी:अण्डाकार आंशिक अवकल समीकरण श्रेणी:फूरियर विश्लेषण संचालक श्रेणी: हार्मोनिक कार्य श्रेणी: कैलकुलस में लीनियर ऑपरेटर्स श्रेणी:बहुभिन्नरूपी कलन