सुस्थापित संबंध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 40: Line 40:
* सकारात्मक [[पूर्णांक]] {{math|{{(}}1, 2, 3, ...{{)}}}}, द्वारा परिभाषित क्रम के साथ {{math|''a'' < ''b''}} [[अगर और केवल अगर|यदि  और केवल यदि]]  {{mvar|a}} [[भाजक]] {{mvar|b}} और {{math|''a'' ≠ ''b''}}
* सकारात्मक [[पूर्णांक]] {{math|{{(}}1, 2, 3, ...{{)}}}}, द्वारा परिभाषित क्रम के साथ {{math|''a'' < ''b''}} [[अगर और केवल अगर|यदि  और केवल यदि]]  {{mvar|a}} [[भाजक]] {{mvar|b}} और {{math|''a'' ≠ ''b''}}
* द्वारा परिभाषित क्रम के साथ  निश्चित वर्णमाला पर सभी परिमित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] का समुच्चय {{math|''s'' < ''t''}} यदि  और केवल यदि  {{mvar|s}} का उचित सबस्ट्रिंग है {{mvar|t}}.
* द्वारा परिभाषित क्रम के साथ  निश्चित वर्णमाला पर सभी परिमित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] का समुच्चय {{math|''s'' < ''t''}} यदि  और केवल यदि  {{mvar|s}} का उचित सबस्ट्रिंग है {{mvar|t}}.
* <nowiki>समुच्चय {{math|</nowiki>'''N''' × '''N'''}[[प्राकृतिक संख्या]]ओं के कार्टेशियन उत्पाद का }, द्वारा आदेश दिया गया {{math|(''n''<sub>1</sub>, ''n''<sub>2</sub>) < (''m''<sub>1</sub>, ''m''<sub>2</sub>)}} यदि और केवल यदि {{math|''n''<sub>1</sub> < ''m''<sub>1</sub>}} और {{math|''n''<sub>2</sub> < ''m''<sub>2</sub>}}
* {{math|(''n''<sub>1</sub>, ''n''<sub>2</sub>) < (''m''<sub>1</sub>, ''m''<sub>2</sub>)}} द्वारा क्रमित [[प्राकृतिक संख्या|प्राकृतिक संख्याओं]] के जोड़े का समुच्चय '''N''' × '''N''' यदि और केवल  {{math|''n''<sub>1</sub> < ''m''<sub>1</sub>}} और {{math|''n''<sub>2</sub> < ''m''<sub>2</sub>}} है।
* प्रत्येक वर्ग जिसके अवयव समुच्चय हैं, संबंध ∈ (का अवयव है) के साथ है। यह नियमितता का स्वयंसिद्ध है।
* प्रत्येक वर्ग जिसके अवयव समुच्चय हैं, संबंध ∈ (का अवयव है) के साथ है। यह नियमितता का स्वयंसिद्ध है।
* संबंध {{mvar|R}} के साथ किसी भी परिमित निर्देशित एसाइक्लिक आरेख के नोड्स को इस प्रकार परिभाषित किया गया है कि {{math|''a'' ''R'' ''b''}} यदि और केवल {{mvar|a}} से {{mvar|b}} तक कोई किनारा है।
* संबंध {{mvar|R}} के साथ किसी भी परिमित निर्देशित एसाइक्लिक आरेख के नोड्स को इस प्रकार परिभाषित किया गया है कि {{math|''a'' ''R'' ''b''}} यदि और केवल {{mvar|a}} से {{mvar|b}} तक कोई किनारा है।

Revision as of 22:18, 24 May 2023

गणित में, द्विआधारी संबंध R को उचित प्रकार से स्थापित (या उचित प्रकार से स्थापित या मूलभूत) कहा जाता है[1]) वर्ग पर (समुच्चय सिद्धांत) X यदि प्रत्येक गैर-रिक्त उपसमुच्चय SX के संबंध में न्यूनतम तत्व है R, अर्थात तत्व (गणित) mS से संबंधित नहीं है s R m (उदाहरण के लिए,s से छोटा नहीं है m ) किसी के लिए sS दूसरे शब्दों में, संबंध उचित प्रकार से स्थापित होता है यदि

कुछ लेखकों में अतिरिक्त शर्त सम्मिलित है कि R समुच्चय जैसा संबंध है। सेट-लाइक, अर्थात कि किसी दिए गए एलिमेंट से अल्प एलिमेंट्स समुच्चय बनाते हैं।

समान रूप से, निर्भर पसंद के स्वयंसिद्ध को मानते हुए, संबंध उचित प्रकार से स्थापित होता है जब इसमें कोई अनंत अवरोही श्रृंखला नहीं होती है, जिसे सिद्ध किया जा सकता है जब कोई अनंत अनुक्रम नहीं होता है x0, x1, x2, ... के तत्वों की X ऐसा है कि xn+1 R xn हर प्राकृतिक संख्या के लिए n[2][3] आदेश सिद्धांत में, आंशिक आदेश को उचित प्रकार से स्थापित कहा जाता है यदि संबंधित सख्त आदेश उचित प्रकार से स्थापित संबंध है। यदि आदेश कुल आदेश है तो इसे अच्छी-व्यवस्था कहा जाता है।

समुच्चय सिद्धांत में, समुच्चय x को उचित प्रकार से स्थापित समुच्चय कहा जाता है यदि तत्व (गणित) संबंध सकर्मक बंद (सेट) पर उचित प्रकार से स्थापित है x. नियमितता का स्वयंसिद्ध, जो ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से है, यह दावा करता है कि सभी समुच्चय उचित प्रकार से स्थापित हैं।

संबंध R इसके विपरीत उचित प्रकार से स्थापित, ऊपर की ओर उचित प्रकार से स्थापित या नोथेरियन है X, यदि विलोम संबंध R−1 पर उचित प्रकार से स्थापित है X. इस स्थिति में R को आरोही श्रृंखला स्थिति को संतुष्ट करने के लिए भी कहा जाता है। पुनर्लेखन प्रणालियों के संदर्भ में, नोथेरियन संबंध को समापन भी कहा जाता है।

इंडक्शन और रिकर्सन

महत्वपूर्ण कारण है कि उचित प्रकार से स्थापित संबंध रोचक हैं क्योंकि उन पर ट्रांसफिनिट इंडक्शन का संस्करण उपयोग किया जा सकता है: यदि (X, R) सुस्थापित संबंध है, P(x) के तत्वों की कुछ संपत्ति है X, और हम उसे दिखाना चाहते हैं

P(x) सभी तत्वों के लिए धारण करता है x का X,

यह दर्शाने के लिए पर्याप्त है कि:

यदि x का तत्व है X और P(y) सभी के लिए सत्य है y ऐसा है कि y R x, तब P(x) भी सच होना चाहिए।

वह है,

उचित प्रकार से स्थापित प्रेरण को कभी-कभी नोथेरियन प्रेरण कहा जाता है,[4] एमी नोथेर के बाद।

प्रेरण के साथ-साथ, उचित प्रकार से स्थापित संबंध भी ट्रांसफिनिट रिकर्सन द्वारा वस्तुओं के निर्माण का समर्थन करते हैं। होने देना (X, R) द्विआधारी संबंध होना # समुच्चय पर संबंध | सेट-जैसे उचित प्रकार से स्थापित संबंध और F फ़ंक्शन जो किसी ऑब्जेक्ट को असाइन करता है F(x, g) किसी तत्व के प्रत्येक जोड़े के लिए xX और समारोह g प्रारंभिक खंड पर {y: y R x} का X. फिर अनूठा कार्य है G ऐसा है कि हर के लिए xX,

अर्थात यदि हम फलन बनाना चाहते हैं G पर X, हम परिभाषित कर सकते हैं G(x) के मूल्यों का उपयोग करना G(y) के लिए y R x.

उदाहरण के रूप में, सुस्थापित संबंध पर विचार करें (N, S), कहाँ N सभी प्राकृतिक संख्याओं का समुच्चय है, और S उत्तराधिकारी समारोह का ग्राफ है xx+1. फिर इंडक्शन चालू S सामान्य गणितीय प्रेरण है, और पुनरावर्तन चालू है S आदिम पुनरावर्ती कार्य देता है। यदि हम आदेश संबंध पर विचार करें (N, <), हम पूर्ण इंडक्शन और कोर्स-ऑफ़-वैल्यू रिकर्सन प्राप्त करते हैं। बयान है कि (N, <) उचित प्रकार से स्थापित है को सुव्यवस्थित सिद्धांत के रूप में भी जाना जाता है।

उचित प्रकार से स्थापित प्रेरण के अन्य दिलचस्प विशेष स्थिति हैं। जब उचित प्रकार से स्थापित संबंध सभी क्रमिक संख्याओं के वर्ग पर सामान्य क्रम होता है, तो प्रौद्योगिकी को ट्रांसफ़ाइन इंडक्शन कहा जाता है। जब उचित प्रकार से स्थापित समुच्चय पुनरावर्ती-परिभाषित डेटा संरचनाओं का समुच्चय होता है, तो प्रौद्योगिकी को संरचनात्मक प्रेरण कहा जाता है। जब उचित प्रकार से स्थापित संबंध सार्वभौमिक वर्ग पर सदस्यता स्थापित करता है, तो प्रौद्योगिकी को ∈-प्रेरण के रूप में जाना जाता है। अधिक विवरण के लिए उन लेखों को देखें।

उदाहरण

उचित प्रकार से स्थापित संबंध जो पूरी तरह से आदेशित नहीं हैं उनमें सम्मिलित हैं:

  • सकारात्मक पूर्णांक {1, 2, 3, ...}, द्वारा परिभाषित क्रम के साथ a < b यदि और केवल यदि a भाजक b और ab
  • द्वारा परिभाषित क्रम के साथ निश्चित वर्णमाला पर सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का समुच्चय s < t यदि और केवल यदि s का उचित सबस्ट्रिंग है t.
  • (n1, n2) < (m1, m2) द्वारा क्रमित प्राकृतिक संख्याओं के जोड़े का समुच्चय N × N यदि और केवल n1 < m1 और n2 < m2 है।
  • प्रत्येक वर्ग जिसके अवयव समुच्चय हैं, संबंध ∈ (का अवयव है) के साथ है। यह नियमितता का स्वयंसिद्ध है।
  • संबंध R के साथ किसी भी परिमित निर्देशित एसाइक्लिक आरेख के नोड्स को इस प्रकार परिभाषित किया गया है कि a R b यदि और केवल a से b तक कोई किनारा है।

संबंधों के उदाहरण जो उचित प्रकार से स्थापित नहीं हैं उनमें सम्मिलित हैं:

  • ऋणात्मक पूर्णांक {−1, −2, −3, ...}, सामान्य क्रम के साथ, चूंकि किसी भी असीमित उपसमुच्चय में अल्प से अल्प तत्व नहीं होता है।
  • अनुक्रम "B" > "AB" > "AAB" > "AAAB" > ... के पश्चात से सामान्य (लेक्सिकोग्राफिक) क्रम के अनुसार एक से अधिक तत्वों के साथ परिमित वर्णमाला पर स्ट्रिंग्स का समुच्चय अनंत अवरोही श्रृंखला है। यह संबंध उचित प्रकार से स्थापित होने में विफल रहता है, पूर्ण समुच्चय में न्यूनतम तत्व होता है, अर्थात् रिक्त स्ट्रिंग होता है।
  • मानक क्रम के अनुसार गैर-नकारात्मक परिमेय संख्याओं (या वास्तविक संख्याओं) का समुच्चय, उदाहरण के लिए, सकारात्मक परिमेय (या वास्तविक) के उपसमुच्चय में न्यूनतम की अल्पता होती है।

अन्य गुण

यदि (X, <) उचित प्रकार से स्थापित संबंध है और x का तत्व X है, तो x से प्रारंभ होने वाली अवरोही श्रृंखला सभी परिमित हैं, किन्तु इसका तात्पर्य यह नहीं है कि उनकी लंबाई आवश्यक रूप से परिमित है। निम्नलिखित उदाहरण पर विचार करें: मान लीजिए कि X नए तत्व ω के साथ धनात्मक पूर्णांकों का समूह है जो किसी भी पूर्णांक से बड़ा है। तब X उचित प्रकार से स्थापित समुच्चय है, किन्तु इच्छानुसार रूप से महान (परिमित) लंबाई के ω से प्रारंभ होने वाली अवरोही श्रृंखलाएं हैं; शृंखला ω, n − 1, n − 2, ..., 2, 1 की लंबाई n किसी भी n के लिए है।

मोस्टोव्स्की पतन लेम्मा का अर्थ है कि समुच्चय सदस्यता विस्तारित सुस्थापित संबंधों के मध्य सार्वभौमिक है: किसी भी समुच्चय-जैसे उचित प्रकार से स्थापित संबंध R के लिए वर्ग X पर जो कि विस्तारित है, वहां वर्ग C उपस्थित है जैसे कि (X, R) के लिए आइसोमोर्फिक (C, ∈) है।

प्रतिवर्तनीयता

संबंध R को प्रतिवर्त संबंध कहा जाता है यदि a R a संबंध के क्षेत्र में प्रत्येक a के लिए धारण करता है। गैर-रिक्त डोमेन पर प्रत्येक प्रतिवर्त संबंध में अनंत अवरोही श्रृंखलाएं होती हैं, क्योंकि कोई निरंतर अनुक्रम अवरोही श्रृंखला है। उदाहरण के लिए, उनके सामान्य क्रम ≤ के साथ प्राकृतिक संख्याओं में, हमारे निकट 1 ≥ 1 ≥ 1 ≥ .... है इन अल्प अवरोही अनुक्रमों से बचने के लिए, आंशिक क्रम ≤ के साथ कार्य करते समय, उचित प्रकार से आधार की परिभाषा को प्रस्तावित करना सामान्य है (संभवतः निहित रूप से) वैकल्पिक संबंध < के लिए इस प्रकार परिभाषित किया गया है कि a < b यदि और केवल ab और ab होते है। सामान्यतः, जब पूर्व आदेश ≤ के साथ कार्य करते हैं, तो संबंध < परिभाषित का उपयोग करना सामान्य है a < b यदि और केवल ab और ba होते है। प्राकृतिक संख्याओं के संदर्भ में, इसका अर्थ है कि संबंध <, जो उचित प्रकार से स्थापित है, संबंध ≤ के अतिरिक्त प्रयोग किया जाता है, जो नहीं है। कुछ लेखों में, इन सम्मेलनों को सम्मिलित करने के लिए उपरोक्त परिभाषा उचित प्रकार से स्थापित संबंध की परिभाषा में परिवर्तित कर दी गई है।

संदर्भ

  1. See Definition 6.21 in Zaring W.M., G. Takeuti (1971). Introduction to axiomatic set theory (2nd, rev. ed.). New York: Springer-Verlag. ISBN 0387900241.
  2. "कड़ाई से अच्छी तरह से स्थापित संबंध की अनंत अनुक्रम संपत्ति". ProofWiki. Retrieved 10 May 2021.
  3. Fraisse, R. (15 December 2000). Theory of Relations, Volume 145 - 1st Edition (1st ed.). Elsevier. p. 46. ISBN 9780444505422. Retrieved 20 February 2019.
  4. Bourbaki, N. (1972) Elements of mathematics. Commutative algebra, Addison-Wesley.