कासिमोर्फिज़्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Group homomorphism up to bounded error}}[[समूह सिद्धांत]] में, [[समूह (गणित)]] दिया गया <math>G</math>, अर्धरूपवाद (या अर्ध-रूपवाद) फलन (गणित) है <math>f:G\to\mathbb{R}</math> जो बाउंडेड एरर तक [[ योगात्मक नक्शा |योगात्मक नक्शा]] है, यानी कॉन्स्टेंट मौजूद है (गणित) <math>D\geq 0</math> ऐसा है कि <math>|f(gh)-f(g)-f(h)|\leq D</math> सभी के लिए <math>g, h\in G</math>. का सबसे कम धनात्मक मान <math>D</math> जिसके लिए यह असमानता संतुष्ट होती है, का दोष कहलाता है <math>f</math>, के रूप में लिखा गया है <math>D(f)</math>. समूह के लिए <math>G</math>, क्वासिमोर्फिज़्म [[समारोह स्थान]] का रेखीय उप-स्थान बनाते हैं <math>\mathbb{R}^G</math>.
{{Short description|Group homomorphism up to bounded error}}[[समूह सिद्धांत]] में, [[समूह (गणित)]] मुख्य रूप से <math>G</math> द्वारा दिये गये अर्धरूपवाद फलन है, जिसे <math>f:G\to\mathbb{R}</math> फलन के रूप में प्रदर्शित करते हैं, जो बाउंडेड एरर तक [[ योगात्मक नक्शा |योगात्मक]] क्षेत्र को प्रदर्शित करता है, अर्ताथ कॉन्स्टेंट उपस्थित रहते हैं। इस प्रकार <math>D\geq 0</math> होने पर इसका मान इस प्रकार प्राप्त होता हैं कि फलन <math>|f(gh)-f(g)-f(h)|\leq D</math> का मान सभी <math>g, h\in G</math> के लिए सबसे कम धनात्मक मान वाले <math>D</math> के लिए असमानता को संतुष्ट करता है, यह फलन <math>f</math> का दोष कहलाता है, जिसे <math>D(f)</math> के रूप में लिखा जाता है, इस प्रकार <math>G</math> समूह के लिए, क्वासिमोर्फिज़्म [[समारोह स्थान|फलन]] का रेखीय उप-स्थान <math>\mathbb{R}^G</math> बनाते हैं।


== उदाहरण ==
== उदाहरण ==
* [[समूह समरूपता]] और परिबद्ध कार्य <math>G</math> को <math>\mathbb{R}</math> कासिमोर्फिज्म हैं। समूह समरूपता और परिबद्ध कार्य का योग भी अर्ध-रूपवाद है, और इस रूप के कार्यों को कभी-कभी तुच्छ अर्ध-रूपवाद कहा जाता है।<ref>Frigerio (2017), p. 12.</ref>
* [[समूह समरूपता]] और परिबद्ध कार्य <math>G</math> को <math>\mathbb{R}</math> द्वारा कासिमोर्फिज्म के रूप में उपयोग किया जाता हैं। इस प्रकार समूह समरूपता और परिबद्ध कार्य का योग भी अर्ध-रूपवाद को प्रदर्शित करता है, और इस रूप के कार्यों को कभी-कभी तुच्छ अर्ध-रूपवाद कहा जाता है।<ref>Frigerio (2017), p. 12.</ref>
* होने देना <math>G=F_S</math> सेट पर [[मुक्त समूह]] बनें <math>S</math>. कम शब्द के लिए <math>w</math> में <math>S</math>, हम पहले बड़े काउंटिंग फंक्शन को परिभाषित करते हैं <math>C_w:F_S\to \mathbb{Z}_{\geq 0}</math>, जिसके लिए लौटता है <math>g\in G</math> प्रतियों की संख्या <math>w</math> के कम प्रतिनिधि में <math>g</math>. इसी तरह, हम छोटे काउंटिंग फंक्शन को परिभाषित करते हैं <math>c_w:F_S\to\mathbb{Z}_{\geq 0}</math>, के कम प्रतिनिधि में गैर-अतिव्यापी प्रतियों की अधिकतम संख्या लौटाना <math>g</math>. उदाहरण के लिए, <math>C_{aa}(aaaa)=3</math> और <math>c_{aa}(aaaa)=2</math>. फिर, बड़ी गिनती क्वासिमोर्फिज्म (प्रतिक्रिया छोटी गिनती क्वासिमोर्फिज्म) रूप का कार्य है <math>H_w(g)=C_w(g)-C_{w^{-1}}(g)</math> (प्रति. <math>h_w(g)=c_w(g)-c_{w^{-1}}(g))</math>.
* इस प्रकार <math>G=F_S</math> समुच्चय के लिए [[मुक्त समूह]] <math>S</math> का मान प्राप्तो होता हैं जिसे कम शब्दों में <math>w</math> के लिए <math>S</math> रूप में उपयोग करते हैं, हम पहले बड़े काउंटिंग फलन <math>C_w:F_S\to \mathbb{Z}_{\geq 0}</math> को परिभाषित करते हैं, जिसके लिए <math>g\in G</math> मान प्राप्त होता है, इसकी प्रतियों की संख्या <math>w</math> के कम प्रतिनिधि में <math>g</math> के समान होती हैं। इसी प्रकार हम छोटे काउंटिंग फलन <math>c_w:F_S\to\mathbb{Z}_{\geq 0}</math> को परिभाषित करते हैं, जिसके कम प्रतिनिधि में गैर-अतिव्यापी प्रतियों की अधिकतम संख्या <math>g</math> द्वारा प्राप्त होती हैं। उदाहरण के लिए <math>C_{aa}(aaaa)=3</math> और <math>c_{aa}(aaaa)=2</math>. की बड़ी गिनती क्वासिमोर्फिज्म प्रतिक्रिया को छोटी गिनती के लिए क्वासिमोर्फिज्म रूप अर्ताथ <math>H_w(g)=C_w(g)-C_{w^{-1}}(g)</math> (प्रति. <math>h_w(g)=c_w(g)-c_{w^{-1}}(g))</math> के उक्त फलन के रूप में प्राप्त करते हैं।
* घूर्णन संख्या <math>\text{rot}:\text{Homeo}^+(S^1)\to\mathbb{R}</math> अर्धरूपवाद है, जहां <math>\text{Homeo}^+(S^1)</math> [[घेरा]] के अभिविन्यास-संरक्षण [[होमियोमोर्फिज्म]] को दर्शाता है।
* घूर्णन संख्या <math>\text{rot}:\text{Homeo}^+(S^1)\to\mathbb{R}</math> अर्धरूपवाद रहता है, जहाँ <math>\text{Homeo}^+(S^1)</math> इस [[घेरा|क्षेत्र]] के अभिविन्यास-संरक्षण [[होमियोमोर्फिज्म]] को दर्शाता है।


== सजातीय ==
== सजातीय ==
एक क्वासिमोर्फिज्म सजातीय है अगर <math>f(g^n)=nf(g)</math> सभी के लिए <math>g\in G, n\in \mathbb{Z}</math>. यह पता चला है कि क्वासिमोर्फिज्म के अध्ययन को सजातीय क्वासिमोर्फिज्म के अध्ययन के लिए कम किया जा सकता है, क्योंकि हर क्वासिमोर्फिज्म <math>f:G\to\mathbb{R}</math> अद्वितीय सजातीय क्वासिमोर्फिज्म से सीमित दूरी है <math>\overline{f}:G\to\mathbb{R}</math>, द्वारा दिए गए :
एक क्वासिमोर्फिज्म सजातीय है, यदि <math>f(g^n)=nf(g)</math> का मान सभी <math>g\in G, n\in \mathbb{Z}</math> के लिए उपयोग किया जाता हैं। इस प्रकार यह पता चला है कि क्वासिमोर्फिज्म के अध्ययन को सजातीय क्वासिमोर्फिज्म के अध्ययन के लिए कम किया जा सकता है, क्योंकि हर क्वासिमोर्फिज्म <math>f:G\to\mathbb{R}</math> अद्वितीय सजातीय क्वासिमोर्फिज्म से सीमित दूरी है, जिसे फलन <math>\overline{f}:G\to\mathbb{R}</math>, द्वारा इस प्रकार प्रकट कर सकते हैं:
:<math>\overline{f}(g)=\lim_{n\to\infty}\frac{f(g^n)}{n}</math>.
:<math>\overline{f}(g)=\lim_{n\to\infty}\frac{f(g^n)}{n}</math>.
एक सजातीय क्वासिमोर्फिज्म <math>f:G\to\mathbb{R}</math> निम्नलिखित गुण हैं:
एक सजातीय क्वासिमोर्फिज्म <math>f:G\to\mathbb{R}</math> के निम्नलिखित गुण हैं:
* यह [[संयुग्मन वर्ग]]ों पर स्थिर है, अर्थात <math>f(g^{-1}hg)=f(h)</math> सभी के लिए <math>g, h\in G</math>,
* यह [[संयुग्मन वर्ग|संयुग्मन वर्गों]] पर स्थिर है, अर्थात <math>f(g^{-1}hg)=f(h)</math> का मान <math>g, h\in G</math> के अनुसार प्राप्त होता हैं।
* अगर <math>G</math> [[एबेलियन समूह]] है, तो <math>f</math> समूह समरूपता है। उपरोक्त टिप्पणी का तात्पर्य है कि इस मामले में सभी अर्ध-रूपवाद तुच्छ हैं।
* इस प्रकार यदि <math>G</math> [[एबेलियन समूह]] है, तो <math>f</math> समूह समरूपता को प्रकट करता हैं। उपरोक्त टिप्पणी का तात्पर्य है कि इस स्थिति में सभी अर्ध-रूपवाद अनुपयोगी रहते हैं।


== पूर्णांक-मूल्यवान ==
== पूर्णांक मान ==
एक फ़ंक्शन के मामले में भी इसी तरह क्वासिमोर्फिज़्म को परिभाषित किया जा सकता है <math>f:G\to\mathbb{Z}</math>. इस मामले में, सजातीय अर्ध-रूपताओं के बारे में उपरोक्त चर्चा अब सीमा के रूप में नहीं है <math>\lim_{n\to\infty}f(g^n)/n</math> में मौजूद नहीं है <math>\mathbb{Z}</math> सामान्य रूप में।
किसी फलन की विशेष स्थिति में भी इसी प्रकार क्वासिमोर्फिज़्म <math>f:G\to\mathbb{Z}</math> को परिभाषित किया जा सकता है, इस स्थिति में, सजातीय अर्ध-रूपताओं के बारे में उपरोक्त मान अब सीमा के अनुरूप नहीं है इस प्रकार इसकी सीमा <math>\lim_{n\to\infty}f(g^n)/n</math> में <math>\mathbb{Z}</math> सामान्य रूप में उपस्थित नहीं रहते हैं।


उदाहरण के लिए, के लिए <math>\alpha\in\mathbb{R}</math>, वो नक्शा <math>\mathbb{Z}\to\mathbb{Z}:n\mapsto\lfloor\alpha n\rfloor</math> कासिमोर्फिज्म है। क्वासिमोर्फिज्म के भागफल के रूप में वास्तविक संख्या का निर्माण होता है <math>\mathbb{Z}\to\mathbb{Z}</math> उचित तुल्यता संबंध द्वारा, वास्तविक संख्याओं का निर्माण#पूर्णांकों से निर्माण देखें (यूडॉक्सस रियल)|पूर्णांकों से वास्तविक संख्याओं का निर्माण (यूडोक्सस रियल)।
उदाहरण के लिए, <math>\alpha\in\mathbb{R}</math>, के लिए इसका मान <math>\mathbb{Z}\to\mathbb{Z}:n\mapsto\lfloor\alpha n\rfloor</math> रूप में कासिमोर्फिज्म को प्रकट करता है। क्वासिमोर्फिज्म के भागफल के रूप में वास्तविक संख्या <math>\mathbb{Z}\to\mathbb{Z}</math> उचित तुल्यता संबंध द्वारा निर्माण होता है , वास्तविक संख्याओं का निर्माण पूर्णांकों से होता हैं जिसके लिए यूडॉक्सस रियल या पूर्णांकों से वास्तविक संख्याओं का निर्माण यूडोक्सस रियल पर निर्भर करता हैं।


==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}


== संदर्भ ==
== संदर्भ ==

Revision as of 01:06, 1 June 2023

समूह सिद्धांत में, समूह (गणित) मुख्य रूप से द्वारा दिये गये अर्धरूपवाद फलन है, जिसे फलन के रूप में प्रदर्शित करते हैं, जो बाउंडेड एरर तक योगात्मक क्षेत्र को प्रदर्शित करता है, अर्ताथ कॉन्स्टेंट उपस्थित रहते हैं। इस प्रकार होने पर इसका मान इस प्रकार प्राप्त होता हैं कि फलन का मान सभी के लिए सबसे कम धनात्मक मान वाले के लिए असमानता को संतुष्ट करता है, यह फलन का दोष कहलाता है, जिसे के रूप में लिखा जाता है, इस प्रकार समूह के लिए, क्वासिमोर्फिज़्म फलन का रेखीय उप-स्थान बनाते हैं।

उदाहरण

  • समूह समरूपता और परिबद्ध कार्य को द्वारा कासिमोर्फिज्म के रूप में उपयोग किया जाता हैं। इस प्रकार समूह समरूपता और परिबद्ध कार्य का योग भी अर्ध-रूपवाद को प्रदर्शित करता है, और इस रूप के कार्यों को कभी-कभी तुच्छ अर्ध-रूपवाद कहा जाता है।[1]
  • इस प्रकार समुच्चय के लिए मुक्त समूह का मान प्राप्तो होता हैं जिसे कम शब्दों में के लिए रूप में उपयोग करते हैं, हम पहले बड़े काउंटिंग फलन को परिभाषित करते हैं, जिसके लिए मान प्राप्त होता है, इसकी प्रतियों की संख्या के कम प्रतिनिधि में के समान होती हैं। इसी प्रकार हम छोटे काउंटिंग फलन को परिभाषित करते हैं, जिसके कम प्रतिनिधि में गैर-अतिव्यापी प्रतियों की अधिकतम संख्या द्वारा प्राप्त होती हैं। उदाहरण के लिए और . की बड़ी गिनती क्वासिमोर्फिज्म प्रतिक्रिया को छोटी गिनती के लिए क्वासिमोर्फिज्म रूप अर्ताथ (प्रति. के उक्त फलन के रूप में प्राप्त करते हैं।
  • घूर्णन संख्या अर्धरूपवाद रहता है, जहाँ इस क्षेत्र के अभिविन्यास-संरक्षण होमियोमोर्फिज्म को दर्शाता है।

सजातीय

एक क्वासिमोर्फिज्म सजातीय है, यदि का मान सभी के लिए उपयोग किया जाता हैं। इस प्रकार यह पता चला है कि क्वासिमोर्फिज्म के अध्ययन को सजातीय क्वासिमोर्फिज्म के अध्ययन के लिए कम किया जा सकता है, क्योंकि हर क्वासिमोर्फिज्म अद्वितीय सजातीय क्वासिमोर्फिज्म से सीमित दूरी है, जिसे फलन , द्वारा इस प्रकार प्रकट कर सकते हैं:

.

एक सजातीय क्वासिमोर्फिज्म के निम्नलिखित गुण हैं:

  • यह संयुग्मन वर्गों पर स्थिर है, अर्थात का मान के अनुसार प्राप्त होता हैं।
  • इस प्रकार यदि एबेलियन समूह है, तो समूह समरूपता को प्रकट करता हैं। उपरोक्त टिप्पणी का तात्पर्य है कि इस स्थिति में सभी अर्ध-रूपवाद अनुपयोगी रहते हैं।

पूर्णांक मान

किसी फलन की विशेष स्थिति में भी इसी प्रकार क्वासिमोर्फिज़्म को परिभाषित किया जा सकता है, इस स्थिति में, सजातीय अर्ध-रूपताओं के बारे में उपरोक्त मान अब सीमा के अनुरूप नहीं है इस प्रकार इसकी सीमा में सामान्य रूप में उपस्थित नहीं रहते हैं।

उदाहरण के लिए, , के लिए इसका मान रूप में कासिमोर्फिज्म को प्रकट करता है। क्वासिमोर्फिज्म के भागफल के रूप में वास्तविक संख्या उचित तुल्यता संबंध द्वारा निर्माण होता है , वास्तविक संख्याओं का निर्माण पूर्णांकों से होता हैं जिसके लिए यूडॉक्सस रियल या पूर्णांकों से वास्तविक संख्याओं का निर्माण यूडोक्सस रियल पर निर्भर करता हैं।

टिप्पणियाँ

  1. Frigerio (2017), p. 12.

संदर्भ

  • Calegari, Danny (2009), scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, pp. 17–25, doi:10.1142/e018, ISBN 978-4-931469-53-2
  • Frigerio, Roberto (2017), Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, vol. 227, American Mathematical Society, Providence, RI, pp. 12–15, arXiv:1610.08339, doi:10.1090/surv/227, ISBN 978-1-4704-4146-3, S2CID 53640921


अग्रिम पठन