चार बल: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
:<math>{\mathbf{f}\cdot\mathbf{u}}={\mathrm{d} \over \mathrm{d}t} \left(\gamma mc^2 \right)={\mathrm{d}E \over \mathrm{d}t} .</math> | :<math>{\mathbf{f}\cdot\mathbf{u}}={\mathrm{d} \over \mathrm{d}t} \left(\gamma mc^2 \right)={\mathrm{d}E \over \mathrm{d}t} .</math> | ||
यहाँ <math>\mathbf{u}</math>, <math>\mathbf{p}</math> और <math>\mathbf{f}</math> [[3-अंतरिक्ष]] सदिश हैं जो क्रमशः वेग, कण के संवेग और उस पर कार्य करने वाले बल का वर्णन करते हैं। | |||
== थर्मोडायनामिक इंटरैक्शन सहित == | == थर्मोडायनामिक इंटरैक्शन सहित == | ||
पिछले खंड के सूत्रों से ऐसा प्रतीत होता है कि चार-बलों का समय घटक खर्च की गई शक्ति है, <math>\mathbf{f}\cdot\mathbf{u}</math>, सापेक्षतावादी सुधारों के अलावा <math>\gamma/c</math>. यह विशुद्ध रूप से यांत्रिक स्थितियों में ही सच है, जब गर्मी का आदान-प्रदान गायब हो जाता है या उपेक्षित किया जा सकता है। | पिछले खंड के सूत्रों से ऐसा प्रतीत होता है कि चार-बलों का समय घटक खर्च की गई शक्ति है, <math>\mathbf{f}\cdot\mathbf{u}</math>, सापेक्षतावादी सुधारों के अलावा <math>\gamma/c</math>. यह विशुद्ध रूप से यांत्रिक स्थितियों में ही सच है, जब गर्मी का आदान-प्रदान गायब हो जाता है या उपेक्षित किया जा सकता है। | ||
पूर्ण थर्मो-मैकेनिकल स्थितियों में, न केवल [[कार्य (थर्मोडायनामिक्स)]], किंतु[[ गर्मी (थर्मोडायनामिक्स) ]] भी ऊर्जा में परिवर्तन में योगदान देता है, जो कि चार-गति का समय घटक है। ऊर्जा-संवेग कोवेक्टर। चार बल के समय घटक में इस | पूर्ण थर्मो-मैकेनिकल स्थितियों में, न केवल [[कार्य (थर्मोडायनामिक्स)]], किंतु[[ गर्मी (थर्मोडायनामिक्स) | गर्मी (थर्मोडायनामिक्स)]] भी ऊर्जा में परिवर्तन में योगदान देता है, जो कि चार-गति का समय घटक है। ऊर्जा-संवेग कोवेक्टर। चार बल के समय घटक में इस स्थिति में एक ताप दर सम्मलित है <math>h</math>, शक्ति के अतिरिक्त <math>\mathbf{f}\cdot\mathbf{u}</math>.<ref name=grotetal1966>{{cite journal|last1=Grot|first1=Richard A.|last2=Eringen|first2=A. Cemal|title=Relativistic continuum mechanics: Part I – Mechanics and thermodynamics|date=1966|journal=Int. J. Engng Sci.|volume=4|issue=6|pages=611–638, 664|doi=10.1016/0020-7225(66)90008-5}}</ref> ध्यान दें कि काम और गर्मी को सार्थक रूप से अलग नहीं किया जा सकता है, चूँकि, वे दोनों जड़ता रखते हैं।<ref name=eckart1940>{{cite journal|last1=Eckart|first1=Carl|title=अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी। तृतीय। सरल द्रव का सापेक्षवादी सिद्धांत|date=1940|journal=Phys. Rev.|volume=58|issue=10|pages=919–924|doi=10.1103/PhysRev.58.919|bibcode=1940PhRv...58..919E}}</ref> यह तथ्य संपर्क बलों तक भी फैला हुआ है, यानी तनाव-ऊर्जा टेंसर तनाव-ऊर्जा-संवेग टेंसर होता है।<ref name=truesdelletal1960>C. A. Truesdell, R. A. Toupin: ''The Classical Field Theories'' (in S. Flügge (ed.): ''Encyclopedia of Physics, Vol. III-1'', Springer 1960). §§152–154 and 288–289.</ref><ref name=eckart1940 /> | ||
इसलिए, थर्मो-मैकेनिकल स्थितियों में चार-बल का समय घटक शक्ति के समानुपाती नहीं होता है <math>\mathbf{f}\cdot\mathbf{u}</math> किन्तु एक अधिक सामान्य अभिव्यक्ति है, जिसे केस दर केस दिया जाना है, जो काम और गर्मी के संयोजन से आंतरिक ऊर्जा की आपूर्ति का प्रतिनिधित्व करता है,<ref name=eckart1940 /><ref name=grotetal1966 /><ref>{{cite journal|last1=Maugin|first1=Gérard A.|title=कॉन्टिनुआ के आपेक्षिक विद्युतगतिकी के सहसंयोजक समीकरणों पर। I. सामान्य समीकरण|date=1978|journal=J. Math. Phys.|volume=19|issue=5|pages=1198–1205|doi=10.1063/1.523785|bibcode=1978JMP....19.1198M}}</ref><ref name=truesdelletal1960 />और जो न्यूटोनियन सीमा में हो जाता है <math>h + \mathbf{f}\cdot\mathbf{u}</math>. | इसलिए, थर्मो-मैकेनिकल स्थितियों में चार-बल का समय घटक शक्ति के समानुपाती नहीं होता है <math>\mathbf{f}\cdot\mathbf{u}</math> किन्तु एक अधिक सामान्य अभिव्यक्ति है, जिसे केस दर केस दिया जाना है, जो काम और गर्मी के संयोजन से आंतरिक ऊर्जा की आपूर्ति का प्रतिनिधित्व करता है,<ref name=eckart1940 /><ref name=grotetal1966 /><ref>{{cite journal|last1=Maugin|first1=Gérard A.|title=कॉन्टिनुआ के आपेक्षिक विद्युतगतिकी के सहसंयोजक समीकरणों पर। I. सामान्य समीकरण|date=1978|journal=J. Math. Phys.|volume=19|issue=5|pages=1198–1205|doi=10.1063/1.523785|bibcode=1978JMP....19.1198M}}</ref><ref name=truesdelletal1960 />और जो न्यूटोनियन सीमा में हो जाता है <math>h + \mathbf{f}\cdot\mathbf{u}</math>. | ||
Line 29: | Line 29: | ||
:<math>F^\lambda := \frac{DP^\lambda }{d\tau} = \frac{dP^\lambda }{d\tau } + \Gamma^\lambda {}_{\mu \nu}U^\mu P^\nu </math> | :<math>F^\lambda := \frac{DP^\lambda }{d\tau} = \frac{dP^\lambda }{d\tau } + \Gamma^\lambda {}_{\mu \nu}U^\mu P^\nu </math> | ||
इसके अतिरिक्त, हम विभिन्न समन्वय प्रणालियों के बीच [[समन्वय परिवर्तन]]ों की अवधारणा का उपयोग करके बल तैयार कर सकते हैं। मान लें कि हम उस समन्वय प्रणाली में बल के लिए सही अभिव्यक्ति जानते हैं जिस पर कण क्षण भर के लिए आराम पर है। तब हम बल की संबंधित अभिव्यक्ति प्राप्त करने के लिए किसी अन्य प्रणाली में परिवर्तन कर सकते हैं।<ref>{{cite book|last1=Steven|first1=Weinberg|title=Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity|date=1972|publisher=John Wiley & Sons, Inc.|isbn=0-471-92567-5|url-access=registration|url=https://archive.org/details/gravitationcosmo00stev_0}}</ref> विशेष आपेक्षिकता में रूपांतरण एक सापेक्ष स्थिर वेग के साथ गतिमान समन्वय प्रणालियों के बीच एक लोरेंत्ज़ परिवर्तन होगा चूँकि सामान्य सापेक्षता में यह एक सामान्य समन्वय परिवर्तन | इसके अतिरिक्त, हम विभिन्न समन्वय प्रणालियों के बीच [[समन्वय परिवर्तन]]ों की अवधारणा का उपयोग करके बल तैयार कर सकते हैं। मान लें कि हम उस समन्वय प्रणाली में बल के लिए सही अभिव्यक्ति जानते हैं जिस पर कण क्षण भर के लिए आराम पर है। तब हम बल की संबंधित अभिव्यक्ति प्राप्त करने के लिए किसी अन्य प्रणाली में परिवर्तन कर सकते हैं।<ref>{{cite book|last1=Steven|first1=Weinberg|title=Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity|date=1972|publisher=John Wiley & Sons, Inc.|isbn=0-471-92567-5|url-access=registration|url=https://archive.org/details/gravitationcosmo00stev_0}}</ref> विशेष आपेक्षिकता में रूपांतरण एक सापेक्ष स्थिर वेग के साथ गतिमान समन्वय प्रणालियों के बीच एक लोरेंत्ज़ परिवर्तन होगा चूँकि सामान्य सापेक्षता में यह एक सामान्य समन्वय परिवर्तन होगा है। | ||
चतुर्भुज पर विचार करें <math>F^\mu=(F^0, \mathbf{F})</math> द्रव्यमान के एक कण पर कार्य करना <math>m</math> जो क्षण भर के लिए एक समन्वय प्रणाली में आराम पर है। सापेक्षतावादी बल <math>f^\mu </math> एक अन्य समन्वय प्रणाली में निरंतर वेग के साथ चलती है <math>v</math>, दूसरे के सापेक्ष, लोरेंत्ज़ परिवर्तन का उपयोग करके प्राप्त किया जाता है: | चतुर्भुज पर विचार करें <math>F^\mu=(F^0, \mathbf{F})</math> द्रव्यमान के एक कण पर कार्य करना <math>m</math> जो क्षण भर के लिए एक समन्वय प्रणाली में आराम पर है। सापेक्षतावादी बल <math>f^\mu </math> एक अन्य समन्वय प्रणाली में निरंतर वेग के साथ चलती है <math>v</math>, दूसरे के सापेक्ष, लोरेंत्ज़ परिवर्तन का उपयोग करके प्राप्त किया जाता है: | ||
Line 45: | Line 45: | ||
: <math>m {d^2 x^\mu\over d\tau^2} = f^\mu - m \Gamma^\mu_{\nu\lambda} {dx^\nu \over d\tau} {dx^\lambda \over d\tau},</math> | : <math>m {d^2 x^\mu\over d\tau^2} = f^\mu - m \Gamma^\mu_{\nu\lambda} {dx^\nu \over d\tau} {dx^\lambda \over d\tau},</math> | ||
कहाँ <math> \Gamma^\mu_{\nu\lambda} </math> क्रिस्टोफेल प्रतीक है। यदि कोई बाहरी बल नहीं है, तो यह [[घुमावदार स्थान-समय]] में भू-भौतिकी के लिए समीकरण बन जाता है। उपरोक्त समीकरण में दूसरा पद गुरुत्वाकर्षण बल की भूमिका निभाता है। अगर <math> f^\alpha_f </math> स्वतंत्र रूप से गिरने वाले फ्रेम में बल के लिए सही अभिव्यक्ति है <math> \xi^\alpha </math>, तब हम चार-बलों को | कहाँ <math> \Gamma^\mu_{\nu\lambda} </math> क्रिस्टोफेल प्रतीक है। यदि कोई बाहरी बल नहीं है, तो यह [[घुमावदार स्थान-समय]] में भू-भौतिकी के लिए समीकरण बन जाता है। उपरोक्त समीकरण में दूसरा पद गुरुत्वाकर्षण बल की भूमिका निभाता है। अगर <math> f^\alpha_f </math> स्वतंत्र रूप से गिरने वाले फ्रेम में बल के लिए सही अभिव्यक्ति है <math> \xi^\alpha </math>, तब हम चार-बलों को इच्छानुसार निर्देशांक में लिखने के लिए तुल्यता सिद्धांत का उपयोग कर सकते हैं <math> x^\mu </math>: | ||
: <math>f^\mu = {\partial x^\mu \over \partial\xi^\alpha} f^\alpha_f.</math> | : <math>f^\mu = {\partial x^\mu \over \partial\xi^\alpha} f^\alpha_f.</math> |
Revision as of 21:20, 5 May 2023
सापेक्षता के विशेष सिद्धांत में, चार-बल एक चार-सदिश है जो शास्त्रीय बल की जगह लेता है।
विशेष सापेक्षता में
चार-बल को कण के उचित समय के संबंध में एक कण के चार-संवेग में परिवर्तन की दर के रूप में परिभाषित किया गया है:
- .
निरंतर अपरिवर्तनीय द्रव्यमान के एक कण के लिए , कहाँ चार-वेग है, इसलिए हम चार-बल को चार-त्वरण से संबंधित कर सकते हैं न्यूटन के दूसरे नियम के अनुसार:
- .
यहाँ
और
यहाँ , और 3-अंतरिक्ष सदिश हैं जो क्रमशः वेग, कण के संवेग और उस पर कार्य करने वाले बल का वर्णन करते हैं।
थर्मोडायनामिक इंटरैक्शन सहित
पिछले खंड के सूत्रों से ऐसा प्रतीत होता है कि चार-बलों का समय घटक खर्च की गई शक्ति है, , सापेक्षतावादी सुधारों के अलावा . यह विशुद्ध रूप से यांत्रिक स्थितियों में ही सच है, जब गर्मी का आदान-प्रदान गायब हो जाता है या उपेक्षित किया जा सकता है।
पूर्ण थर्मो-मैकेनिकल स्थितियों में, न केवल कार्य (थर्मोडायनामिक्स), किंतु गर्मी (थर्मोडायनामिक्स) भी ऊर्जा में परिवर्तन में योगदान देता है, जो कि चार-गति का समय घटक है। ऊर्जा-संवेग कोवेक्टर। चार बल के समय घटक में इस स्थिति में एक ताप दर सम्मलित है , शक्ति के अतिरिक्त .[1] ध्यान दें कि काम और गर्मी को सार्थक रूप से अलग नहीं किया जा सकता है, चूँकि, वे दोनों जड़ता रखते हैं।[2] यह तथ्य संपर्क बलों तक भी फैला हुआ है, यानी तनाव-ऊर्जा टेंसर तनाव-ऊर्जा-संवेग टेंसर होता है।[3][2]
इसलिए, थर्मो-मैकेनिकल स्थितियों में चार-बल का समय घटक शक्ति के समानुपाती नहीं होता है किन्तु एक अधिक सामान्य अभिव्यक्ति है, जिसे केस दर केस दिया जाना है, जो काम और गर्मी के संयोजन से आंतरिक ऊर्जा की आपूर्ति का प्रतिनिधित्व करता है,[2][1][4][3]और जो न्यूटोनियन सीमा में हो जाता है .
सामान्य सापेक्षता में
सामान्य सापेक्षता में चार-बल और चार-त्वरण के बीच संबंध समान रहता है, किन्तु चार-बल के तत्व उचित समय के संबंध में सहसंयोजक व्युत्पन्न के माध्यम से चार-संवेग के तत्वों से संबंधित होते हैं।
इसके अतिरिक्त, हम विभिन्न समन्वय प्रणालियों के बीच समन्वय परिवर्तनों की अवधारणा का उपयोग करके बल तैयार कर सकते हैं। मान लें कि हम उस समन्वय प्रणाली में बल के लिए सही अभिव्यक्ति जानते हैं जिस पर कण क्षण भर के लिए आराम पर है। तब हम बल की संबंधित अभिव्यक्ति प्राप्त करने के लिए किसी अन्य प्रणाली में परिवर्तन कर सकते हैं।[5] विशेष आपेक्षिकता में रूपांतरण एक सापेक्ष स्थिर वेग के साथ गतिमान समन्वय प्रणालियों के बीच एक लोरेंत्ज़ परिवर्तन होगा चूँकि सामान्य सापेक्षता में यह एक सामान्य समन्वय परिवर्तन होगा है।
चतुर्भुज पर विचार करें द्रव्यमान के एक कण पर कार्य करना जो क्षण भर के लिए एक समन्वय प्रणाली में आराम पर है। सापेक्षतावादी बल एक अन्य समन्वय प्रणाली में निरंतर वेग के साथ चलती है , दूसरे के सापेक्ष, लोरेंत्ज़ परिवर्तन का उपयोग करके प्राप्त किया जाता है:
कहाँ .
सामान्य सापेक्षता में, बल के लिए अभिव्यक्ति बन जाती है
सहसंयोजक व्युत्पन्न के साथ . गति का समीकरण बन जाता है
कहाँ क्रिस्टोफेल प्रतीक है। यदि कोई बाहरी बल नहीं है, तो यह घुमावदार स्थान-समय में भू-भौतिकी के लिए समीकरण बन जाता है। उपरोक्त समीकरण में दूसरा पद गुरुत्वाकर्षण बल की भूमिका निभाता है। अगर स्वतंत्र रूप से गिरने वाले फ्रेम में बल के लिए सही अभिव्यक्ति है , तब हम चार-बलों को इच्छानुसार निर्देशांक में लिखने के लिए तुल्यता सिद्धांत का उपयोग कर सकते हैं :
उदाहरण
विशेष सापेक्षता में, लोरेंत्ज़ बल | लोरेंत्ज़ चार-बल (विद्युत चुम्बकीय क्षेत्र में स्थित आवेशित कण पर कार्य करने वाला चार-बल) को इस प्रकार व्यक्त किया जा सकता है:
- ,
कहाँ
- विद्युत चुम्बकीय टेंसर है,
- चार-वेग है, और
- विद्युत आवेश है।
यह भी देखें
- चार-वेक्टर
- चार-वेग
- चार-त्वरण
- चार गति
- चार-ढाल
संदर्भ
- ↑ 1.0 1.1 Grot, Richard A.; Eringen, A. Cemal (1966). "Relativistic continuum mechanics: Part I – Mechanics and thermodynamics". Int. J. Engng Sci. 4 (6): 611–638, 664. doi:10.1016/0020-7225(66)90008-5.
- ↑ 2.0 2.1 2.2 Eckart, Carl (1940). "अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी। तृतीय। सरल द्रव का सापेक्षवादी सिद्धांत". Phys. Rev. 58 (10): 919–924. Bibcode:1940PhRv...58..919E. doi:10.1103/PhysRev.58.919.
- ↑ 3.0 3.1 C. A. Truesdell, R. A. Toupin: The Classical Field Theories (in S. Flügge (ed.): Encyclopedia of Physics, Vol. III-1, Springer 1960). §§152–154 and 288–289.
- ↑ Maugin, Gérard A. (1978). "कॉन्टिनुआ के आपेक्षिक विद्युतगतिकी के सहसंयोजक समीकरणों पर। I. सामान्य समीकरण". J. Math. Phys. 19 (5): 1198–1205. Bibcode:1978JMP....19.1198M. doi:10.1063/1.523785.
- ↑ Steven, Weinberg (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, Inc. ISBN 0-471-92567-5.
- Rindler, Wolfgang (1991). Introduction to Special Relativity (2nd ed.). Oxford: Oxford University Press. ISBN 0-19-853953-3.