वुडिन कार्डिनल: Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 27: Line 27:
मिशेल और स्टील ने दिखाया कि एक वुडिन कार्डिनल निहित है, एक वुडिन कार्डिनल युक्त एक आंतरिक मॉडल है जिसमें वास्तविकता का <math>\Delta_4^1</math>-क्रम है, जो ◊ होल्ड करता है, और [[सामान्यीकृत सातत्य परिकल्पना]] धारण करता है।<ref>W. Mitchell, [https://www.semanticscholar.org/paper/Inner-Models-for-Large-Cardinals-Mitchell/ecf7380a4468e233a23282157b318e20156e3a1a Inner models for large cardinals] (2012, p.32). Accessed 2022-12-08.</ref>
मिशेल और स्टील ने दिखाया कि एक वुडिन कार्डिनल निहित है, एक वुडिन कार्डिनल युक्त एक आंतरिक मॉडल है जिसमें वास्तविकता का <math>\Delta_4^1</math>-क्रम है, जो ◊ होल्ड करता है, और [[सामान्यीकृत सातत्य परिकल्पना]] धारण करता है।<ref>W. Mitchell, [https://www.semanticscholar.org/paper/Inner-Models-for-Large-Cardinals-Mitchell/ecf7380a4468e233a23282157b318e20156e3a1a Inner models for large cardinals] (2012, p.32). Accessed 2022-12-08.</ref>


'''[[सहारों शेलाह]] ने सिद्ध किया कि यदि वुडिन कार्डिनल का अस्तित्व सुसंगत है तो यह सुसंगत है कि गैर-स्थिर आदर्श <math>\omega_1</math> है <math>\aleph_2</math>-संतृप्त।
[[सहारों शेलाह|शेलाह]] ने सिद्ध किया कि यदि वुडिन कार्डिनल का अस्तित्व सुसंगत है तो यह सुसंगत है कि <math>\omega_1</math> पर गैर-स्थिर आदर्श <math>\aleph_2</math>-संतृप्त है। वुडिन ने असीम रूप से कई वुडिन कार्डिनल्स के अस्तित्व और <math>\aleph_1</math>के ऊपर एक <math>\aleph_1</math>-सघन आदर्श अस्तित्व की समानता को भी सिद्ध किया।
वुडिन ने असीम रूप से कई वुडिन कार्डिनल्स के अस्तित्व और एक के अस्तित्व की समानता को भी सिद्ध किया <math>\aleph_1</math>-सघन आदर्श ओवर <math>\aleph_1</math>.'''


== हाइपर-वुडिन कार्डिनल्स ==
== हाइपर-वुडिन कार्डिनल्स ==

Revision as of 20:19, 28 May 2023

समुच्चय सिद्धांत में, एक वुडिन कार्डिनल (डब्ल्यू. ह्यूग वुडिन के नाम पर) एक कार्डिनल संख्या जो कि सभी फलनों के लिए है

एक कार्डिनल निहित है

और एक प्राथमिक एम्बेडिंग

वॉन न्यूमैन ब्रह्मांड से एक सकर्मक आंतरिक मॉडल में महत्वपूर्ण बिंदु और

के साथ है।

एक समतुल्य परिभाषा यह है: वुडिन है अगर और केवल अगर दुर्गम कार्डिनल है और सभी के लिए एक निहित है जो --मज़बूत है।

--मजबूत होने का मतलब है कि सभी क्रमिक संख्याओं के लिए , वहाँ एक निहित है जो महत्वपूर्ण बिंदु , , और के साथ एक प्राथमिक एम्बेडिंग है। (मजबूत कार्डिनल भी देखें।)

एक वुडिन कार्डिनल मापने योग्य कार्डिनल्स के एक स्थिर समुच्चय से पहले होता है, और इस प्रकार यह एक महलो कार्डिनल है। हालांकि, पहला वुडिन कार्डिनल कमजोर रूप सघन भी नहीं है।

परिणाम

वर्णनात्मक समुच्चय सिद्धांत में वुडिन कार्डिनल्स महत्वपूर्ण हैं। डोनाल्ड ए. मार्टिन और जॉन आर. स्टील के परिणाम से[1], असीमित रूप से कई वुडिन कार्डिनल्स का अस्तित्व प्रोजेक्टिव निर्धारणा से तात्पर्य है, जिसका अर्थ है कि प्रत्येक प्रोजेक्टिव समुच्चय लेबेस्ग औसत दर्जे का है, बेयर गुणधर्म है (एक खुले समुच्चय से अल्प समुच्चय भिन्न होता है, जो कि एक समुच्चय है जो कहीं भी घने समुच्चयों का एक गणनीय संघ नहीं है), और सही समुच्चय गुणधर्म (या तो गणनीय है या एक पूर्ण उपसमुच्चय है)।

दृढ़ संकल्प परिकल्पनाओं का उपयोग करके वुडिन कार्डिनल्स के अस्तित्व की स्थिरता सिद्ध की जा सकती है। ZF+AD+DCमें काम करना सिद्ध कर सकता है कि आनुवंशिक रूप से क्रमिक-निश्चित समुच्चयों की कक्षा में वुडिन है। पहला क्रमसूचक है जिस पर क्रमसूचक-परिभाषा अनुमान द्वारा निरंतरता को प्रतिचित्रित नहीं किया जा सकता है (देखें Θ (समुच्चय सिद्धांत))।

मिशेल और स्टील ने दिखाया कि एक वुडिन कार्डिनल निहित है, एक वुडिन कार्डिनल युक्त एक आंतरिक मॉडल है जिसमें वास्तविकता का -क्रम है, जो ◊ होल्ड करता है, और सामान्यीकृत सातत्य परिकल्पना धारण करता है।[2]

शेलाह ने सिद्ध किया कि यदि वुडिन कार्डिनल का अस्तित्व सुसंगत है तो यह सुसंगत है कि पर गैर-स्थिर आदर्श -संतृप्त है। वुडिन ने असीम रूप से कई वुडिन कार्डिनल्स के अस्तित्व और के ऊपर एक -सघन आदर्श अस्तित्व की समानता को भी सिद्ध किया।

हाइपर-वुडिन कार्डिनल्स

एक कार्डिनल संख्या हाइपर-वुडिन कहा जाता है यदि कोई सामान्य उपाय निहित हो पर ऐसा कि हर समुच्चय के लिए , समुच्चय

है --मजबूत कार्डिनल

में है .

है --मजबूत अगर और केवल अगर प्रत्येक के लिए एक सकर्मक वर्ग है और एक प्राथमिक एम्बेडिंग

साथ

, और
.

यह नाम शास्त्रीय परिणाम की ओर इशारा करता है कि एक कार्डिनल वुडिन है अगर और केवल अगर हर समुच्चय के लिए , समुच्चय

है --मजबूत कार्डिनल

एक स्थिर समुच्चय है।

पैमाना नीचे सभी शेलाह कार्डिनल्स का समुच्चय होगा .

कमजोर हाइपर-वुडिन कार्डिनल्स

एक कार्डिनल संख्या प्रत्येक समुच्चय के लिए कमजोर रूप से हाइपर-वुडिन कहा जाता है एक सामान्य उपाय निहित है पर ऐसा समुच्चय है --मजबूत कार्डिनल में है . है --मजबूत अगर और केवल अगर प्रत्येक के लिए एक सकर्मक वर्ग है और एक प्राथमिक एम्बेडिंग साथ , , और यह नाम क्लासिक परिणाम की ओर इशारा करता है कि हर समुच्चय के लिए एक कार्डिनल वुडिन है , समुच्चय है --मजबूत कार्डिनल स्थिर है।

हाइपर-वुडिन कार्डिनल्स और कमजोर हाइपर-वुडिन कार्डिनल्स के बीच का अंतर यह है कि किसकी पसंद है समुच्चय की पसंद पर निर्भर नहीं करता है हाइपर-वुडिन कार्डिनल्स के लिए।

नोट्स और संदर्भ

  1. A Proof of Projective Determinacy
  2. W. Mitchell, Inner models for large cardinals (2012, p.32). Accessed 2022-12-08.


अग्रिम पठन

  • Kanamori, Akihiro (2003). The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (2nd ed.). Springer. ISBN 3-540-00384-3.
  • For proofs of the two results listed in consequences see Handbook of Set Theory (Eds. Foreman, Kanamori, Magidor) (to appear). Drafts of some chapters are available.
  • Ernest Schimmerling, Woodin cardinals, Shelah cardinals and the Mitchell-Steel core model, Proceedings of the American Mathematical Society 130/11, pp. 3385–3391, 2002, online
  • Steel, John R. (October 2007). "What is a Woodin Cardinal?" (PDF). Notices of the American Mathematical Society. 54 (9): 1146–7. Retrieved 2008-01-15.