स्थानीयकरण (कम्यूटेटिव बीजगणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Construction of a ring of fractions}} | {{Short description|Construction of a ring of fractions}} | ||
[[क्रमविनिमेय बीजगणित]] और [[बीजगणितीय ज्यामिति]] में, स्थानीयकरण किसी दिए गए वलय (गणित) या [[मॉड्यूल (गणित)]] में "भाजक" को परिचित कराने का औपचारिक विधि है। अर्थात्, यह आधुनिक वलय/मॉड्यूल 'आर' से बाहर नया वलय/मॉड्यूल प्रस्तुत करता है, जिससे इसमें [[बीजगणितीय अंश]] | [[क्रमविनिमेय बीजगणित]] और [[बीजगणितीय ज्यामिति]] में, स्थानीयकरण किसी दिए गए वलय (गणित) या [[मॉड्यूल (गणित)]] में "भाजक" को परिचित कराने का औपचारिक विधि है। अर्थात्, यह आधुनिक वलय/मॉड्यूल 'आर' से बाहर नया वलय/मॉड्यूल प्रस्तुत करता है, जिससे इसमें [[बीजगणितीय अंश]] <math>\frac{m}{s},</math> हो जैसे कि हर s किसी दिए गए उपसमुच्चय से संबंधित हो ''R'' का ''S'' यदि एस एक अभिन्न डोमेन के गैर-शून्य तत्वों का सेट है, तो स्थानीयकरण अंशों का क्षेत्र है: यह स्थिति वलय के परिमेय संख्याओं के क्षेत्र <math>\Q</math> के निर्माण को सामान्य करता है पूर्णांकों का <math>\Z</math> है । | ||
विधि | विधि मौलिक हो गई है विशेष रूप से बीजगणितीय ज्यामिति में, क्योंकि यह [[शीफ (गणित)]] सिद्धांत के लिए प्राकृतिक लिंक प्रदान करती है। वास्तव में, स्थानीयकरण शब्द की उत्पत्ति बीजगणितीय ज्यामिति में हुई है: यदि R किसी ज्यामितीय वस्तु (बीजीय विविधता) V पर परिभाषित फलन (गणित) का वलय है, और कोई बिंदु p के पास स्थानीय रूप से इस विविधता का अध्ययन करना चाहता है, तो कोई इस पर विचार करता है सभी कार्यों के एस समुच्चय करें जो पी पर शून्य नहीं हैं और S के संबंध में R को स्थानांतरित करते हैं। परिणामी वलय <math>S^{-1}R</math> p के पास V के सम्बन्ध के बारे में जानकारी सम्मिलित है और ऐसी जानकारी को बाहर करता है जो स्थानीय नहीं है, जैसे किसी फलन का शून्य जो V के बाहर है (c.f. स्थानीय वलय में दिया गया उदाहरण)। | ||
== वलय का स्थानीयकरण == | == वलय का स्थानीयकरण == | ||
गुणात्मक रूप से बंद सेट {{mvar|S}} द्वारा एक कम्यूटेटिव वलय {{mvar|R}} का स्थानीयकरण एक नया वलय <math>S^{-1}R</math> है, जिसके तत्व {{mvar|R}} में अंश और {{mvar|S}} में हर के साथ अंश हैं। | |||
यदि वलय | यदि वलय अभिन्न डोमेन है, तो निर्माण अंशों के क्षेत्र का सामान्यीकरण करता है और सूक्ष्मता से अनुसरण करता है, और विशेष रूप से परिमेय संख्याओं का पूर्णांकों के भिन्नों के क्षेत्र के रूप में उन वलयों के लिए जिनमें शून्य विभाजक हैं, निर्माण समान है किन्तु अधिक देखभाल की आवश्यकता है। | ||
=== गुणक सेट === | === गुणक सेट === | ||
स्थानीयकरण सामान्यतः गुणक रूप से बंद | स्थानीयकरण सामान्यतः रिंग {{mvar|R}} के तत्वों के गुणक रूप से बंद सेट {{mvar|S}} (जिसे गुणक सेट या गुणक प्रणाली भी कहा जाता है) के संबंध में किया जाता है जो कि {{mvar|R}} का एक उपसमुच्चय है जो गुणन के तहत बंद होता है और इसमें {{math|1}} होता है। | ||
आवश्यकता है कि {{mvar|S}} गुणक समुच्चय होना स्वाभाविक है, क्योंकि इसका तात्पर्य है कि स्थानीयकरण द्वारा प्रस्तुत किए गए सभी भाजक | आवश्यकता है कि {{mvar|S}} गुणक समुच्चय होना स्वाभाविक है, क्योंकि इसका तात्पर्य है कि स्थानीयकरण द्वारा प्रस्तुत किए गए सभी भाजक {{mvar|S}} से संबंधित हैं एक सेट {{mvar|U}} द्वारा स्थानीयकरण जो गुणात्मक रूप से बंद नहीं है, को भी परिभाषित किया जा सकता है, संभावित भाजक के सभी उत्पादों के रूप में ले कर {{mvar|U}} के तत्व चूँकि {{mvar|U}} के तत्वों के सभी उत्पादों के गुणात्मक रूप से बंद सेट {{mvar|S}} का उपयोग करके एक ही स्थानीयकरण प्राप्त किया जाता है। जैसा कि यह अधिकांशतः तर्क और अंकन को सरल बनाता है, यह गुणक सेटों द्वारा केवल स्थानीयकरण पर विचार करने के लिए मानक अभ्यास है। | ||
उदाहरण के लिए, एकल तत्व | उदाहरण के लिए, एक एकल तत्व {{mvar|s}} द्वारा स्थानीयकरण <math>\tfrac a s,</math> के रूप के अंशों का परिचय देता है, लेकिन ऐसे अंशों के उत्पाद भी, जैसे कि <math>\tfrac {ab} {s^2}.</math> इसलिए, हर, s की घात के गुणक सेट <math>\{1, s, s^2, s^3,\ldots\}</math> से संबंधित होंगे। इसलिए सामान्यतः "तत्व द्वारा स्थानीयकरण" की अतिरिक्त"तत्व की शक्तियों द्वारा स्थानीयकरण" की बात की जाती है। | ||
गुणक समुच्चय {{mvar|S}} द्वारा एक वलय {{mvar|R}} का स्थानीयकरण सामान्यतः <math>S^{-1}R,</math> निरूपित किया जाता है, किन्तु कुछ विशेष स्थितियों में सामान्यतः अन्य संकेतन का उपयोग किया जाता है: यदि <math>S= \{1, t, t^2,\ldots \}</math> में एक ही तत्व की शक्तियाँ होती हैं,<math>S^{-1}R</math> को अधिकांशतः <math>R_t;</math> यदि <math>S=R\setminus \mathfrak p</math> एक प्रमुख आदर्श <math>\mathfrak p</math> का पूरक है, तो <math>S^{-1}R</math> को <math>R_\mathfrak p.</math> के रूप में दर्शाया जाता है। | |||
इस लेख के शेष भाग में, गुणक समुच्चय द्वारा केवल स्थानीयकरण पर विचार किया जाता है। | इस लेख के शेष भाग में, गुणक समुच्चय द्वारा केवल स्थानीयकरण पर विचार किया जाता है। | ||
=== इंटीग्रल डोमेन === | === इंटीग्रल डोमेन === | ||
जब | '''जब वलय {{mvar|R}} अभिन्न डोमेन है और {{mvar|S}} सम्मिलित नहीं है {{math|0}}, वलय <math>S^{-1}R</math> के अंशों के क्षेत्र का उपवलय है {{mvar|R}}. जै'''से, डोमेन का स्थानीयकरण डोमेन है। | ||
अधिक स्पष्ट रूप से, यह के अंशों के क्षेत्र का [[सबरिंग|सबवलय]] है {{mvar|R}}, जिसमें अंश होते हैं <math>\tfrac a s</math> ऐसा है कि <math>s\in S.</math> योग के बाद से यह सबवलय है <math>\tfrac as + \tfrac bt = \tfrac {at+bs}{st},</math> और उत्पाद <math>\tfrac as \, \tfrac bt = \tfrac {ab}{st}</math> के दो तत्वों का <math>S^{-1}R</math> में हैं <math>S^{-1}R.</math> यह गुणक समुच्चय की परिभाषित संपत्ति से उत्पन्न होता है, जिसका तात्पर्य यह भी है <math>1=\tfrac 11\in S^{-1}R.</math> इस स्थितियों में, {{mvar|R}} का उपसमूह है <math>S^{-1}R.</math> यह नीचे दिखाया गया है कि यह अब सामान्य रूप से सत्य नहीं है, सामान्यतः जब {{mvar|S}} में शून्य विभाजक हैं। | अधिक स्पष्ट रूप से, यह के अंशों के क्षेत्र का [[सबरिंग|सबवलय]] है {{mvar|R}}, जिसमें अंश होते हैं <math>\tfrac a s</math> ऐसा है कि <math>s\in S.</math> योग के बाद से यह सबवलय है <math>\tfrac as + \tfrac bt = \tfrac {at+bs}{st},</math> और उत्पाद <math>\tfrac as \, \tfrac bt = \tfrac {ab}{st}</math> के दो तत्वों का <math>S^{-1}R</math> में हैं <math>S^{-1}R.</math> यह गुणक समुच्चय की परिभाषित संपत्ति से उत्पन्न होता है, जिसका तात्पर्य यह भी है <math>1=\tfrac 11\in S^{-1}R.</math> इस स्थितियों में, {{mvar|R}} का उपसमूह है <math>S^{-1}R.</math> यह नीचे दिखाया गया है कि यह अब सामान्य रूप से सत्य नहीं है, सामान्यतः जब {{mvar|S}} में शून्य विभाजक हैं। | ||
उदाहरण के लिए, [[दशमलव अंश]] दस की शक्तियों के गुणात्मक समुच्चय द्वारा पूर्णांकों की | उदाहरण के लिए, [[दशमलव अंश]] दस की शक्तियों के गुणात्मक समुच्चय द्वारा पूर्णांकों की वलय का स्थानीयकरण है। इस स्थितियों में, <math>S^{-1}R</math> में परिमेय संख्याएँ होती हैं जिन्हें इस रूप में लिखा जा सकता है <math>\tfrac n{10^k},</math> कहाँ {{mvar|n}} पूर्णांक है, और {{mvar|k}} अऋणात्मक पूर्णांक है। | ||
=== सामान्य निर्माण === | === सामान्य निर्माण === | ||
Line 59: | Line 60: | ||
=== उदाहरण === | === उदाहरण === | ||
*यदि <math>R=\Z</math> पूर्णांकों का वलय है, और <math>S=\Z\setminus \{0\},</math> तब <math>S^{-1}R</math> मैदान है <math>\Q</math> परिमेय संख्याओं का। | *यदि <math>R=\Z</math> पूर्णांकों का वलय है, और <math>S=\Z\setminus \{0\},</math> तब <math>S^{-1}R</math> मैदान है <math>\Q</math> परिमेय संख्याओं का। | ||
*यदि {{mvar|R}} अभिन्न डोमेन है, और <math>S=R\setminus \{0\},</math> तब <math>S^{-1}R</math> के अंशों का क्षेत्र है {{mvar|R}}. पूर्ववर्ती उदाहरण इसका विशेष | *यदि {{mvar|R}} अभिन्न डोमेन है, और <math>S=R\setminus \{0\},</math> तब <math>S^{-1}R</math> के अंशों का क्षेत्र है {{mvar|R}}. पूर्ववर्ती उदाहरण इसका विशेष स्थिति है। | ||
*यदि {{mvar|R}} क्रमविनिमेय वलय है, और यदि {{mvar|S}} इसके तत्वों का सब समुच्चय है जो शून्य विभाजक नहीं हैं <math>S^{-1}R</math> के अंशों का कुल वलय है {{mvar|R}}. इस स्थितियों में, {{mvar|S}} सबसे बड़ा बहुगुणक समुच्चय है जैसे समरूपता <math>R\to S^{-1}R</math> इंजेक्शन है। पूर्ववर्ती उदाहरण इसका विशेष | *यदि {{mvar|R}} क्रमविनिमेय वलय है, और यदि {{mvar|S}} इसके तत्वों का सब समुच्चय है जो शून्य विभाजक नहीं हैं <math>S^{-1}R</math> के अंशों का कुल वलय है {{mvar|R}}. इस स्थितियों में, {{mvar|S}} सबसे बड़ा बहुगुणक समुच्चय है जैसे समरूपता <math>R\to S^{-1}R</math> इंजेक्शन है। पूर्ववर्ती उदाहरण इसका विशेष स्थिति है। | ||
*यदि {{mvar|x}} क्रमविनिमेय वलय का तत्व है {{mvar|R}} और <math>S=\{1, x, x^2, \ldots\},</math> तब <math>S^{-1}R</math> पहचाना जा सकता है ([[ विहित समरूपता ]] है) <math>R[x^{-1}]=R[s]/(xs-1).</math> (प्रमाण में यह दिखाना सम्मिलित है कि यह | *यदि {{mvar|x}} क्रमविनिमेय वलय का तत्व है {{mvar|R}} और <math>S=\{1, x, x^2, \ldots\},</math> तब <math>S^{-1}R</math> पहचाना जा सकता है ([[ विहित समरूपता ]] है) <math>R[x^{-1}]=R[s]/(xs-1).</math> (प्रमाण में यह दिखाना सम्मिलित है कि यह वलय उपरोक्त सार्वभौमिक संपत्ति को संतुष्ट करती है।) इस प्रकार का स्थानीयकरण संबंध योजना की परिभाषा में मौलिक भूमिका निभाता है। | ||
*यदि <math>\mathfrak p</math> क्रमविनिमेय | *यदि <math>\mathfrak p</math> क्रमविनिमेय वलय का प्रमुख आदर्श है {{mvar|R}}, [[सेट पूरक|समुच्चय पूरक]] <math>S=R\setminus \mathfrak p</math> का <math>\mathfrak p</math> में {{mvar|R}} गुणक समुच्चय है ( प्रमुख आदर्श की परिभाषा के अनुसार)। वलय <math>S^{-1}R</math> स्थानीय वलय है जिसे सामान्यतः निरूपित किया जाता है <math>R_\mathfrak p,</math> और की स्थानीय वलय कहा जाता है {{mvar|R}} पर <math>\mathfrak p.</math> इस प्रकार का स्थानीयकरण क्रमविनिमेय बीजगणित में मूलभूत है, क्योंकि क्रमविनिमेय वलय के कई गुणों को इसके स्थानीय छल्लों पर पढ़ा जा सकता है। ऐसी संपत्ति को अधिकांशतः [[स्थानीय संपत्ति]] कहा जाता है। उदाहरण के लिए, वलय नियमित वलय है यदि और केवल यदि इसके सभी स्थानीय वलय नियमित हैं। | ||
=== | === वलय गुण === | ||
स्थानीयकरण समृद्ध निर्माण है जिसमें कई उपयोगी गुण हैं। इस खंड में, केवल वलयों और एकल स्थानीयकरण से संबंधित गुणों पर विचार किया जाता है। अन्य वर्गों में आदर्श (वलय थ्योरी), मॉड्यूल (गणित), या कई गुणात्मक समुच्चय से संबंधित गुणों पर विचार किया जाता है। | स्थानीयकरण समृद्ध निर्माण है जिसमें कई उपयोगी गुण हैं। इस खंड में, केवल वलयों और एकल स्थानीयकरण से संबंधित गुणों पर विचार किया जाता है। अन्य वर्गों में आदर्श (वलय थ्योरी), मॉड्यूल (गणित), या कई गुणात्मक समुच्चय से संबंधित गुणों पर विचार किया जाता है। | ||
Line 70: | Line 71: | ||
* वलय समरूपता <math>R\to S^{-1}R</math> इंजेक्शन है यदि और केवल यदि {{math|''S''}} में कोई शून्य भाजक नहीं है। | * वलय समरूपता <math>R\to S^{-1}R</math> इंजेक्शन है यदि और केवल यदि {{math|''S''}} में कोई शून्य भाजक नहीं है। | ||
* वलय समरूपता <math>R\to S^{-1}R</math> [[अंगूठियों की श्रेणी]] में [[अधिरूपता]] है, जो सामान्य रूप से [[विशेषण]] नहीं है। | * वलय समरूपता <math>R\to S^{-1}R</math> [[अंगूठियों की श्रेणी]] में [[अधिरूपता]] है, जो सामान्य रूप से [[विशेषण]] नहीं है। | ||
* | * वलय <math>S^{-1}R</math> फ्लैट मॉड्यूल है | फ्लैट {{mvar|R}}-मॉड्यूल (देखें {{slink||एक मॉड्यूल का स्थानीयकरण}} जानकारी के लिए)। | ||
* यदि <math>S=R\setminus \mathfrak p</math> प्रमुख आदर्श का पूरक ( समुच्चय सिद्धांत) है <math>\mathfrak p</math>, तब <math>S^{-1} R,</math> लक्षित <math>R_\mathfrak p,</math> स्थानीय वलय है; अर्थात्, इसका केवल [[अधिकतम आदर्श]] है। | * यदि <math>S=R\setminus \mathfrak p</math> प्रमुख आदर्श का पूरक ( समुच्चय सिद्धांत) है <math>\mathfrak p</math>, तब <math>S^{-1} R,</math> लक्षित <math>R_\mathfrak p,</math> स्थानीय वलय है; अर्थात्, इसका केवल [[अधिकतम आदर्श]] है। | ||
Line 76: | Line 77: | ||
* स्थानीयकरण परिमित रकम, उत्पादों, चौराहों और रेडिकल्स के निर्माण के साथ प्रारंभिक होता है;<ref>{{harvnb|Atiyah|MacDonald|1969|loc=Proposition 3.11. (v).}}</ref> उदा., यदि <math>\sqrt{I}</math> R में आदर्श I के मूलांक को निरूपित करें, तब | * स्थानीयकरण परिमित रकम, उत्पादों, चौराहों और रेडिकल्स के निर्माण के साथ प्रारंभिक होता है;<ref>{{harvnb|Atiyah|MacDonald|1969|loc=Proposition 3.11. (v).}}</ref> उदा., यदि <math>\sqrt{I}</math> R में आदर्श I के मूलांक को निरूपित करें, तब | ||
::<math>\sqrt{I} \cdot S^{-1}R = \sqrt{I \cdot S^{-1}R}\,.</math> | ::<math>\sqrt{I} \cdot S^{-1}R = \sqrt{I \cdot S^{-1}R}\,.</math> | ||
: विशेष रूप से, आर [[कम अंगूठी]] है यदि और केवल यदि इसके अंशों की कुल | : विशेष रूप से, आर [[कम अंगूठी|कम]] वलय है यदि और केवल यदि इसके अंशों की कुल वलय कम हो जाती है।<ref>Borel, AG. 3.3</ref> | ||
*मान लें कि R अंश K के क्षेत्र के साथ अभिन्न डोमेन है। फिर इसका स्थानीयकरण <math>R_\mathfrak{p}</math> प्रमुख आदर्श पर <math>\mathfrak{p}</math> K. के उप-वलय के रूप में देखा जा सकता है। इसके अतिरिक्त , | *मान लें कि R अंश K के क्षेत्र के साथ अभिन्न डोमेन है। फिर इसका स्थानीयकरण <math>R_\mathfrak{p}</math> प्रमुख आदर्श पर <math>\mathfrak{p}</math> K. के उप-वलय के रूप में देखा जा सकता है। इसके अतिरिक्त , | ||
::<math>R = \bigcap_\mathfrak{p} R_\mathfrak{p} = \bigcap_\mathfrak{m} R_\mathfrak{m}</math> | ::<math>R = \bigcap_\mathfrak{p} R_\mathfrak{p} = \bigcap_\mathfrak{m} R_\mathfrak{m}</math> | ||
Line 94: | Line 95: | ||
== संदर्भ द्वारा समझाया शब्दावली == | == संदर्भ द्वारा समझाया शब्दावली == | ||
स्थानीयकरण शब्द की उत्पत्ति आधुनिक गणित की सामान्य प्रवृत्ति से हुई है, जो स्थानीय रूप से [[ज्यामिति]] और [[टोपोलॉजी]] वस्तुओं का अध्ययन करने के लिए है, जो कि प्रत्येक बिंदु के पास उनके | स्थानीयकरण शब्द की उत्पत्ति आधुनिक गणित की सामान्य प्रवृत्ति से हुई है, जो स्थानीय रूप से [[ज्यामिति]] और [[टोपोलॉजी]] वस्तुओं का अध्ययन करने के लिए है, जो कि प्रत्येक बिंदु के पास उनके सम्बन्ध के संदर्भ में है। इस प्रवृत्ति के उदाहरण [[कई गुना]], [[रोगाणु (गणित)]] और शीफ (गणित) की मौलिक अवधारणाएं हैं। बीजगणितीय ज्यामिति में, सजातीय बीजगणितीय समुच्चय को बहुपद वलय के [[भागफल की अंगूठी|भागफल की]] वलय के साथ इस तरह से पहचाना जा सकता है कि बीजगणितीय समुच्चय के बिंदु वलय के अधिकतम आदर्शों के अनुरूप होते हैं (यह हिल्बर्ट का नलस्टेलेंसैट है)। इस पत्राचार को [[जरिस्की टोपोलॉजी]] से लैस [[टोपोलॉजिकल स्पेस]] कम्यूटेटिव वलय के प्रमुख आदर्शों के समुच्चय को बनाने के लिए सामान्यीकृत किया गया है; इस टोपोलॉजिकल स्पेस को वलय का स्पेक्ट्रम कहा जाता है। | ||
इस संदर्भ में, गुणक समुच्चय द्वारा स्थानीयकरण को प्रमुख आदर्शों (बिंदुओं के रूप में देखा गया) के उप-क्षेत्र के लिए | इस संदर्भ में, गुणक समुच्चय द्वारा स्थानीयकरण को प्रमुख आदर्शों (बिंदुओं के रूप में देखा गया) के उप-क्षेत्र के लिए वलय के स्पेक्ट्रम के प्रतिबंध के रूप में देखा जा सकता है जो गुणक समुच्चय को नहीं काटते हैं। | ||
स्थानीयकरण के दो वर्गों को अधिक सामान्यतः माना जाता है: | स्थानीयकरण के दो वर्गों को अधिक सामान्यतः माना जाता है: | ||
* गुणक समुच्चय प्रधान आदर्श का पूरक (समुच्चय सिद्धांत) है <math>\mathfrak p</math> | * गुणक समुच्चय प्रधान आदर्श का पूरक (समुच्चय सिद्धांत) है <math>\mathfrak p</math> वलय का {{mvar|R}}. इस स्थितियों में, कोई स्थानीयकरण की बात करता है <math>\mathfrak p</math>, या बिंदु पर स्थानीयकरण। परिणामी अंगूठी, निरूपित <math>R_\mathfrak p</math> स्थानीय वलय है, और रोगाणु (गणित) या कीटाणुओं का बीजगणितीय एनालॉग है। | ||
* गुणक समुच्चय में तत्व की सभी शक्तियाँ होती हैं {{mvar|t}} | * गुणक समुच्चय में तत्व की सभी शक्तियाँ होती हैं {{mvar|t}} वलय का {{mvar|R}}. परिणामी वलय को सामान्यतः निरूपित किया जाता है <math>R_t,</math> और इसका स्पेक्ट्रम प्रमुख आदर्शों का ज़ारिस्की खुला समुच्चय है जिसमें सम्मिलित नहीं है {{mvar|t}}. इस प्रकार स्थानीयकरण स्थलीय स्थान के बिंदु के पड़ोस के प्रतिबंध का एनालॉग है (प्रत्येक प्रमुख आदर्श में [[पड़ोस का आधार]] होता है जिसमें इस फॉर्म के ज़रिस्की खुले समुच्चय होते हैं)। | ||
[[संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में, जब वलय पर काम कर रहे हों <math>\Z</math> पूर्णांकों में से, पूर्णांक के सापेक्ष संपत्ति को संदर्भित करता है {{mvar|n}} संपत्ति के रूप में सच है {{mvar|n}} या दूर {{mvar|n}}, माने जाने वाले स्थानीयकरण पर निर्भर करता है। से दूर {{mvar|n}} का अर्थ है कि संपत्ति को स्थानीयकरण के बाद की शक्तियों द्वारा माना जाता है {{mvar|n}}, और यदि {{mvar|p}} प्रमुख संख्या है, पर {{mvar|p}} का कारण है कि संपत्ति को मुख्य आदर्श पर स्थानीयकरण के बाद माना जाता है <math>p\Z</math>. इस शब्दावली को इस तथ्य से समझाया जा सकता है कि, यदि {{mvar|p}} प्रधान है, के स्थानीयकरण के अशून्य प्रमुख आदर्श <math>\Z</math> या तो [[सिंगलटन सेट|सिंगलटन]] समुच्चय हैं {{math|{{mset|p}}}} या अभाज्य संख्याओं के समुच्चय में इसका पूरक। | [[संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में, जब वलय पर काम कर रहे हों <math>\Z</math> पूर्णांकों में से, पूर्णांक के सापेक्ष संपत्ति को संदर्भित करता है {{mvar|n}} संपत्ति के रूप में सच है {{mvar|n}} या दूर {{mvar|n}}, माने जाने वाले स्थानीयकरण पर निर्भर करता है। से दूर {{mvar|n}} का अर्थ है कि संपत्ति को स्थानीयकरण के बाद की शक्तियों द्वारा माना जाता है {{mvar|n}}, और यदि {{mvar|p}} प्रमुख संख्या है, पर {{mvar|p}} का कारण है कि संपत्ति को मुख्य आदर्श पर स्थानीयकरण के बाद माना जाता है <math>p\Z</math>. इस शब्दावली को इस तथ्य से समझाया जा सकता है कि, यदि {{mvar|p}} प्रधान है, के स्थानीयकरण के अशून्य प्रमुख आदर्श <math>\Z</math> या तो [[सिंगलटन सेट|सिंगलटन]] समुच्चय हैं {{math|{{mset|p}}}} या अभाज्य संख्याओं के समुच्चय में इसका पूरक। | ||
Line 151: | Line 152: | ||
== प्राइम्स पर स्थानीयकरण == | == प्राइम्स पर स्थानीयकरण == | ||
प्रधान आदर्श की परिभाषा का तात्पर्य तुरंत है कि समुच्चय पूरक है <math>S=R\setminus \mathfrak p</math> प्रमुख आदर्श का <math>\mathfrak p</math> कम्यूटेटिव वलय में {{mvar|R}} गुणक समुच्चय है। इस स्थितियों में, स्थानीयकरण <math>S^{-1}R</math> सामान्य रूप से निरूपित किया जाता है <math>R_\mathfrak p.</math> | प्रधान आदर्श की परिभाषा का तात्पर्य तुरंत है कि समुच्चय पूरक है <math>S=R\setminus \mathfrak p</math> प्रमुख आदर्श का <math>\mathfrak p</math> कम्यूटेटिव वलय में {{mvar|R}} गुणक समुच्चय है। इस स्थितियों में, स्थानीयकरण <math>S^{-1}R</math> सामान्य रूप से निरूपित किया जाता है <math>R_\mathfrak p.</math> वलय <math>R_\mathfrak p</math> स्थानीय वलय है, जिसे स्थानीय वलय कहा जाता है {{mvar|R}} पर <math>\mathfrak p.</math> इस का कारण है कि <math>\mathfrak p\,R_\mathfrak p=\mathfrak p\otimes_R R_\mathfrak p</math> वलय का अद्वितीय अधिकतम आदर्श है <math>R_\mathfrak p.</math> | ||
इस तरह के स्थानीयकरण कई कारणों से क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति के लिए मौलिक हैं। यह है कि सामान्य क्रमविनिमेय छल्लों की तुलना में स्थानीय छल्लों का अध्ययन करना अधिकांशतः आसान होता है, विशेष रूप से [[एम्मा नाकायमा]] के कारण। चूंकि , मुख्य कारण यह है कि कई गुण वलय के लिए सही हैं यदि और केवल यदि वे इसके सभी स्थानीय वलयों के लिए सही हैं। उदाहरण के लिए, वलय नियमित वलय है यदि और केवल यदि इसके सभी स्थानीय वलय नियमित स्थानीय वलय हैं। | इस तरह के स्थानीयकरण कई कारणों से क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति के लिए मौलिक हैं। यह है कि सामान्य क्रमविनिमेय छल्लों की तुलना में स्थानीय छल्लों का अध्ययन करना अधिकांशतः आसान होता है, विशेष रूप से [[एम्मा नाकायमा]] के कारण। चूंकि , मुख्य कारण यह है कि कई गुण वलय के लिए सही हैं यदि और केवल यदि वे इसके सभी स्थानीय वलयों के लिए सही हैं। उदाहरण के लिए, वलय नियमित वलय है यदि और केवल यदि इसके सभी स्थानीय वलय नियमित स्थानीय वलय हैं। | ||
Line 177: | Line 178: | ||
== जरिस्की ओपन समुच्चय == के लिए स्थानीयकरण | == जरिस्की ओपन समुच्चय == के लिए स्थानीयकरण | ||
== गैर-कम्यूटेटिव केस == | == गैर-कम्यूटेटिव केस == | ||
[[गैर-कम्यूटेटिव रिंग|गैर-कम्यूटेटिव वलय]]ों का स्थानीयकरण करना अधिक कठिन है। जबकि संभावित इकाइयों के प्रत्येक समुच्चय एस के लिए स्थानीयकरण उपस्थित है, यह ऊपर वर्णित के लिए अलग रूप ले सकता है। शर्त जो यह सुनिश्चित करती है कि स्थानीयकरण अच्छी तरह से | [[गैर-कम्यूटेटिव रिंग|गैर-कम्यूटेटिव वलय]]ों का स्थानीयकरण करना अधिक कठिन है। जबकि संभावित इकाइयों के प्रत्येक समुच्चय एस के लिए स्थानीयकरण उपस्थित है, यह ऊपर वर्णित के लिए अलग रूप ले सकता है। शर्त जो यह सुनिश्चित करती है कि स्थानीयकरण अच्छी तरह से सम्बन्ध किया जाता है वह [[अयस्क की स्थिति]] है। | ||
गैर-कम्यूटेटिव वलयों के लिए | गैर-कम्यूटेटिव वलयों के लिए स्थिति जहां स्थानीयकरण का स्पष्ट हित अंतर ऑपरेटरों के वलयों के लिए है। इसकी व्याख्या है, उदाहरण के लिए, औपचारिक व्युत्क्रम D से सटे हुए<sup>−1</sup> अवकलन संकारक D के लिए। यह अवकल समीकरणों के तरीकों में कई संदर्भों में किया जाता है। इसके बारे में अब बड़ा गणितीय सिद्धांत है, जिसे [[ माइक्रोलोकल विश्लेषण ]] कहा जाता है, जो कई अन्य शाखाओं से जुड़ता है। माइक्रो-टैग विशेष रूप से [[फूरियर सिद्धांत]] के साथ संबंध के साथ करना है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:12, 21 May 2023
क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति में, स्थानीयकरण किसी दिए गए वलय (गणित) या मॉड्यूल (गणित) में "भाजक" को परिचित कराने का औपचारिक विधि है। अर्थात्, यह आधुनिक वलय/मॉड्यूल 'आर' से बाहर नया वलय/मॉड्यूल प्रस्तुत करता है, जिससे इसमें बीजगणितीय अंश हो जैसे कि हर s किसी दिए गए उपसमुच्चय से संबंधित हो R का S यदि एस एक अभिन्न डोमेन के गैर-शून्य तत्वों का सेट है, तो स्थानीयकरण अंशों का क्षेत्र है: यह स्थिति वलय के परिमेय संख्याओं के क्षेत्र के निर्माण को सामान्य करता है पूर्णांकों का है ।
विधि मौलिक हो गई है विशेष रूप से बीजगणितीय ज्यामिति में, क्योंकि यह शीफ (गणित) सिद्धांत के लिए प्राकृतिक लिंक प्रदान करती है। वास्तव में, स्थानीयकरण शब्द की उत्पत्ति बीजगणितीय ज्यामिति में हुई है: यदि R किसी ज्यामितीय वस्तु (बीजीय विविधता) V पर परिभाषित फलन (गणित) का वलय है, और कोई बिंदु p के पास स्थानीय रूप से इस विविधता का अध्ययन करना चाहता है, तो कोई इस पर विचार करता है सभी कार्यों के एस समुच्चय करें जो पी पर शून्य नहीं हैं और S के संबंध में R को स्थानांतरित करते हैं। परिणामी वलय p के पास V के सम्बन्ध के बारे में जानकारी सम्मिलित है और ऐसी जानकारी को बाहर करता है जो स्थानीय नहीं है, जैसे किसी फलन का शून्य जो V के बाहर है (c.f. स्थानीय वलय में दिया गया उदाहरण)।
वलय का स्थानीयकरण
गुणात्मक रूप से बंद सेट S द्वारा एक कम्यूटेटिव वलय R का स्थानीयकरण एक नया वलय है, जिसके तत्व R में अंश और S में हर के साथ अंश हैं।
यदि वलय अभिन्न डोमेन है, तो निर्माण अंशों के क्षेत्र का सामान्यीकरण करता है और सूक्ष्मता से अनुसरण करता है, और विशेष रूप से परिमेय संख्याओं का पूर्णांकों के भिन्नों के क्षेत्र के रूप में उन वलयों के लिए जिनमें शून्य विभाजक हैं, निर्माण समान है किन्तु अधिक देखभाल की आवश्यकता है।
गुणक सेट
स्थानीयकरण सामान्यतः रिंग R के तत्वों के गुणक रूप से बंद सेट S (जिसे गुणक सेट या गुणक प्रणाली भी कहा जाता है) के संबंध में किया जाता है जो कि R का एक उपसमुच्चय है जो गुणन के तहत बंद होता है और इसमें 1 होता है।
आवश्यकता है कि S गुणक समुच्चय होना स्वाभाविक है, क्योंकि इसका तात्पर्य है कि स्थानीयकरण द्वारा प्रस्तुत किए गए सभी भाजक S से संबंधित हैं एक सेट U द्वारा स्थानीयकरण जो गुणात्मक रूप से बंद नहीं है, को भी परिभाषित किया जा सकता है, संभावित भाजक के सभी उत्पादों के रूप में ले कर U के तत्व चूँकि U के तत्वों के सभी उत्पादों के गुणात्मक रूप से बंद सेट S का उपयोग करके एक ही स्थानीयकरण प्राप्त किया जाता है। जैसा कि यह अधिकांशतः तर्क और अंकन को सरल बनाता है, यह गुणक सेटों द्वारा केवल स्थानीयकरण पर विचार करने के लिए मानक अभ्यास है।
उदाहरण के लिए, एक एकल तत्व s द्वारा स्थानीयकरण के रूप के अंशों का परिचय देता है, लेकिन ऐसे अंशों के उत्पाद भी, जैसे कि इसलिए, हर, s की घात के गुणक सेट से संबंधित होंगे। इसलिए सामान्यतः "तत्व द्वारा स्थानीयकरण" की अतिरिक्त"तत्व की शक्तियों द्वारा स्थानीयकरण" की बात की जाती है।
गुणक समुच्चय S द्वारा एक वलय R का स्थानीयकरण सामान्यतः निरूपित किया जाता है, किन्तु कुछ विशेष स्थितियों में सामान्यतः अन्य संकेतन का उपयोग किया जाता है: यदि में एक ही तत्व की शक्तियाँ होती हैं, को अधिकांशतः यदि एक प्रमुख आदर्श का पूरक है, तो को के रूप में दर्शाया जाता है।
इस लेख के शेष भाग में, गुणक समुच्चय द्वारा केवल स्थानीयकरण पर विचार किया जाता है।
इंटीग्रल डोमेन
जब वलय R अभिन्न डोमेन है और S सम्मिलित नहीं है 0, वलय के अंशों के क्षेत्र का उपवलय है R. जैसे, डोमेन का स्थानीयकरण डोमेन है।
अधिक स्पष्ट रूप से, यह के अंशों के क्षेत्र का सबवलय है R, जिसमें अंश होते हैं ऐसा है कि योग के बाद से यह सबवलय है और उत्पाद के दो तत्वों का में हैं यह गुणक समुच्चय की परिभाषित संपत्ति से उत्पन्न होता है, जिसका तात्पर्य यह भी है इस स्थितियों में, R का उपसमूह है यह नीचे दिखाया गया है कि यह अब सामान्य रूप से सत्य नहीं है, सामान्यतः जब S में शून्य विभाजक हैं।
उदाहरण के लिए, दशमलव अंश दस की शक्तियों के गुणात्मक समुच्चय द्वारा पूर्णांकों की वलय का स्थानीयकरण है। इस स्थितियों में, में परिमेय संख्याएँ होती हैं जिन्हें इस रूप में लिखा जा सकता है कहाँ n पूर्णांक है, और k अऋणात्मक पूर्णांक है।
सामान्य निर्माण
सामान्य स्थिति में, शून्य भाजक के साथ समस्या उत्पन्न होती है। होने देना S क्रमविनिमेय वलय में गुणक समुच्चय हो R. लगता है कि और के साथ शून्य भाजक है तब में छवि है का और है इस प्रकार के कुछ अशून्य तत्व R में शून्य होना चाहिए इसके बाद का निर्माण इसे ध्यान में रखकर बनाया गया है।
दिया गया R और S ऊपर के रूप में, कोई तुल्यता संबंध पर विचार करता है जिसके द्वारा परिभाषित किया गया है यदि कोई उपस्थित है ऐसा है कि स्थानीयकरण इस संबंध के लिए समकक्ष वर्गों के समुच्चय के रूप में परिभाषित किया गया है। का वर्ग (r, s) के रूप में दर्शाया गया है या तो, के पास है यदि और केवल यदि वहाँ है ऐसा है कि का कारण उपरोक्त जैसे स्थितियों को संभालना है कहाँ तथापि अंशों को समान माना जाना चाहिए, फिर भी शून्य नहीं है।
स्थानीयकरण जोड़ के साथ क्रमविनिमेय वलय है
गुणा
जोड़ने योग्य पहचान और गुणक पहचान
फलन (गणित)
से वलय समरूपता को परिभाषित करता है में जो इंजेक्शन फलन है यदि और केवल यदि S में कोई शून्य भाजक नहीं है।
यदि तब वह शून्य वलय है जिसके पास है 0 अद्वितीय तत्व के रूप में।
यदि S के सभी शून्य भाजक का समुच्चय है R (वह तत्व हैं जो शून्य विभाजक नहीं हैं), के अंशों का कुल वलय कहा जाता है R.
सार्वभौमिक संपत्ति
(ऊपर परिभाषित) वलय समरूपता नीचे वर्णित सार्वभौमिक संपत्ति को संतुष्ट करता है। यह विशेषता है समरूपता तक। इसलिए स्थानीयकरण के सभी गुणों को सार्वभौमिक संपत्ति से स्वतंत्र रूप से उनके निर्माण के तरीके से घटाया जा सकता है। इसके अतिरिक्त , स्थानीयकरण के कई महत्वपूर्ण गुण सार्वभौमिक गुणों के सामान्य गुणों से आसानी से निकाले जाते हैं, जबकि उनका प्रत्यक्ष प्रमाण साथ विधि, सीधा और उबाऊ हो सकता है।
सार्वभौमिक संपत्ति से संतुष्ट निम्नलखित में से कोई:
- यदि वलय समरूपता है जो प्रत्येक तत्व को मैप करता है S इकाई (वलय थ्योरी) (उलटा तत्व) में T, अद्वितीय वलय समरूपता उपस्थित है ऐसा है कि
श्रेणी सिद्धांत का उपयोग करते हुए, यह कहकर व्यक्त किया जा सकता है कि स्थानीयकरण मज़ेदार है जो भुलक्कड़ ऑपरेटर के साथ छोड़ दिया गया है। अधिक स्पष्ट , चलो और वे श्रेणियां हों जिनकी वस्तुओं को क्रमविनिमेय वलय और सुबमोनोइड की जोड़ी का क्रम दिया गया हो, क्रमशः गुणक मोनोइड या वलय की इकाइयों का समूह। इन श्रेणियों के रूपवाद वलय होमोमोर्फिज्म हैं जो पहली वस्तु के सबमोनॉइड को दूसरे के सबमोनॉइड में मैप करते हैं। अंत में, चलो भुलक्कड़ फ़नकार बनें जो यह भूल जाता है कि जोड़ी के दूसरे तत्व के तत्व उलटे हैं।
फिर गुणनखंड सार्वभौमिक संपत्ति की आपत्ति को परिभाषित करता है
यह सार्वभौमिक संपत्ति को व्यक्त करने का जटिल विधि प्रतीत हो सकता है, किन्तु यह इस तथ्य का उपयोग करके आसानी से कई गुणों को दिखाने के लिए उपयोगी है कि दो बाएं आसन्न फ़ैक्टरों की संरचना बाएं आसन्न फ़ैक्टर है।
उदाहरण
- यदि पूर्णांकों का वलय है, और तब मैदान है परिमेय संख्याओं का।
- यदि R अभिन्न डोमेन है, और तब के अंशों का क्षेत्र है R. पूर्ववर्ती उदाहरण इसका विशेष स्थिति है।
- यदि R क्रमविनिमेय वलय है, और यदि S इसके तत्वों का सब समुच्चय है जो शून्य विभाजक नहीं हैं के अंशों का कुल वलय है R. इस स्थितियों में, S सबसे बड़ा बहुगुणक समुच्चय है जैसे समरूपता इंजेक्शन है। पूर्ववर्ती उदाहरण इसका विशेष स्थिति है।
- यदि x क्रमविनिमेय वलय का तत्व है R और तब पहचाना जा सकता है (विहित समरूपता है) (प्रमाण में यह दिखाना सम्मिलित है कि यह वलय उपरोक्त सार्वभौमिक संपत्ति को संतुष्ट करती है।) इस प्रकार का स्थानीयकरण संबंध योजना की परिभाषा में मौलिक भूमिका निभाता है।
- यदि क्रमविनिमेय वलय का प्रमुख आदर्श है R, समुच्चय पूरक का में R गुणक समुच्चय है ( प्रमुख आदर्श की परिभाषा के अनुसार)। वलय स्थानीय वलय है जिसे सामान्यतः निरूपित किया जाता है और की स्थानीय वलय कहा जाता है R पर इस प्रकार का स्थानीयकरण क्रमविनिमेय बीजगणित में मूलभूत है, क्योंकि क्रमविनिमेय वलय के कई गुणों को इसके स्थानीय छल्लों पर पढ़ा जा सकता है। ऐसी संपत्ति को अधिकांशतः स्थानीय संपत्ति कहा जाता है। उदाहरण के लिए, वलय नियमित वलय है यदि और केवल यदि इसके सभी स्थानीय वलय नियमित हैं।
वलय गुण
स्थानीयकरण समृद्ध निर्माण है जिसमें कई उपयोगी गुण हैं। इस खंड में, केवल वलयों और एकल स्थानीयकरण से संबंधित गुणों पर विचार किया जाता है। अन्य वर्गों में आदर्श (वलय थ्योरी), मॉड्यूल (गणित), या कई गुणात्मक समुच्चय से संबंधित गुणों पर विचार किया जाता है।
- यदि और केवल यदि S रोकना 0.
- वलय समरूपता इंजेक्शन है यदि और केवल यदि S में कोई शून्य भाजक नहीं है।
- वलय समरूपता अंगूठियों की श्रेणी में अधिरूपता है, जो सामान्य रूप से विशेषण नहीं है।
- वलय फ्लैट मॉड्यूल है | फ्लैट R-मॉड्यूल (देखें § एक मॉड्यूल का स्थानीयकरण जानकारी के लिए)।
- यदि प्रमुख आदर्श का पूरक ( समुच्चय सिद्धांत) है , तब लक्षित स्थानीय वलय है; अर्थात्, इसका केवल अधिकतम आदर्श है।
संपत्तियों को दूसरे खंड में स्थानांतरित किया जाना है
- स्थानीयकरण परिमित रकम, उत्पादों, चौराहों और रेडिकल्स के निर्माण के साथ प्रारंभिक होता है;[1] उदा., यदि R में आदर्श I के मूलांक को निरूपित करें, तब
- मान लें कि R अंश K के क्षेत्र के साथ अभिन्न डोमेन है। फिर इसका स्थानीयकरण प्रमुख आदर्श पर K. के उप-वलय के रूप में देखा जा सकता है। इसके अतिरिक्त ,
- जहां पहला चौराहा सभी प्रमुख आदर्शों पर है और दूसरा अधिकतम आदर्शों पर है।[3]
- एस के प्रमुख आदर्शों के समुच्चय के बीच आक्षेप है−1R और R के प्रमुख आदर्शों का समुच्चय जो S को नहीं काटते हैं। यह आक्षेप दिए गए समाकारिता R → S से प्रेरित है-1आर.
गुणक समुच्चय की संतृप्ति
होने देना गुणक समुच्चय हो। संतृप्ति का समुच्चय है
गुणक समुच्चय S संतृप्त है यदि यह अपनी संतृप्ति के बराबर है, अर्थात यदि , या समकक्ष, यदि इसका आशय है r और s में हैं S.
यदि S संतृप्त नहीं है, और तब की छवि का गुणक प्रतिलोम है r में तो, के तत्वों की छवियां में सभी उलटे हैं और सार्वभौमिक संपत्ति का तात्पर्य है और कैनोनिकल आइसोमोर्फिज्म हैं, अर्थात उनके बीच अद्वितीय आइसोमोर्फिज्म है जो तत्वों की छवियों को ठीक करता है R.
यदि S और T तब दो गुणक समुच्चय हैं और आइसोमॉर्फिक हैं यदि और केवल यदि उनके पास समान संतृप्ति है, या, समकक्ष, यदि s गुणक समुच्चय में से से संबंधित है, तो वहाँ उपस्थित है ऐसा है कि st दूसरे का है।
संतृप्त गुणात्मक समुच्चय व्यापक रूप से स्पष्ट रूप से उपयोग नहीं किए जाते हैं, क्योंकि यह सत्यापित करने के लिए कि समुच्चय संतृप्त है, किसी को वलय की सभी इकाई (वलय थ्योरी) को जानना चाहिए।
संदर्भ द्वारा समझाया शब्दावली
स्थानीयकरण शब्द की उत्पत्ति आधुनिक गणित की सामान्य प्रवृत्ति से हुई है, जो स्थानीय रूप से ज्यामिति और टोपोलॉजी वस्तुओं का अध्ययन करने के लिए है, जो कि प्रत्येक बिंदु के पास उनके सम्बन्ध के संदर्भ में है। इस प्रवृत्ति के उदाहरण कई गुना, रोगाणु (गणित) और शीफ (गणित) की मौलिक अवधारणाएं हैं। बीजगणितीय ज्यामिति में, सजातीय बीजगणितीय समुच्चय को बहुपद वलय के भागफल की वलय के साथ इस तरह से पहचाना जा सकता है कि बीजगणितीय समुच्चय के बिंदु वलय के अधिकतम आदर्शों के अनुरूप होते हैं (यह हिल्बर्ट का नलस्टेलेंसैट है)। इस पत्राचार को जरिस्की टोपोलॉजी से लैस टोपोलॉजिकल स्पेस कम्यूटेटिव वलय के प्रमुख आदर्शों के समुच्चय को बनाने के लिए सामान्यीकृत किया गया है; इस टोपोलॉजिकल स्पेस को वलय का स्पेक्ट्रम कहा जाता है।
इस संदर्भ में, गुणक समुच्चय द्वारा स्थानीयकरण को प्रमुख आदर्शों (बिंदुओं के रूप में देखा गया) के उप-क्षेत्र के लिए वलय के स्पेक्ट्रम के प्रतिबंध के रूप में देखा जा सकता है जो गुणक समुच्चय को नहीं काटते हैं।
स्थानीयकरण के दो वर्गों को अधिक सामान्यतः माना जाता है:
- गुणक समुच्चय प्रधान आदर्श का पूरक (समुच्चय सिद्धांत) है वलय का R. इस स्थितियों में, कोई स्थानीयकरण की बात करता है , या बिंदु पर स्थानीयकरण। परिणामी अंगूठी, निरूपित स्थानीय वलय है, और रोगाणु (गणित) या कीटाणुओं का बीजगणितीय एनालॉग है।
- गुणक समुच्चय में तत्व की सभी शक्तियाँ होती हैं t वलय का R. परिणामी वलय को सामान्यतः निरूपित किया जाता है और इसका स्पेक्ट्रम प्रमुख आदर्शों का ज़ारिस्की खुला समुच्चय है जिसमें सम्मिलित नहीं है t. इस प्रकार स्थानीयकरण स्थलीय स्थान के बिंदु के पड़ोस के प्रतिबंध का एनालॉग है (प्रत्येक प्रमुख आदर्श में पड़ोस का आधार होता है जिसमें इस फॉर्म के ज़रिस्की खुले समुच्चय होते हैं)।
संख्या सिद्धांत और बीजगणितीय टोपोलॉजी में, जब वलय पर काम कर रहे हों पूर्णांकों में से, पूर्णांक के सापेक्ष संपत्ति को संदर्भित करता है n संपत्ति के रूप में सच है n या दूर n, माने जाने वाले स्थानीयकरण पर निर्भर करता है। से दूर n का अर्थ है कि संपत्ति को स्थानीयकरण के बाद की शक्तियों द्वारा माना जाता है n, और यदि p प्रमुख संख्या है, पर p का कारण है कि संपत्ति को मुख्य आदर्श पर स्थानीयकरण के बाद माना जाता है . इस शब्दावली को इस तथ्य से समझाया जा सकता है कि, यदि p प्रधान है, के स्थानीयकरण के अशून्य प्रमुख आदर्श या तो सिंगलटन समुच्चय हैं {p} या अभाज्य संख्याओं के समुच्चय में इसका पूरक।
स्थानीयकरण और आदर्शों की संतृप्ति
होने देना S क्रमविनिमेय वलय में गुणक समुच्चय हो R, और कैनोनिकल वलय होमोमोर्फिज्म हो। आदर्श (वलय थ्योरी) दिया गया I में R, होने देना में अंशों का समुच्चय जिसका अंश में है I. यह का आदर्श है जिसके द्वारा उत्पन्न होता है j(I), और का स्थानीयकरण कहा जाता है I द्वारा S.
की संतृप्ति I द्वारा S है का आदर्श है R, जिसे तत्वों के समुच्चय के रूप में भी परिभाषित किया जा सकता है ऐसा है कि वहाँ उपस्थित है साथ
आदर्शों के कई गुणों को या तो संतृप्ति और स्थानीयकरण द्वारा संरक्षित किया जाता है, या स्थानीयकरण और संतृप्ति के सरल गुणों की विशेषता हो सकती है। जो आगे हुआ, S वलय में गुणक समुच्चय है R, और I और J के आदर्श हैं R; आदर्श की संतृप्ति I गुणक समुच्चय द्वारा S अंकित है या, जब गुणक समुच्चय S संदर्भ से स्पष्ट है, *
(यह सख्त उपसमुच्चय के लिए सदैव सत्य नहीं होता है)- यदि प्रमुख आदर्श ऐसा है तब प्रमुख आदर्श और है ; यदि चौराहा खाली नहीं है, तो और
मॉड्यूल का स्थानीयकरण
होने देना R क्रमविनिमेय वलय हो, S गुणक समुच्चय हो R, और M सेम R-मॉड्यूल (गणित)। मॉड्यूल का स्थानीयकरण M द्वारा S, निरूपित S−1M, S−1R-मॉड्यूल जो बिल्कुल स्थानीयकरण के रूप में बनाया गया है R, सिवाय इसके कि अंशों के अंश किससे संबंधित हैं M. अर्थात्, समुच्चय के रूप में, इसमें निरूपित तुल्यता वर्ग होते हैं , जोड़े का (m, s), कहाँ और और दो जोड़े (m, s) और (n, t) समान हैं यदि कोई तत्व है u में S ऐसा है कि
योग और अदिश गुणन को सामान्य भिन्नों के रूप में परिभाषित किया गया है (निम्नलिखित सूत्र में, और ):
इसके अतिरिक्त, S−1M भी है R-अदिश गुणन के साथ मॉड्यूल
यह जांचना सीधा है कि ये ऑपरेशन अच्छी तरह से परिभाषित हैं, अर्थात, वे भिन्नों के प्रतिनिधियों के विभिन्न विकल्पों के लिए समान परिणाम देते हैं।
मॉड्यूल के स्थानीयकरण को मॉड्यूल के टेंसर उत्पाद का उपयोग करके समान रूप से परिभाषित किया जा सकता है:
तुल्यता का प्रमाण (कैनोनिकल आइसोमोर्फिज़्म तक) यह दिखा कर किया जा सकता है कि दो परिभाषाएँ ही सार्वभौमिक संपत्ति को संतुष्ट करती हैं।
मॉड्यूल गुण
यदि M का सुबमोदुले है R-मापांक N, और S गुणक समुच्चय है R, किसी के पास इसका तात्पर्य यह है कि यदि इंजेक्शन मॉड्यूल समरूपता है, तो
इंजेक्शन समरूपता भी है।
चूंकि टेन्सर उत्पाद सही स्पष्ट फ़ंक्टर है, इसका तात्पर्य है कि स्थानीयकरण द्वारा S के स्पष्ट अनुक्रमों को मैप करता है R-मॉड्यूल के स्पष्ट अनुक्रम के लिए -मॉड्यूल। दूसरे शब्दों में, स्थानीयकरण स्पष्ट फ़ैक्टर है, और फ्लैट मॉड्यूल है | फ्लैट R-मापांक।
यह समतलता और तथ्य यह है कि स्थानीयकरण सार्वभौमिक संपत्ति को हल करता है जिससे स्थानीयकरण मॉड्यूल और वलयों के कई गुणों को संरक्षित करता है, और अन्य सार्वभौमिक गुणों के समाधान के साथ संगत है। उदाहरण के लिए, प्राकृतिक परिवर्तन
समरूपता है। यदि बारीक रूप से प्रस्तुत किया गया मॉड्यूल, प्राकृतिक मानचित्र है
समरूपता भी है।[4] यदि मॉड्यूल M, R के ऊपर सूक्ष्म रूप से उत्पन्न मॉड्यूल है, तो के पास है
कहाँ सर्वनाश (वलय सिद्धांत) को दर्शाता है, जो कि वलय के तत्वों का आदर्श है जो मॉड्यूल के सभी तत्वों को शून्य करने के लिए मैप करता है।[5] विशेष रूप से,
- वह है, यदि कुछ के लिए [6]
प्राइम्स पर स्थानीयकरण
प्रधान आदर्श की परिभाषा का तात्पर्य तुरंत है कि समुच्चय पूरक है प्रमुख आदर्श का कम्यूटेटिव वलय में R गुणक समुच्चय है। इस स्थितियों में, स्थानीयकरण सामान्य रूप से निरूपित किया जाता है वलय स्थानीय वलय है, जिसे स्थानीय वलय कहा जाता है R पर इस का कारण है कि वलय का अद्वितीय अधिकतम आदर्श है इस तरह के स्थानीयकरण कई कारणों से क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति के लिए मौलिक हैं। यह है कि सामान्य क्रमविनिमेय छल्लों की तुलना में स्थानीय छल्लों का अध्ययन करना अधिकांशतः आसान होता है, विशेष रूप से एम्मा नाकायमा के कारण। चूंकि , मुख्य कारण यह है कि कई गुण वलय के लिए सही हैं यदि और केवल यदि वे इसके सभी स्थानीय वलयों के लिए सही हैं। उदाहरण के लिए, वलय नियमित वलय है यदि और केवल यदि इसके सभी स्थानीय वलय नियमित स्थानीय वलय हैं।
वलय के गुण जिन्हें इसके स्थानीय छल्लों पर चित्रित किया जा सकता है, स्थानीय गुण कहलाते हैं, और अधिकांशतः बीजगणितीय किस्मों की ज्यामितीय स्थानीय संपत्ति के बीजगणितीय समकक्ष होते हैं, जो ऐसे गुण होते हैं जिनका अध्ययन विविधता के प्रत्येक बिंदु के छोटे से पड़ोस में प्रतिबंध द्वारा किया जा सकता है। . (स्थानीय संपत्ति की और अवधारणा है जो ज़रिस्की खुले सेटों के स्थानीयकरण को संदर्भित करती है; देखें § जरिस्की ओपन सेट के लिए स्थानीयकरण, नीचे।)
कई स्थानीय गुण इस तथ्य का परिणाम हैं कि मॉड्यूल
भरोसेमंद फ्लैट मॉड्यूल है जब प्रत्यक्ष योग सभी प्रमुख आदर्शों (या सभी अधिकतम आदर्शों पर) पर लिया जाता है R). ईमानदारी से सपाट वंश भी देखें।
स्थानीय गुणों के उदाहरण
संपत्ति P की R-मापांक M स्थानीय संपत्ति है यदि निम्न स्थितियाँ समतुल्य हैं:
- P के लिए रखता है M.
- P सभी के लिए है कहाँ का प्रमुख आदर्श है R.
- P सभी के लिए है कहाँ का अधिकतम आदर्श है R.
निम्नलिखित स्थानीय गुण हैं:
- M शून्य है।
- M मरोड़-मुक्त है (स्थितियों में जहां R क्रमविनिमेय डोमेन है)।
- M फ्लैट मॉड्यूल है।
- M उलटा मॉड्यूल है (स्थितियों में जहां R क्रमविनिमेय डोमेन है, और M के अंशों के क्षेत्र का सबमॉड्यूल है R).
- इंजेक्शन (प्रतिक्रिया विशेषण) है, जहां N दूसरा है R-मापांक।
दूसरी ओर, कुछ संपत्तियां स्थानीय संपत्तियां नहीं होती हैं। उदाहरण के लिए, क्षेत्र (गणित) का अनंत प्रत्यक्ष उत्पाद अभिन्न डोमेन नहीं है और न ही नोथेरियन वलय है, जबकि इसके सभी स्थानीय वलय फ़ील्ड हैं, और इसलिए नोथेरियन इंटीग्रल डोमेन हैं।
== जरिस्की ओपन समुच्चय == के लिए स्थानीयकरण
गैर-कम्यूटेटिव केस
गैर-कम्यूटेटिव वलयों का स्थानीयकरण करना अधिक कठिन है। जबकि संभावित इकाइयों के प्रत्येक समुच्चय एस के लिए स्थानीयकरण उपस्थित है, यह ऊपर वर्णित के लिए अलग रूप ले सकता है। शर्त जो यह सुनिश्चित करती है कि स्थानीयकरण अच्छी तरह से सम्बन्ध किया जाता है वह अयस्क की स्थिति है।
गैर-कम्यूटेटिव वलयों के लिए स्थिति जहां स्थानीयकरण का स्पष्ट हित अंतर ऑपरेटरों के वलयों के लिए है। इसकी व्याख्या है, उदाहरण के लिए, औपचारिक व्युत्क्रम D से सटे हुए−1 अवकलन संकारक D के लिए। यह अवकल समीकरणों के तरीकों में कई संदर्भों में किया जाता है। इसके बारे में अब बड़ा गणितीय सिद्धांत है, जिसे माइक्रोलोकल विश्लेषण कहा जाता है, जो कई अन्य शाखाओं से जुड़ता है। माइक्रो-टैग विशेष रूप से फूरियर सिद्धांत के साथ संबंध के साथ करना है।
यह भी देखें
- स्थानीय विश्लेषण
- श्रेणी का स्थानीयकरण
- टोपोलॉजिकल स्पेस का स्थानीयकरण
संदर्भ
- ↑ Atiyah & MacDonald 1969, Proposition 3.11. (v).
- ↑ Borel, AG. 3.3
- ↑ Matsumura, Theorem 4.7
- ↑ Eisenbud, Proposition 2.10
- ↑ Atiyah & MacDonald, Proposition 3.14.
- ↑ Borel, AG. 3.1
- Atiyah and MacDonald. Introduction to Commutative Algebra. Addison-Wesley.
- Borel, Armand. Linear Algebraic Groups (2nd ed.). New York: Springer-Verlag. ISBN 0-387-97370-2.
- Cohn, P. M. (1989). "§ 9.3". Algebra. Vol. 2 (2nd ed.). Chichester: John Wiley & Sons Ltd. pp. xvi+428. ISBN 0-471-92234-X. MR 1006872.
- Cohn, P. M. (1991). "§ 9.1". Algebra. Vol. 3 (2nd ed.). Chichester: John Wiley & Sons Ltd. pp. xii+474. ISBN 0-471-92840-2. MR 1098018.
- Eisenbud, David (1995), Commutative algebra, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
- Matsumura. Commutative Algebra. Benjamin-Cummings
- Stenström, Bo (1971). Rings and modules of quotients. Lecture Notes in Mathematics, Vol. 237. Berlin: Springer-Verlag. pp. vii+136. ISBN 978-3-540-05690-4. MR 0325663.
- Serge Lang, "Algebraic Number Theory," Springer, 2000. pages 3–4.
बाहरी संबंध
- Localization from MathWorld.