फोटो ध्वनिक इमेजिंग: Difference between revisions
(Created page with "{{Short description|Imaging using the photoacoustic effect}} {{Infobox interventions | Name = Photoacoustic imaging | Image = PASchematics v2.png | Caption = Schematic illustr...") |
No edit summary |
||
Line 5: | Line 5: | ||
| Caption = Schematic illustration of photoacoustic imaging | | Caption = Schematic illustration of photoacoustic imaging | ||
}} | }} | ||
{{about| | {{about|ऑप्टिकल प्रकार|रेडियो आवृत्ति प्रकार|थर्मोकॉस्टिक इमेजिंग}} | ||
फोटो ध्वनिक इमेजिंग या प्रकाश ध्वनिक इमेजिंग एक बायोमेडिकल इमेजिंग साधन है जो फोटोकॉस्टिक प्रभाव पर आधारित है। गैर-आयनीकरण [[ लेज़र ]] दालों को जैविक ऊतकों में वितरित किया जाता है और ऊर्जा का भाग अवशोषित हो जाएगा और गर्मी में परिवर्तित हो जाएगा, जिससे क्षणिक थर्मोइलास्टिक विस्तार होगा और इस प्रकार वाइडबैंड (जिससे मेगाहर्ट्ज) [[अल्ट्रासाउंड]] उत्सर्जन होगा। उत्पन्न अल्ट्रासोनिक तरंगों को [[अल्ट्रासोनिक ट्रांसड्यूसर]] द्वारा पता लगाया जाता है और फिर छवियों का उत्पादन करने के लिए विश्लेषण किया जाता है। यह ज्ञात है कि ऑप्टिकल अवशोषण शारीरिक गुणों से निकटता से जुड़ा हुआ है, जैसे [[हीमोग्लोबिन]] एकाग्रता और [[ऑक्सीजन संतृप्ति]]।<ref name="A. Grinvald_1986">{{cite journal |author=A. Grinvald|title=आंतरिक संकेतों की ऑप्टिकल इमेजिंग द्वारा कोर्टेक्स की कार्यात्मक संरचना का पता चला|journal=Nature |volume=324|pages=361–364 |year=1986 |doi=10.1038/324361a0 |pmid=3785405 |issue=6095|display-authors=etal|bibcode=1986Natur.324..361G|s2cid=4328958 |doi-access=free }}</ref> परिणामस्वरूप, अल्ट्रासोनिक उत्सर्जन (अर्थात् प्रकाशध्वनिक संकेत) का परिमाण, जो स्थानीय ऊर्जा जमाव के समानुपाती होता है, शारीरिक रूप से विशिष्ट ऑप्टिकल अवशोषण कंट्रास्ट प्रकट करता है। इसके बाद लक्षित क्षेत्रों की 2डी या 3डी छवियां बनाई जा सकती हैं।<ref name= Wang_2006>{{cite journal |author1=M. Xu |author2=L.H. Wang |title=बायोमेडिसिन में फोटोकॉस्टिक इमेजिंग|journal=Review of Scientific Instruments |volume=77 |issue=4|pages=041101–041101–22 |year=2006 |doi=10.1063/1.2195024|bibcode=2006RScI...77d1101X|url=https://authors.library.caltech.edu/72157/1/1.2195024.pdf }}</ref> | |||
== बायोमेडिकल इमेजिंग == | == बायोमेडिकल इमेजिंग == | ||
[[File:HbAbs v3.png|thumb|300px|अंजीर। 2. ऑक्सी- और डीऑक्सी-हीमोग्लोबिन का अवशोषण स्पेक्ट्रा।]] | [[File:HbAbs v3.png|thumb|300px|अंजीर। 2. ऑक्सी- और डीऑक्सी-हीमोग्लोबिन का अवशोषण स्पेक्ट्रा।]] | ||
{{main| | {{main|बायोमेडिकल इमेजिंग}} | ||
जैविक ऊतकों में ऑप्टिकल अवशोषण [[अंतर्जात]] अणुओं जैसे हीमोग्लोबिन या [[मेलेनिन]], या बाहरी रूप से वितरित विपरीत एजेंटों के कारण हो सकता है। एक उदाहरण के रूप में, चित्र 2 में हीमोग्लोबिन (HbO<sub>2</sub>) और हीमोग्लोबिन (Hb) दृश्य और निकट अवरक्त क्षेत्र | जैविक ऊतकों में ऑप्टिकल अवशोषण [[अंतर्जात]] अणुओं जैसे हीमोग्लोबिन या [[मेलेनिन]], या बाहरी रूप से वितरित विपरीत एजेंटों के कारण हो सकता है। एक उदाहरण के रूप में, चित्र 2 में हीमोग्लोबिन (HbO<sub>2</sub>) और हीमोग्लोबिन (Hb) दृश्य और निकट अवरक्त क्षेत्र मे<ref>[http://omlc.ogi.edu/spectra/ Optical Properties Spectra]</ref> चूंकि रक्त में सामान्यतः आसपास के ऊतकों की तुलना में उच्च अवशोषण के आदेश होते हैं, रक्त वाहिकाओं को देखने के लिए फोटोकॉस्टिक इमेजिंग के लिए पर्याप्त अंतर्जात विपरीत होता है। वर्तमान के अध्ययनों से पता चला है कि विवो में ट्यूमर [[ एंजियोजिनेसिस ]] मॉनिटरिंग, ऑक्सीजनेशन (मेडिकल) मैपिंग, कार्यात्मक मस्तिष्क इमेजिंग, त्वचा [[मेलेनोमा]] का पता लगाने, [[ मेटहीमोग्लोबिन ]] मापने आदि के लिए फोटोकॉस्टिक इमेजिंग का उपयोग किया जा सकता है।<ref name= Wang_2006/> | ||
{| class="wikitable" style="text-align:right;" | {| class="wikitable" style="text-align:right;" | ||
|- | |- | ||
! !! Δf !! | ! !! Δf !! प्राथमिक कंट्रास्ट !! Δz !! δz !! δx !! गति | ||
|- | |- | ||
! | ! | ||
| ''Hz'' || || ''mm'' || ''μm'' || ''μm'' || ''Mvx/s'' | | ''Hz'' || || ''mm'' || ''μm'' || ''μm'' || ''Mvx/s'' | ||
|- | |- | ||
! '' | ! ''फोटो ध्वनिक माइक्रोस्कोपी'' | ||
| 50 M | | 50 M | ||
| | | ऑप्टिकल अवशोषण | ||
| 3 | | 3 | ||
| 15 | | 15 | ||
Line 29: | Line 29: | ||
| 0.5 | | 0.5 | ||
|- | |- | ||
! '' | ! ''फोटो ध्वनिक टोमोग्राफी'' | ||
| 5 M | | 5 M | ||
| | | ऑप्टिकल अवशोषण | ||
| 50 | | 50 | ||
| 700 | | 700 | ||
Line 37: | Line 37: | ||
| 0.5 | | 0.5 | ||
|- | |- | ||
! [[Confocal microscopy]] | ! [[Confocal microscopy|संनाभि माइक्रोस्कोपी]] | ||
| | | | ||
| | | प्रतिदीप्ति, प्रकीर्णन | ||
| 0.2 | | 0.2 | ||
| 3-20 | | 3-20 | ||
Line 45: | Line 45: | ||
| 10-100 | | 10-100 | ||
|- | |- | ||
! [[Two-photon microscopy]] | ! [[Two-photon microscopy|दो-फोटॉन माइक्रोस्कोपी]] | ||
| | | | ||
| | | प्रतिदीप्ति | ||
| 0.5-1.0 | | 0.5-1.0 | ||
| 1-10 | | 1-10 | ||
Line 53: | Line 53: | ||
| 10-100 | | 10-100 | ||
|- | |- | ||
! [[Optical coherence tomography]] | ! [[Optical coherence tomography|ऑप्टिकल कोहरेन्स टोमोग्राफी]] | ||
| 300 T | | 300 T | ||
| | | ऑप्टिकल प्रकीर्णन | ||
| 1-2 | | 1-2 | ||
| 0.5-10 | | 0.5-10 | ||
Line 61: | Line 61: | ||
| 20-4.000 | | 20-4.000 | ||
|- | |- | ||
![[Scanning laser acoustic microscopy]] | ![[Scanning laser acoustic microscopy|स्कैनिंग लेजर ध्वनिक माइक्रोस्कोपी]] | ||
| 300 M | | 300 M | ||
| | | अल्ट्रासोनिक प्रकीर्णन | ||
| 1-2 | | 1-2 | ||
| 20 | | 20 | ||
Line 69: | Line 69: | ||
| 10 | | 10 | ||
|- | |- | ||
! [[Acoustic microscopy]] | ! [[Acoustic microscopy|ध्वनिक माइक्रोस्कोपी]] | ||
| 50 M | | 50 M | ||
| | | अल्ट्रासोनिक प्रकीर्णन | ||
| 20 | | 20 | ||
| 20-100 | | 20-100 | ||
Line 77: | Line 77: | ||
| 0.1 | | 0.1 | ||
|- | |- | ||
! [[Ultrasonography]] | ! [[Ultrasonography|अल्ट्रासोनोग्राफी]] | ||
| 5 M | | 5 M | ||
| | | अल्ट्रासोनिक प्रकीर्णन | ||
| 60 | | 60 | ||
| 300 | | 300 | ||
Line 85: | Line 85: | ||
| 1 | | 1 | ||
|- | |- | ||
| colspan="7" style="text-align:center;"| | | colspan="7" style="text-align:center;"| तालिका 1. कंट्रास्ट तंत्र की तुलना, पैठ गहराई (Δz), अक्षीय विभेदन (δz), पार्श्व विभेदन (δx=δy) और कन्फोकल माइक्रोस्कोपी की इमेजिंग गति, दो-फोटोन माइक्रोस्कोपी, ऑप्टिकल जुटना टोमोग्राफी (300 THz), अल्ट्रासाउंड माइक्रोस्कोपी ( 50 मेगाहर्ट्ज), अल्ट्रासाउंड इमेजिंग (5 मेगाहर्ट्ज), फोटोअकॉस्टिक माइक्रोस्कोपी (50 मेगाहर्ट्ज), और फोटोअकॉस्टिक टोमोग्राफी (3.5 मेगाहर्ट्ज)। गैर-समानांतर तकनीकों की प्रति सेकंड मेगावोक्सल में गति। | ||
|} | |} | ||
दो प्रकार के फोटोअकॉस्टिक इमेजिंग | दो प्रकार के फोटोअकॉस्टिक इमेजिंग प्रणाली , फोटोअकॉस्टिक/थर्मोआकॉस्टिक कंप्यूटेड टोमोग्राफी (जिसे फोटोएकॉस्टिक/थर्मोअकॉस्टिक टोमोग्राफी, जिससे पीएटी/टीएटी के रूप में भी जाना जाता है) और [[फोटोकॉस्टिक माइक्रोस्कोपी]] (पीएएम) विकसित किए गए हैं। एक विशिष्ट पीएटी प्रणाली फोटोअकॉस्टिक संकेतों को प्राप्त करने के लिए एक अनफोकस्ड अल्ट्रासाउंड सूचक का उपयोग करती है, और फोटोकॉस्टिक समीकरणों को विपरीत रूप से हल करके छवि का पुनर्निर्माण किया जाता है। दूसरी ओर एक पीएएम प्रणाली, 2डी बिंदु-दर-बिंदु स्कैनिंग के साथ एक गोलाकार रूप से केंद्रित अल्ट्रासाउंड सूचक का उपयोग करती है, और इसके लिए किसी पुनर्निर्माण एल्गोरिदम की आवश्यकता नहीं होती है। | ||
== फोटोअकॉस्टिक कंप्यूटेड टोमोग्राफी == | == फोटोअकॉस्टिक कंप्यूटेड टोमोग्राफी == | ||
=== सामान्य समीकरण === | === सामान्य समीकरण === | ||
ऊष्मा कार्य को देखते हुए <math> H(\vec{r},t)</math>, प्रकाश ध्वनिक तरंग दबाव का उत्पादन और प्रसार <math>p(\vec{r},t)</math> एक ध्वनिक रूप से सजातीय इनविसिड माध्यम द्वारा नियंत्रित होता है | |||
:<math>\nabla^2p(\vec{r},t)-\frac{1}{v_s^2}\frac{\partial^2}{\partial{t^2}}p(\vec{r},t)=-\frac{\beta}{C_p}\frac{\partial}{\partial t}H(\vec{r},t) \qquad \qquad \quad \quad (1), </math> | :<math>\nabla^2p(\vec{r},t)-\frac{1}{v_s^2}\frac{\partial^2}{\partial{t^2}}p(\vec{r},t)=-\frac{\beta}{C_p}\frac{\partial}{\partial t}H(\vec{r},t) \qquad \qquad \quad \quad (1), </math> | ||
जहाँ <math>v_s</math> माध्यम में ध्वनि की गति है, <math>\beta</math> थर्मल विस्तार गुणांक है, और <math>C_p</math> निरंतर दबाव पर विशिष्ट ताप क्षमता है। सम। (1) यह सुनिश्चित करने के लिए थर्मल बंधन के तहत रखता है कि लेजर पल्स उत्तेजना के समय गर्मी चालन नगण्य है। थर्मल बंधन तब होता है जब लेजर पल्सविड्थ थर्मल विश्राम समय से बहुत कम होता है।<ref name= Wang_BioMedBooK>{{cite book |author1=L.H. Wang |author2=H.I. Wu |title=बायोमेडिकल ऑप्टिक्स|publisher=Wiley |year=2007|isbn=978-0-471-74304-0}}</ref> | |||
Eq का आगे का समाधान। (1) द्वारा दिया गया है | Eq का आगे का समाधान। (1) द्वारा दिया गया है | ||
:<math>\left.p(\vec{r},t)=\frac{\beta}{4 \pi C_p} \int \frac{d \vec{r'}}{|\vec{r}-\vec{r'}|} \frac{\partial H(\vec{r'},t')}{\partial t'} \right|_{t'=t-|\vec{r}-\vec{r'}|/v_s} \qquad \quad \,\,\,\,(2). </math> | :<math>\left.p(\vec{r},t)=\frac{\beta}{4 \pi C_p} \int \frac{d \vec{r'}}{|\vec{r}-\vec{r'}|} \frac{\partial H(\vec{r'},t')}{\partial t'} \right|_{t'=t-|\vec{r}-\vec{r'}|/v_s} \qquad \quad \,\,\,\,(2). </math> | ||
तनाव बंधन में, जो तब होता है जब लेजर पल्सविड्थ तनाव विश्राम समय से बहुत कम होता है | तनाव बंधन में, जो तब होता है जब लेजर पल्सविड्थ तनाव विश्राम समय Eq से बहुत कम होता है<ref name="Wang_BioMedBooK"/>। (2) आगे के रूप में व्युत्पन्न किया जा सकता है | ||
:<math>p(\vec{r},t)=\frac{1}{4 \pi v_s^2} \frac{\partial}{\partial t} \left [\frac{1}{v_s t} \int d \vec{r'} p_0(\vec{r'}) \delta \left (t-\frac{|\vec{r}-\vec{r'}|}{v_s} \right) \right] \qquad \,(3), </math> | :<math>p(\vec{r},t)=\frac{1}{4 \pi v_s^2} \frac{\partial}{\partial t} \left [\frac{1}{v_s t} \int d \vec{r'} p_0(\vec{r'}) \delta \left (t-\frac{|\vec{r}-\vec{r'}|}{v_s} \right) \right] \qquad \,(3), </math> | ||
जहाँ <math>p_0</math> प्रारंभिक फोटो ध्वनिक दबाव है। | |||
=== यूनिवर्सल पुनर्निर्माण एल्गोरिथम === | === यूनिवर्सल पुनर्निर्माण एल्गोरिथम === | ||
एक पीएटी प्रणाली में, एक सतह पर एक अल्ट्रासोनिक ट्रांसड्यूसर को स्कैन करके ध्वनि दबाव का पता लगाया जाता है जो फोटोकॉस्टिक स्रोत को घेरता है। आंतरिक स्रोत वितरण का पुनर्निर्माण करने के लिए, हमें समीकरण (3) की व्युत्क्रम समस्या को हल करने की आवश्यकता है (अर्थात प्राप्त करने के लिए <math>p_0</math>). पीएटी पुनर्निर्माण के लिए | एक पीएटी प्रणाली में, एक सतह पर एक अल्ट्रासोनिक ट्रांसड्यूसर को स्कैन करके ध्वनि दबाव का पता लगाया जाता है जो फोटोकॉस्टिक स्रोत को घेरता है। आंतरिक स्रोत वितरण का पुनर्निर्माण करने के लिए, हमें समीकरण (3) की व्युत्क्रम समस्या को हल करने की आवश्यकता है (अर्थात प्राप्त करने के लिए <math>p_0</math>). पीएटी पुनर्निर्माण के लिए प्रयुक्त एक प्रतिनिधि विधि को सार्वभौमिक बैकप्रोजेक्शन एल्गोरिथम के रूप में जाना जाता है।<ref name= Xu_2005>{{cite journal |author=M. Xu|title=फोटोअकॉस्टिक-कंप्यूटेड टोमोग्राफी के लिए यूनिवर्सल बैक-प्रोजेक्शन एल्गोरिथम|journal=Physical Review E|volume=71|page=016706|year=2005|doi=10.1103/PhysRevE.71.016706 |pmid=15697763|issue=1|display-authors=etal|bibcode=2005PhRvE..71a6706X|url=https://authors.library.caltech.edu/67913/1/PhysRevE.71.016706.pdf|hdl=1969.1/180492|hdl-access=free}</ref> यह विधि तीन इमेजिंग ज्यामिति के लिए उपयुक्त है: तलीय, गोलाकार और बेलनाकार सतहें। | ||
यूनिवर्सल बैक | यूनिवर्सल बैक प्रक्षेपण सूत्र है | ||
{{center|1=<math>\left.p_0(\vec{r})=\int_{\Omega_0} \frac{d \Omega_0}{\Omega_0} \left [2 p(\vec{r_0},v_s t) - 2 v_s t \frac{\partial p(\vec{r_0},v_s t)}{\partial (v_s t)} \right]\right|_{t=|\vec{r} - \vec{r_0}|/v_s},\qquad \quad(4), </math>}} | {{center|1=<math>\left.p_0(\vec{r})=\int_{\Omega_0} \frac{d \Omega_0}{\Omega_0} \left [2 p(\vec{r_0},v_s t) - 2 v_s t \frac{\partial p(\vec{r_0},v_s t)}{\partial (v_s t)} \right]\right|_{t=|\vec{r} - \vec{r_0}|/v_s},\qquad \quad(4), </math>}} | ||
जहां <math>\Omega_0</math>, <math>S_0</math> के अंदर पुनर्निर्माण बिंदु <math>\vec{r}</math> के संबंध में संपूर्ण सतह <math>S_0</math> द्वारा अंतरित ठोस कोण है, और | |||
{{center|1=<math>d \Omega_0 = \frac{d S_0}{|\vec{r} - \vec{r_0}|^2} \frac{\hat n_0^s . (\vec{r} - \vec{r_0})}{|\vec{r} - \vec{r_0}|}. </math>}} | {{center|1=<math>d \Omega_0 = \frac{d S_0}{|\vec{r} - \vec{r_0}|^2} \frac{\hat n_0^s . (\vec{r} - \vec{r_0})}{|\vec{r} - \vec{r_0}|}. </math>}} | ||
=== सरल प्रणाली === | === सरल प्रणाली === | ||
एक साधारण पीएटी/टीएटी/ओएटी | एक साधारण पीएटी/टीएटी/ओएटी प्रणाली को चित्र 3 के बाएं भाग में दिखाया गया है।{{where|date=May 2017}} रुचि के पूरे क्षेत्र को कवर करने के लिए लेजर बीम का विस्तार और प्रसार किया जाता है। फोटो ध्वनिक तरंगें लक्ष्य में ऑप्टिकल अवशोषण के वितरण के अनुपात में उत्पन्न होती हैं, और एक स्कैन किए गए अल्ट्रासोनिक ट्रांसड्यूसर द्वारा पता लगाया जाता है। एक टीएटी/ओएटी प्रणाली पीएटी के समान है सिवाय इसके कि यह लेजर के बजाय माइक्रोवेव उत्तेजना स्रोत का उपयोग करती है। चूँकि इन दो प्रणालियों में एकल-तत्व ट्रांसड्यूसर नियोजित किए गए हैं, किन्तु अल्ट्रासाउंड सरणियों का उपयोग करने के लिए भी पता लगाने की योजना को बढ़ाया जा सकता है। | ||
=== बायोमेडिकल एप्लिकेशन === | === बायोमेडिकल एप्लिकेशन === | ||
Line 126: | Line 127: | ||
==== हेमोडायनामिक्स मॉनिटरिंग ==== | ==== हेमोडायनामिक्स मॉनिटरिंग ==== | ||
HbO<sub>2</sub> के बाद से और एचबी दृश्यमान स्पेक्ट्रल रेंज में जैविक ऊतकों में प्रमुख अवशोषित यौगिक हैं, इन दो [[क्रोमोफोर]]स की सापेक्षिक एकाग्रता को प्रकट करने के लिए कई तरंग दैर्ध्य फोटोकॉस्टिक माप का उपयोग किया जा सकता है।<ref name="XDW_2003"/><ref name= XDW_2006>{{cite journal |author=X. Wang|title=उच्च-रिज़ॉल्यूशन फोटोकॉस्टिक टोमोग्राफी का उपयोग करके चूहे के मस्तिष्क में हीमोग्लोबिन एकाग्रता और ऑक्सीकरण की गैर-इनवेसिव इमेजिंग|journal=Journal of Biomedical Optics|volume=11|pages=024015|year=2006|doi=10.1117/1.2192804 |pmid=16674205 |issue=2|display-authors=etal|bibcode=2006JBO....11b4015W|s2cid=9488754 |url=https://authors.library.caltech.edu/72156/1/024015_1_2006.pdf}</ref> इस प्रकार, हीमोग्लोबिन (HbT) की सापेक्ष कुल सांद्रता और हीमोग्लोबिन ऑक्सीजन संतृप्ति (sO<sub>2</sub>) प्राप्त किया जा सकता है। इसलिए, पीएटी के साथ मस्तिष्क कार्य से जुड़े सेरेब्रल हेमोडायनामिक परिवर्तनों का सफलतापूर्वक पता लगाया जा सकता है। | |||
====स्तन कैंसर निदान==== | ====स्तन कैंसर निदान==== | ||
उत्तेजना के लिए कम बिखरे हुए माइक्रोवेव का उपयोग करके, टीएटी मिमी से कम स्थानिक | उत्तेजना के लिए कम बिखरे हुए माइक्रोवेव का उपयोग करके, टीएटी मिमी से कम स्थानिक समाधान वाले मोटे (कई सेमी) जैविक ऊतकों को भेदने में सक्षम है।<ref name= GK_2005>{{cite journal |author=G. Ku|title=स्तन इमेजिंग की ओर मोटे जैविक ऊतकों की थर्मोकॉस्टिक और फोटोकॉस्टिक टोमोग्राफी|journal=Technology in Cancer Research and Treatment|volume=4|pages=559–566|year=2005 |issue=5 |pmid=16173826|display-authors=etal|doi=10.1177/153303460500400509|hdl=1969.1/181686|s2cid=15782118|hdl-access=free}</ref> चूंकि कैंसरयुक्त ऊतक और सामान्य ऊतक में रेडियो आवृत्ति विकिरण के प्रति लगभग समान प्रतिक्रिया होती है, TAT में प्रारंभिक स्तन कैंसर के निदान की क्षमता सीमित होती है। | ||
== प्रकाश ध्वनिक माइक्रोस्कोपी == | == प्रकाश ध्वनिक माइक्रोस्कोपी == | ||
{{main| | {{main|फोटो ध्वनिक माइक्रोस्कोपी}} | ||
फोटोअकॉस्टिक माइक्रोस्कोपी की इमेजिंग गहराई मुख्य रूप से अल्ट्रासोनिक क्षीणन द्वारा सीमित है। स्थानिक ( | |||
फोटोअकॉस्टिक माइक्रोस्कोपी की इमेजिंग गहराई मुख्य रूप से अल्ट्रासोनिक क्षीणन द्वारा सीमित है। स्थानिक (जिससे अक्षीय और पार्श्व) संकल्प उपयोग किए गए अल्ट्रासोनिक ट्रांसड्यूसर पर निर्भर करते हैं। उच्च केंद्रीय आवृत्ति और व्यापक बैंडविड्थ के साथ एक अल्ट्रासोनिक ट्रांसड्यूसर को उच्च अक्षीय समाधान प्राप्त करने के लिए चुना जाता है। पार्श्व संकल्प ट्रांसड्यूसर के फोकल व्यास द्वारा निर्धारित किया जाता है। उदाहरण के लिए, एक 50 मेगाहर्ट्ज अल्ट्रासोनिक ट्रांसड्यूसर ~3 मिमी इमेजिंग गहराई के साथ 15 माइक्रोमीटर अक्षीय और 45 माइक्रोमीटर पार्श्व समाधान प्रदान करता है। | |||
फोटोअकॉस्टिक माइक्रोस्कोपी के कार्यात्मक इमेजिंग में कई महत्वपूर्ण अनुप्रयोग हैं: यह छोटे जहाजों में ऑक्सीजनयुक्त/डीऑक्सीजनेटेड हीमोग्लोबिन में परिवर्तन का पता लगा सकता है।<ref>{{Cite journal|last1=Yao|first1=Junjie|last2=Wang|first2=Lihong V.|date=2013-01-31|title=फोटो ध्वनिक माइक्रोस्कोपी|journal=Laser & Photonics Reviews|volume=7|issue=5|pages=758–778|doi=10.1002/lpor.201200060|pmid=24416085|pmc=3887369|bibcode=2013LPRv....7..758Y|issn=1863-8880}}</ref><ref>{{Cite journal|last1=Zhang|first1=Hao F|last2=Maslov|first2=Konstantin|last3=Stoica|first3=George|last4=Wang|first4=Lihong V|date=2006-06-25|title=विवो इमेजिंग में उच्च-रिज़ॉल्यूशन और गैर-इनवेसिव के लिए कार्यात्मक फोटोकॉस्टिक माइक्रोस्कोपी|journal=Nature Biotechnology|volume=24|issue=7|pages=848–851|doi=10.1038/nbt1220|pmid=16823374|s2cid=912509|issn=1087-0156|url=https://authors.library.caltech.edu/67910/2/nbt1220-S1.pdf}}</ref> | फोटोअकॉस्टिक माइक्रोस्कोपी के कार्यात्मक इमेजिंग में कई महत्वपूर्ण अनुप्रयोग हैं: यह छोटे जहाजों में ऑक्सीजनयुक्त/डीऑक्सीजनेटेड हीमोग्लोबिन में परिवर्तन का पता लगा सकता है।<ref>{{Cite journal|last1=Yao|first1=Junjie|last2=Wang|first2=Lihong V.|date=2013-01-31|title=फोटो ध्वनिक माइक्रोस्कोपी|journal=Laser & Photonics Reviews|volume=7|issue=5|pages=758–778|doi=10.1002/lpor.201200060|pmid=24416085|pmc=3887369|bibcode=2013LPRv....7..758Y|issn=1863-8880}}</ref><ref>{{Cite journal|last1=Zhang|first1=Hao F|last2=Maslov|first2=Konstantin|last3=Stoica|first3=George|last4=Wang|first4=Lihong V|date=2006-06-25|title=विवो इमेजिंग में उच्च-रिज़ॉल्यूशन और गैर-इनवेसिव के लिए कार्यात्मक फोटोकॉस्टिक माइक्रोस्कोपी|journal=Nature Biotechnology|volume=24|issue=7|pages=848–851|doi=10.1038/nbt1220|pmid=16823374|s2cid=912509|issn=1087-0156|url=https://authors.library.caltech.edu/67910/2/nbt1220-S1.pdf}}</ref> | ||
Line 139: | Line 141: | ||
== अन्य अनुप्रयोग == | == अन्य अनुप्रयोग == | ||
फोटोकॉस्टिक इमेजिंग को | फोटोकॉस्टिक इमेजिंग को वर्तमान ही में [[कला का काम]] डायग्नोस्टिक्स के संदर्भ में प्रस्तुत किया गया था, जिसमें [[ चित्रकारी ]] में अंडरड्रॉइंग या मूल स्केच रेखाओ जैसी छिपी हुई विशेषताओं को उजागर करने पर जोर दिया गया था। [[कैनवास]] पर मिनिएचर [[तैल चित्र]] से एकत्र की गई फोटोकॉस्टिक छवियां, उनके विपरीत स्थति पर एक स्पंदित लेजर से प्रकाशित होती हैं, स्पष्ट रूप से कई पेंट परतों द्वारा लेपित पेंसिल स्केच रेखाओ की उपस्थिति का पता चलता है।<ref>{{Cite journal|last1=Tserevelakis|first1=George J.|last2=Vrouvaki|first2=Ilianna|last3=Siozos|first3=Panagiotis|last4=Melessanaki|first4=Krystallia|last5=Hatzigiannakis|first5=Kostas|last6=Fotakis|first6=Costas|last7=Zacharakis|first7=Giannis|date=2017-04-07|title=फोटोअकॉस्टिक इमेजिंग से पेंटिंग्स में छिपे अंडरड्रॉइंग का पता चलता है|journal=Scientific Reports|language=En|volume=7|issue=1|pages=747|doi=10.1038/s41598-017-00873-7|pmid=28389668|pmc=5429688|issn=2045-2322|bibcode=2017NatSR...7..747T}}</ref> | ||
== फोटोकॉस्टिक इमेजिंग में प्रगति == | == फोटोकॉस्टिक इमेजिंग में प्रगति == | ||
फोटोअकॉस्टिक इमेजिंग ने गहन शिक्षण सिद्धांतों और कंप्रेस्ड सेंसिंग के एकीकरण के माध्यम से | फोटोअकॉस्टिक इमेजिंग ने गहन शिक्षण सिद्धांतों और कंप्रेस्ड सेंसिंग के एकीकरण के माध्यम से वर्तमान प्रगति देखी है। [[फोटोकॉस्टिक इमेजिंग में डीप लर्निंग]] एप्लिकेशन के बारे में अधिक जानकारी के लिए, फोटोएकॉस्टिक इमेजिंग में डीप लर्निंग देखें। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:56, 14 May 2023
Photoacoustic imaging | |
---|---|
फोटो ध्वनिक इमेजिंग या प्रकाश ध्वनिक इमेजिंग एक बायोमेडिकल इमेजिंग साधन है जो फोटोकॉस्टिक प्रभाव पर आधारित है। गैर-आयनीकरण लेज़र दालों को जैविक ऊतकों में वितरित किया जाता है और ऊर्जा का भाग अवशोषित हो जाएगा और गर्मी में परिवर्तित हो जाएगा, जिससे क्षणिक थर्मोइलास्टिक विस्तार होगा और इस प्रकार वाइडबैंड (जिससे मेगाहर्ट्ज) अल्ट्रासाउंड उत्सर्जन होगा। उत्पन्न अल्ट्रासोनिक तरंगों को अल्ट्रासोनिक ट्रांसड्यूसर द्वारा पता लगाया जाता है और फिर छवियों का उत्पादन करने के लिए विश्लेषण किया जाता है। यह ज्ञात है कि ऑप्टिकल अवशोषण शारीरिक गुणों से निकटता से जुड़ा हुआ है, जैसे हीमोग्लोबिन एकाग्रता और ऑक्सीजन संतृप्ति।[1] परिणामस्वरूप, अल्ट्रासोनिक उत्सर्जन (अर्थात् प्रकाशध्वनिक संकेत) का परिमाण, जो स्थानीय ऊर्जा जमाव के समानुपाती होता है, शारीरिक रूप से विशिष्ट ऑप्टिकल अवशोषण कंट्रास्ट प्रकट करता है। इसके बाद लक्षित क्षेत्रों की 2डी या 3डी छवियां बनाई जा सकती हैं।[2]
बायोमेडिकल इमेजिंग
जैविक ऊतकों में ऑप्टिकल अवशोषण अंतर्जात अणुओं जैसे हीमोग्लोबिन या मेलेनिन, या बाहरी रूप से वितरित विपरीत एजेंटों के कारण हो सकता है। एक उदाहरण के रूप में, चित्र 2 में हीमोग्लोबिन (HbO2) और हीमोग्लोबिन (Hb) दृश्य और निकट अवरक्त क्षेत्र मे[3] चूंकि रक्त में सामान्यतः आसपास के ऊतकों की तुलना में उच्च अवशोषण के आदेश होते हैं, रक्त वाहिकाओं को देखने के लिए फोटोकॉस्टिक इमेजिंग के लिए पर्याप्त अंतर्जात विपरीत होता है। वर्तमान के अध्ययनों से पता चला है कि विवो में ट्यूमर एंजियोजिनेसिस मॉनिटरिंग, ऑक्सीजनेशन (मेडिकल) मैपिंग, कार्यात्मक मस्तिष्क इमेजिंग, त्वचा मेलेनोमा का पता लगाने, मेटहीमोग्लोबिन मापने आदि के लिए फोटोकॉस्टिक इमेजिंग का उपयोग किया जा सकता है।[2]
Δf | प्राथमिक कंट्रास्ट | Δz | δz | δx | गति | |
---|---|---|---|---|---|---|
Hz | mm | μm | μm | Mvx/s | ||
फोटो ध्वनिक माइक्रोस्कोपी | 50 M | ऑप्टिकल अवशोषण | 3 | 15 | 45 | 0.5 |
फोटो ध्वनिक टोमोग्राफी | 5 M | ऑप्टिकल अवशोषण | 50 | 700 | 700 | 0.5 |
संनाभि माइक्रोस्कोपी | प्रतिदीप्ति, प्रकीर्णन | 0.2 | 3-20 | 0.3-3 | 10-100 | |
दो-फोटॉन माइक्रोस्कोपी | प्रतिदीप्ति | 0.5-1.0 | 1-10 | 0.3-3 | 10-100 | |
ऑप्टिकल कोहरेन्स टोमोग्राफी | 300 T | ऑप्टिकल प्रकीर्णन | 1-2 | 0.5-10 | 1-10 | 20-4.000 |
स्कैनिंग लेजर ध्वनिक माइक्रोस्कोपी | 300 M | अल्ट्रासोनिक प्रकीर्णन | 1-2 | 20 | 20 | 10 |
ध्वनिक माइक्रोस्कोपी | 50 M | अल्ट्रासोनिक प्रकीर्णन | 20 | 20-100 | 80-160 | 0.1 |
अल्ट्रासोनोग्राफी | 5 M | अल्ट्रासोनिक प्रकीर्णन | 60 | 300 | 300 | 1 |
तालिका 1. कंट्रास्ट तंत्र की तुलना, पैठ गहराई (Δz), अक्षीय विभेदन (δz), पार्श्व विभेदन (δx=δy) और कन्फोकल माइक्रोस्कोपी की इमेजिंग गति, दो-फोटोन माइक्रोस्कोपी, ऑप्टिकल जुटना टोमोग्राफी (300 THz), अल्ट्रासाउंड माइक्रोस्कोपी ( 50 मेगाहर्ट्ज), अल्ट्रासाउंड इमेजिंग (5 मेगाहर्ट्ज), फोटोअकॉस्टिक माइक्रोस्कोपी (50 मेगाहर्ट्ज), और फोटोअकॉस्टिक टोमोग्राफी (3.5 मेगाहर्ट्ज)। गैर-समानांतर तकनीकों की प्रति सेकंड मेगावोक्सल में गति। |
दो प्रकार के फोटोअकॉस्टिक इमेजिंग प्रणाली , फोटोअकॉस्टिक/थर्मोआकॉस्टिक कंप्यूटेड टोमोग्राफी (जिसे फोटोएकॉस्टिक/थर्मोअकॉस्टिक टोमोग्राफी, जिससे पीएटी/टीएटी के रूप में भी जाना जाता है) और फोटोकॉस्टिक माइक्रोस्कोपी (पीएएम) विकसित किए गए हैं। एक विशिष्ट पीएटी प्रणाली फोटोअकॉस्टिक संकेतों को प्राप्त करने के लिए एक अनफोकस्ड अल्ट्रासाउंड सूचक का उपयोग करती है, और फोटोकॉस्टिक समीकरणों को विपरीत रूप से हल करके छवि का पुनर्निर्माण किया जाता है। दूसरी ओर एक पीएएम प्रणाली, 2डी बिंदु-दर-बिंदु स्कैनिंग के साथ एक गोलाकार रूप से केंद्रित अल्ट्रासाउंड सूचक का उपयोग करती है, और इसके लिए किसी पुनर्निर्माण एल्गोरिदम की आवश्यकता नहीं होती है।
फोटोअकॉस्टिक कंप्यूटेड टोमोग्राफी
सामान्य समीकरण
ऊष्मा कार्य को देखते हुए , प्रकाश ध्वनिक तरंग दबाव का उत्पादन और प्रसार एक ध्वनिक रूप से सजातीय इनविसिड माध्यम द्वारा नियंत्रित होता है
जहाँ माध्यम में ध्वनि की गति है, थर्मल विस्तार गुणांक है, और निरंतर दबाव पर विशिष्ट ताप क्षमता है। सम। (1) यह सुनिश्चित करने के लिए थर्मल बंधन के तहत रखता है कि लेजर पल्स उत्तेजना के समय गर्मी चालन नगण्य है। थर्मल बंधन तब होता है जब लेजर पल्सविड्थ थर्मल विश्राम समय से बहुत कम होता है।[4]
Eq का आगे का समाधान। (1) द्वारा दिया गया है
तनाव बंधन में, जो तब होता है जब लेजर पल्सविड्थ तनाव विश्राम समय Eq से बहुत कम होता है[4]। (2) आगे के रूप में व्युत्पन्न किया जा सकता है
जहाँ प्रारंभिक फोटो ध्वनिक दबाव है।
यूनिवर्सल पुनर्निर्माण एल्गोरिथम
एक पीएटी प्रणाली में, एक सतह पर एक अल्ट्रासोनिक ट्रांसड्यूसर को स्कैन करके ध्वनि दबाव का पता लगाया जाता है जो फोटोकॉस्टिक स्रोत को घेरता है। आंतरिक स्रोत वितरण का पुनर्निर्माण करने के लिए, हमें समीकरण (3) की व्युत्क्रम समस्या को हल करने की आवश्यकता है (अर्थात प्राप्त करने के लिए ). पीएटी पुनर्निर्माण के लिए प्रयुक्त एक प्रतिनिधि विधि को सार्वभौमिक बैकप्रोजेक्शन एल्गोरिथम के रूप में जाना जाता है।[5] यह विधि तीन इमेजिंग ज्यामिति के लिए उपयुक्त है: तलीय, गोलाकार और बेलनाकार सतहें।
यूनिवर्सल बैक प्रक्षेपण सूत्र है
जहां , के अंदर पुनर्निर्माण बिंदु के संबंध में संपूर्ण सतह द्वारा अंतरित ठोस कोण है, और
सरल प्रणाली
एक साधारण पीएटी/टीएटी/ओएटी प्रणाली को चित्र 3 के बाएं भाग में दिखाया गया है।[where?] रुचि के पूरे क्षेत्र को कवर करने के लिए लेजर बीम का विस्तार और प्रसार किया जाता है। फोटो ध्वनिक तरंगें लक्ष्य में ऑप्टिकल अवशोषण के वितरण के अनुपात में उत्पन्न होती हैं, और एक स्कैन किए गए अल्ट्रासोनिक ट्रांसड्यूसर द्वारा पता लगाया जाता है। एक टीएटी/ओएटी प्रणाली पीएटी के समान है सिवाय इसके कि यह लेजर के बजाय माइक्रोवेव उत्तेजना स्रोत का उपयोग करती है। चूँकि इन दो प्रणालियों में एकल-तत्व ट्रांसड्यूसर नियोजित किए गए हैं, किन्तु अल्ट्रासाउंड सरणियों का उपयोग करने के लिए भी पता लगाने की योजना को बढ़ाया जा सकता है।
बायोमेडिकल एप्लिकेशन
आंतरिक ऑप्टिकल या माइक्रोवेव अवशोषण कंट्रास्ट और अल्ट्रासाउंड के विवर्तन-सीमित उच्च स्थानिक संकल्प विस्तृत बायोमेडिकल अनुप्रयोगों के लिए पीएटी और टीएटी आशाजनक इमेजिंग रूपरेखा बनाते हैं:
मस्तिष्क घाव का पता लगाना
मस्तिष्क में विभिन्न ऑप्टिकल अवशोषण गुणों वाले नरम ऊतकों को पीएटी द्वारा स्पष्ट रूप से पहचाना जा सकता है।[6]
हेमोडायनामिक्स मॉनिटरिंग
HbO2 के बाद से और एचबी दृश्यमान स्पेक्ट्रल रेंज में जैविक ऊतकों में प्रमुख अवशोषित यौगिक हैं, इन दो क्रोमोफोरस की सापेक्षिक एकाग्रता को प्रकट करने के लिए कई तरंग दैर्ध्य फोटोकॉस्टिक माप का उपयोग किया जा सकता है।[6][7] इस प्रकार, हीमोग्लोबिन (HbT) की सापेक्ष कुल सांद्रता और हीमोग्लोबिन ऑक्सीजन संतृप्ति (sO2) प्राप्त किया जा सकता है। इसलिए, पीएटी के साथ मस्तिष्क कार्य से जुड़े सेरेब्रल हेमोडायनामिक परिवर्तनों का सफलतापूर्वक पता लगाया जा सकता है।
स्तन कैंसर निदान
उत्तेजना के लिए कम बिखरे हुए माइक्रोवेव का उपयोग करके, टीएटी मिमी से कम स्थानिक समाधान वाले मोटे (कई सेमी) जैविक ऊतकों को भेदने में सक्षम है।[8] चूंकि कैंसरयुक्त ऊतक और सामान्य ऊतक में रेडियो आवृत्ति विकिरण के प्रति लगभग समान प्रतिक्रिया होती है, TAT में प्रारंभिक स्तन कैंसर के निदान की क्षमता सीमित होती है।
प्रकाश ध्वनिक माइक्रोस्कोपी
फोटोअकॉस्टिक माइक्रोस्कोपी की इमेजिंग गहराई मुख्य रूप से अल्ट्रासोनिक क्षीणन द्वारा सीमित है। स्थानिक (जिससे अक्षीय और पार्श्व) संकल्प उपयोग किए गए अल्ट्रासोनिक ट्रांसड्यूसर पर निर्भर करते हैं। उच्च केंद्रीय आवृत्ति और व्यापक बैंडविड्थ के साथ एक अल्ट्रासोनिक ट्रांसड्यूसर को उच्च अक्षीय समाधान प्राप्त करने के लिए चुना जाता है। पार्श्व संकल्प ट्रांसड्यूसर के फोकल व्यास द्वारा निर्धारित किया जाता है। उदाहरण के लिए, एक 50 मेगाहर्ट्ज अल्ट्रासोनिक ट्रांसड्यूसर ~3 मिमी इमेजिंग गहराई के साथ 15 माइक्रोमीटर अक्षीय और 45 माइक्रोमीटर पार्श्व समाधान प्रदान करता है।
फोटोअकॉस्टिक माइक्रोस्कोपी के कार्यात्मक इमेजिंग में कई महत्वपूर्ण अनुप्रयोग हैं: यह छोटे जहाजों में ऑक्सीजनयुक्त/डीऑक्सीजनेटेड हीमोग्लोबिन में परिवर्तन का पता लगा सकता है।[9][10]
अन्य अनुप्रयोग
फोटोकॉस्टिक इमेजिंग को वर्तमान ही में कला का काम डायग्नोस्टिक्स के संदर्भ में प्रस्तुत किया गया था, जिसमें चित्रकारी में अंडरड्रॉइंग या मूल स्केच रेखाओ जैसी छिपी हुई विशेषताओं को उजागर करने पर जोर दिया गया था। कैनवास पर मिनिएचर तैल चित्र से एकत्र की गई फोटोकॉस्टिक छवियां, उनके विपरीत स्थति पर एक स्पंदित लेजर से प्रकाशित होती हैं, स्पष्ट रूप से कई पेंट परतों द्वारा लेपित पेंसिल स्केच रेखाओ की उपस्थिति का पता चलता है।[11]
फोटोकॉस्टिक इमेजिंग में प्रगति
फोटोअकॉस्टिक इमेजिंग ने गहन शिक्षण सिद्धांतों और कंप्रेस्ड सेंसिंग के एकीकरण के माध्यम से वर्तमान प्रगति देखी है। फोटोकॉस्टिक इमेजिंग में डीप लर्निंग एप्लिकेशन के बारे में अधिक जानकारी के लिए, फोटोएकॉस्टिक इमेजिंग में डीप लर्निंग देखें।
यह भी देखें
- मल्टीस्पेक्ट्रल ऑप्टोअकॉस्टिक टोमोग्राफी
- फोटोकॉस्टिक माइक्रोस्कोपी
- फोटोअकॉस्टिक इमेजिंग में डीप लर्निंग
- फोटो ध्वनिक प्रभाव
संदर्भ
- ↑ A. Grinvald; et al. (1986). "आंतरिक संकेतों की ऑप्टिकल इमेजिंग द्वारा कोर्टेक्स की कार्यात्मक संरचना का पता चला". Nature. 324 (6095): 361–364. Bibcode:1986Natur.324..361G. doi:10.1038/324361a0. PMID 3785405. S2CID 4328958.
- ↑ 2.0 2.1 M. Xu; L.H. Wang (2006). "बायोमेडिसिन में फोटोकॉस्टिक इमेजिंग" (PDF). Review of Scientific Instruments. 77 (4): 041101–041101–22. Bibcode:2006RScI...77d1101X. doi:10.1063/1.2195024.
- ↑ Optical Properties Spectra
- ↑ 4.0 4.1 L.H. Wang; H.I. Wu (2007). बायोमेडिकल ऑप्टिक्स. Wiley. ISBN 978-0-471-74304-0.
- ↑ {{cite journal |author=M. Xu|title=फोटोअकॉस्टिक-कंप्यूटेड टोमोग्राफी के लिए यूनिवर्सल बैक-प्रोजेक्शन एल्गोरिथम|journal=Physical Review E|volume=71|page=016706|year=2005|doi=10.1103/PhysRevE.71.016706 |pmid=15697763|issue=1|display-authors=etal|bibcode=2005PhRvE..71a6706X|url=https://authors.library.caltech.edu/67913/1/PhysRevE.71.016706.pdf%7Chdl=1969.1/180492%7Chdl-access=free}
- ↑ 6.0 6.1 X. Wang; et al. (2003). "'इन विवो' मस्तिष्क की संरचनात्मक और कार्यात्मक इमेजिंग के लिए गैर-इनवेसिव लेजर-प्रेरित फोटोकॉस्टिक टोमोग्राफी" (PDF). Nature Biotechnology. 21 (7): 803–806. doi:10.1038/nbt839. PMID 12808463. S2CID 2961096.
- ↑ {{cite journal |author=X. Wang|title=उच्च-रिज़ॉल्यूशन फोटोकॉस्टिक टोमोग्राफी का उपयोग करके चूहे के मस्तिष्क में हीमोग्लोबिन एकाग्रता और ऑक्सीकरण की गैर-इनवेसिव इमेजिंग|journal=Journal of Biomedical Optics|volume=11|pages=024015|year=2006|doi=10.1117/1.2192804 |pmid=16674205 |issue=2|display-authors=etal|bibcode=2006JBO....11b4015W|s2cid=9488754 |url=https://authors.library.caltech.edu/72156/1/024015_1_2006.pdf}
- ↑ {{cite journal |author=G. Ku|title=स्तन इमेजिंग की ओर मोटे जैविक ऊतकों की थर्मोकॉस्टिक और फोटोकॉस्टिक टोमोग्राफी|journal=Technology in Cancer Research and Treatment|volume=4|pages=559–566|year=2005 |issue=5 |pmid=16173826|display-authors=etal|doi=10.1177/153303460500400509|hdl=1969.1/181686|s2cid=15782118|hdl-access=free}
- ↑ Yao, Junjie; Wang, Lihong V. (2013-01-31). "फोटो ध्वनिक माइक्रोस्कोपी". Laser & Photonics Reviews. 7 (5): 758–778. Bibcode:2013LPRv....7..758Y. doi:10.1002/lpor.201200060. ISSN 1863-8880. PMC 3887369. PMID 24416085.
- ↑ Zhang, Hao F; Maslov, Konstantin; Stoica, George; Wang, Lihong V (2006-06-25). "विवो इमेजिंग में उच्च-रिज़ॉल्यूशन और गैर-इनवेसिव के लिए कार्यात्मक फोटोकॉस्टिक माइक्रोस्कोपी" (PDF). Nature Biotechnology. 24 (7): 848–851. doi:10.1038/nbt1220. ISSN 1087-0156. PMID 16823374. S2CID 912509.
- ↑ Tserevelakis, George J.; Vrouvaki, Ilianna; Siozos, Panagiotis; Melessanaki, Krystallia; Hatzigiannakis, Kostas; Fotakis, Costas; Zacharakis, Giannis (2017-04-07). "फोटोअकॉस्टिक इमेजिंग से पेंटिंग्स में छिपे अंडरड्रॉइंग का पता चलता है". Scientific Reports (in English). 7 (1): 747. Bibcode:2017NatSR...7..747T. doi:10.1038/s41598-017-00873-7. ISSN 2045-2322. PMC 5429688. PMID 28389668.