ओवररिंग: Difference between revisions

From Vigyanwiki
mNo edit summary
Line 16: Line 16:


==== परिभाषाएं ====
==== परिभाषाएं ====
एक <em>[[नोथेरियन रिंग|नोथेरियन वलय]]</em> 3 समतुल्य <em>[[परिमित]] स्थितियों</em> को संतुष्ट करता है i) आदर्श (वलय सिद्धांत) की प्रत्येक [[आरोही श्रृंखला की स्थिति]] परिमित है, ii) आदर्शों के प्रत्येक गैर-रिक्त श्रेणी का अधिकतम होता है और iii) प्रत्येक आदर्श का एक परिमित आधार होता है।{{sfn|Zariski|Samuel|1965}}{{rp|199}}
एक <em>[[नोथेरियन रिंग|नोथेरियन वलय]]</em> 3 समतुल्य <em>[[परिमित]] स्थितियों</em> को संतुष्ट करता है i) गुणावली (वलय सिद्धांत) की प्रत्येक [[आरोही श्रृंखला की स्थिति]] परिमित है, ii) गुणावलीों के प्रत्येक गैर-रिक्त श्रेणी का अधिकतम होता है और iii) प्रत्येक गुणावली का एक परिमित आधार होता है।{{sfn|Zariski|Samuel|1965}}{{rp|199}}


एक अविभाज्य कार्यक्षेत्र एक <em>डेडेकिंड कार्यक्षेत्र</em> होता है, अगर कार्यक्षेत्र का हर आदर्श आदर्श आदर्शों का एक परिमित उत्पाद है।{{sfn|Zariski|Samuel|1965}}{{rp|270}}
एक अविभाज्य कार्यक्षेत्र एक <em>डेडेकिंड कार्यक्षेत्र</em> होता है, अगर कार्यक्षेत्र का प्रत्येक गुणावली प्रमुख गुणावलीों का एक परिमित उत्पाद है ।{{sfn|Zariski|Samuel|1965}}{{rp|270}}


वलय का <em>प्रतिबंधित [[ आयाम ]]</em> उन सभी प्राइम आइडियल्स के रैंकों के बीच अधिकतम [[क्रुल आयाम]] है जिसमें एक [[नियमित तत्व]] होता है.{{sfn|Davis|1962}}{{rp|52}}
वलय का <em>प्रतिबंधित [[ आयाम |आकार]] </em>उन सभी प्राथमिक गुणावली की श्रेणियों के बीच अधिकतम [[क्रुल आयाम|क्रुल आकार]] है जिसमें एक [[नियमित तत्व]] होता है.{{sfn|Davis|1962}}{{rp|52}}


एक वलय <math display="inline">R</math> <a>स्थानीय वलय [[ nilpotent ]] फ्री</me> है अगर हर वलय <math display="inline">R_{M}</math> [[अधिकतम आदर्श]] के साथ <math display="inline">M</math> निलपोटेंट तत्वों से मुक्त है या प्रत्येक गैर इकाई के साथ एक शून्य विभाजक है।{{sfn|Davis|1962}}{{rp|52}}
एक वलय <math display="inline">R</math> स्थानीय रूप से [[ nilpotent |नगण्य]] है अगर हर वलय <math display="inline">R_{M}</math> [[अधिकतम आदर्श|अधिकतम गुणावली]] के साथ <math display="inline">M</math> [[ nilpotent |नगण्य]] तत्वों से मुक्त है या प्रत्येक गैर इकाई के साथ एक शून्य विभाजक है।{{sfn|Davis|1962}}{{rp|52}}


एक <em>एफ़िन वलय</em> एक फ़ील्ड (गणित) पर एक बहुपद वलय की [[समरूपता]] [[छवि (गणित)]] है।{{sfn|Davis|1962}}{{rp|58}}
एक <em>प्रायोजित वलय</em> एक <em>क्षेत्र</em> (गणित) पर एक बहुपद वलय की [[समरूपता|समरूप]] [[छवि (गणित)]] है।{{sfn|Davis|1962}}{{rp|58}}


==== गुण ====
==== गुण ====
डेडेकाइंड वलय का हर ऊपरी वलय डेडेकाइंड वलय होता है।{{sfn|Cohen|1950}}{{sfn|Lane|Schilling|1939}}
डेडेकाइंड वलय का हर ऊपरी वलय डेडेकाइंड वलय होता है।{{sfn|Cohen|1950}}{{sfn|Lane|Schilling|1939}}


छल्लों के [[प्रत्यक्ष योग]] का प्रत्येक ऊपरी वलय, जिसके गैर-इकाई तत्व सभी शून्य-भाजक हैं, एक नोथेरियन वलय है।{{sfn|Davis|1962}}{{rp|53}}
वलय के [[प्रत्यक्ष योग]] का प्रत्येक ऊपरी वलय, जिसके गैर-इकाई तत्व सभी शून्य-भाजक हैं, एक नोथेरियन वलय है।{{sfn|Davis|1962}}{{rp|53}}


क्रुल डायमेंशन 1-डायमेंशनल नोथेरियन कार्यक्षेत्र का हर ऊपरी वलय नोथेरियन वलय है।{{sfn|Davis|1962}}{{rp|53}}
क्रुल डायमेंशन 1-डायमेंशनल नोथेरियन कार्यक्षेत्र का हर ऊपरी वलय नोथेरियन वलय है।{{sfn|Davis|1962}}{{rp|53}}
Line 35: Line 35:
ये कथन नोथेरियन वलय के समतुल्य हैं <math display="inline">R</math> अभिन्न बंद होने के साथ <math display="inline">\bar{R}</math>.{{sfn|Davis|1962}}{{rp|57}}
ये कथन नोथेरियन वलय के समतुल्य हैं <math display="inline">R</math> अभिन्न बंद होने के साथ <math display="inline">\bar{R}</math>.{{sfn|Davis|1962}}{{rp|57}}
* हर ओववलय <math display="inline">R</math> एक नोथेरियन वलय है।
* हर ओववलय <math display="inline">R</math> एक नोथेरियन वलय है।
* प्रत्येक अधिकतम आदर्श के लिए <math display="inline">M</math> का <math display="inline">R</math>, हर ओवरिंग <math display="inline">R_{M}</math> एक नोथेरियन वलय है।
* प्रत्येक अधिकतम गुणावली के लिए <math display="inline">M</math> का <math display="inline">R</math>, हर ओवरिंग <math display="inline">R_{M}</math> एक नोथेरियन वलय है।
* अँगूठी <math display="inline">R</math> प्रतिबंधित आयाम 1 या उससे कम के साथ स्थानीय रूप से शून्य है।
* अँगूठी <math display="inline">R</math> प्रतिबंधित आकार 1 या उससे कम के साथ स्थानीय रूप से शून्य है।
* अँगूठी <math display="inline">\bar{R}</math> नोथेरियन है, और वलय <math display="inline">R</math> सीमित आयाम 1 या उससे कम है।
* अँगूठी <math display="inline">\bar{R}</math> नोथेरियन है, और वलय <math display="inline">R</math> सीमित आकार 1 या उससे कम है।
* हर ओवरिंग <math display="inline">\bar{R}</math> अभिन्न रूप से बंद है।
* हर ओवरिंग <math display="inline">\bar{R}</math> अभिन्न रूप से बंद है।


Line 54: Line 54:


==== परिभाषाएं ====
==== परिभाषाएं ====
एक <em>सुसंगत वलय</em> क्रमविनिमेय वलय है जिसमें वलय सिद्धांत की प्रत्येक शब्दावली वलय सिद्धांत की आदर्श शब्दावली है।{{sfn|Papick|1978}}{{rp|373}} नोथेरियन कार्यक्षेत्र और प्रुफ़र कार्यक्षेत्र सुसंगत हैं।{{sfn|Papick|1980}}{{rp|137}}
एक <em>सुसंगत वलय</em> क्रमविनिमेय वलय है जिसमें वलय सिद्धांत की प्रत्येक शब्दावली वलय सिद्धांत की गुणावली शब्दावली है।{{sfn|Papick|1978}}{{rp|373}} नोथेरियन कार्यक्षेत्र और प्रुफ़र कार्यक्षेत्र सुसंगत हैं।{{sfn|Papick|1980}}{{rp|137}}


एक <em>जोड़ी</em> <math display="inline">(R,T)</math> वलय सिद्धांत के अविभाज्य कार्यक्षेत्र  ग्लोसरी को इंगित करता है <math display="inline">T</math> ऊपर <math display="inline">R</math>.{{sfn|Papick|1979}}{{rp|331}}
एक <em>जोड़ी</em> <math display="inline">(R,T)</math> वलय सिद्धांत के अविभाज्य कार्यक्षेत्र  ग्लोसरी को इंगित करता है <math display="inline">T</math> ऊपर <math display="inline">R</math>.{{sfn|Papick|1979}}{{rp|331}}
Line 61: Line 61:


==== गुण ====
==== गुण ====
प्रत्येक ऊपरी वलय सुसंगत होने पर एक नोथेरियन वलय का क्रुल आयाम 1 या उससे कम होता है।{{sfn|Papick|1978}}{{rp|373}}
प्रत्येक ऊपरी वलय सुसंगत होने पर एक नोथेरियन वलय का क्रुल आकार 1 या उससे कम होता है।{{sfn|Papick|1978}}{{rp|373}}


अविभाज्य कार्यक्षेत्र  जोड़ी के लिए <math display="inline">(R,T)</math>, <math display="inline">T</math> का ऊपरी वलय है <math display="inline">R</math> यदि प्रत्येक मध्यवर्ती अविभाज्य कार्यक्षेत्र  अभिन्न रूप से बंद है <math display="inline">T</math>.{{sfn|Papick|1979}}{{rp|332}}{{sfn|Davis|1973}}{{rp|175}}
अविभाज्य कार्यक्षेत्र  जोड़ी के लिए <math display="inline">(R,T)</math>, <math display="inline">T</math> का ऊपरी वलय है <math display="inline">R</math> यदि प्रत्येक मध्यवर्ती अविभाज्य कार्यक्षेत्र  अभिन्न रूप से बंद है <math display="inline">T</math>.{{sfn|Papick|1979}}{{rp|332}}{{sfn|Davis|1973}}{{rp|175}}
Line 67: Line 67:
का अभिन्न समापन <math display="inline">R</math> एक Prüfer कार्यक्षेत्र है यदि प्रत्येक उपसमुच्चय का ऊपरी वलय <math display="inline">R</math> सुसंगत है।{{sfn|Papick|1980}}{{rp|137}}
का अभिन्न समापन <math display="inline">R</math> एक Prüfer कार्यक्षेत्र है यदि प्रत्येक उपसमुच्चय का ऊपरी वलय <math display="inline">R</math> सुसंगत है।{{sfn|Papick|1980}}{{rp|137}}


Prüfer कार्यक्षेत्र और Krull 1-आयामी नोथेरियन कार्यक्षेत्र के ऊपरी वलय सुसंगत हैं।{{sfn|Papick|1980}}{{rp|138}}
Prüfer कार्यक्षेत्र और Krull 1-आकारी नोथेरियन कार्यक्षेत्र के ऊपरी वलय सुसंगत हैं।{{sfn|Papick|1980}}{{rp|138}}


=== चेकर कार्यक्षेत्र ===
=== चेकर कार्यक्षेत्र ===


==== गुण ====
==== गुण ====
एक वलय में <em>QR गुण</em> होता है यदि प्रत्येक ऊपरी वलय गुणक सेट के साथ एक स्थानीयकरण है।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} QR कार्यक्षेत्र Prüfer कार्यक्षेत्र हैं।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} मरोड़ [[पिकार्ड समूह]] वाला Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र है।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} एक Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र होता है यदि प्रत्येक अंतिम रूप से उत्पन्न आदर्श के रिंग का रेडिकल एक [[प्रमुख आदर्श]] द्वारा उत्पन्न रेडिकल के बराबर होता है।{{sfn|Pendleton|1966}}{{rp|500}}
एक वलय में <em>QR गुण</em> होता है यदि प्रत्येक ऊपरी वलय गुणक सेट के साथ एक स्थानीयकरण है।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} QR कार्यक्षेत्र Prüfer कार्यक्षेत्र हैं।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} मरोड़ [[पिकार्ड समूह]] वाला Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र है।{{sfn|Fuchs|Heinzer|Olberding|2004}}{{rp|196}} एक Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र होता है यदि प्रत्येक अंतिम रूप से उत्पन्न गुणावली के रिंग का रेडिकल एक [[प्रमुख आदर्श|प्रमुख गुणावली]] द्वारा उत्पन्न रेडिकल के बराबर होता है।{{sfn|Pendleton|1966}}{{rp|500}}


कथन <math display="inline">R</math> एक Prüfer कार्यक्षेत्र इसके बराबर है:{{sfn|Bazzoni|Glaz|2006}}{{rp|56}}
कथन <math display="inline">R</math> एक Prüfer कार्यक्षेत्र इसके बराबर है:{{sfn|Bazzoni|Glaz|2006}}{{rp|56}}
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के स्थानीयकरणों का प्रतिच्छेदन (सेट सिद्धांत) है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के स्थानीयकरणों का प्रतिच्छेदन (सेट सिद्धांत) है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के अंशों के छल्लों का प्रतिच्छेदन है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के अंशों के छल्लों का प्रतिच्छेदन है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> प्रमुख आदर्श हैं जो के प्रमुख आदर्शों के विस्तार हैं <math display="inline"> R</math>, और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> प्रमुख गुणावली हैं जो के प्रमुख गुणावलीों के विस्तार हैं <math display="inline"> R</math>, और <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के किसी भी अभाज्य आदर्श के ऊपर अधिक से अधिक 1 मुख्य आदर्श होता है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> के किसी भी अभाज्य गुणावली के ऊपर अधिक से अधिक 1 मुख्य गुणावली होता है <math display="inline"> R</math>,  और <math display="inline"> R</math> अभिन्न रूप से बंद है
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> अभिन्न रूप से बंद है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> सुसंगत है।
* प्रत्येक ऊपरी वलय <math display="inline"> R</math> सुसंगत है।
Line 95: Line 95:
एक <em>न्यूनतम ऊपरी वलय</em> <math display="inline">T</math> वलय का <math display="inline">R</math> होता है अगर <math display="inline">T</math> रोकना <math display="inline">R</math> एक उपवलय और वलय जोड़ी के रूप में <math display="inline">(R,T)</math> कोई उचित मध्यवर्ती वलय नहीं है।{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}
एक <em>न्यूनतम ऊपरी वलय</em> <math display="inline">T</math> वलय का <math display="inline">R</math> होता है अगर <math display="inline">T</math> रोकना <math display="inline">R</math> एक उपवलय और वलय जोड़ी के रूप में <math display="inline">(R,T)</math> कोई उचित मध्यवर्ती वलय नहीं है।{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}


आदर्श का <em>कप्लैन्स्की आदर्श रूपांतरण</em> (<em>हेज़ रूपांतरण</em>, <em>S-रूपांतरण</em>) <math display="inline">I</math> अविभाज्य कार्यक्षेत्र  के संबंध में <math display="inline">R</math> अंश क्षेत्र का एक उपसमुच्चय है <math display="inline">Q(R)</math>. इस उपसमुच्चय में तत्व होते हैं <math display="inline">x</math> ऐसा है कि प्रत्येक तत्व के लिए <math display="inline">y</math> आदर्श का <math display="inline">I</math> एक सकारात्मक पूर्णांक है <math display="inline">n</math> उत्पाद के साथ <math display="inline">x \cdot y^{n}</math> अविभाज्य कार्यक्षेत्र में निहित <math display="inline">R</math>.{{sfn|Sato|Sugatani|Yoshida|1992}}{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}
गुणावली का <em>कप्लैन्स्की गुणावली रूपांतरण</em> (<em>हेज़ रूपांतरण</em>, <em>S-रूपांतरण</em>) <math display="inline">I</math> अविभाज्य कार्यक्षेत्र  के संबंध में <math display="inline">R</math> अंश क्षेत्र का एक उपसमुच्चय है <math display="inline">Q(R)</math>. इस उपसमुच्चय में तत्व होते हैं <math display="inline">x</math> ऐसा है कि प्रत्येक तत्व के लिए <math display="inline">y</math> गुणावली का <math display="inline">I</math> एक सकारात्मक पूर्णांक है <math display="inline">n</math> उत्पाद के साथ <math display="inline">x \cdot y^{n}</math> अविभाज्य कार्यक्षेत्र में निहित <math display="inline">R</math>.{{sfn|Sato|Sugatani|Yoshida|1992}}{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}


==== गुण ====
==== गुण ====
Line 102: Line 102:
के अंशों का क्षेत्र <math display="inline">R</math> न्यूनतम ऊपरी वलय शामिल है <math display="inline">T</math> का <math display="inline">R</math> कब <math display="inline">R</math> एक क्षेत्र नहीं है।{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}
के अंशों का क्षेत्र <math display="inline">R</math> न्यूनतम ऊपरी वलय शामिल है <math display="inline">T</math> का <math display="inline">R</math> कब <math display="inline">R</math> एक क्षेत्र नहीं है।{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}


एक अभिन्न रूप से बंद अविभाज्य कार्यक्षेत्र  मान लें <math display="inline">R</math> एक फ़ील्ड नहीं है, यदि अविभाज्य कार्यक्षेत्र  का न्यूनतम ऊपरी वलय है <math display="inline">R</math> मौजूद है, यह न्यूनतम ऊपरी वलय एक अधिकतम आदर्श के कप्लान्स्की परिवर्तन के रूप में होता है <math display="inline">R</math>.{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}
एक अभिन्न रूप से बंद अविभाज्य कार्यक्षेत्र  मान लें <math display="inline">R</math> एक फ़ील्ड नहीं है, यदि अविभाज्य कार्यक्षेत्र  का न्यूनतम ऊपरी वलय है <math display="inline">R</math> मौजूद है, यह न्यूनतम ऊपरी वलय एक अधिकतम गुणावली के कप्लान्स्की परिवर्तन के रूप में होता है <math display="inline">R</math>.{{sfn|Dobbs|Shapiro|2007}}{{rp|60}}


== उदाहरण ==
== उदाहरण ==
बेज़ाउट कार्यक्षेत्र | बेज़ाउट अविभाज्य कार्यक्षेत्र प्रुफ़र कार्यक्षेत्र का एक प्रकार है; बेज़ाउट कार्यक्षेत्र की पारिभाषिक संपत्ति प्रत्येक सूक्ष्म रूप से उत्पन्न आदर्श एक प्रमुख आदर्श है। बेज़ाउट कार्यक्षेत्र एक Prüfer कार्यक्षेत्र के सभी ऊपरी वलय गुणों को साझा करेगा।{{sfn|Fontana|Papick|2002}}{{rp|168}}
बेज़ाउट कार्यक्षेत्र | बेज़ाउट अविभाज्य कार्यक्षेत्र प्रुफ़र कार्यक्षेत्र का एक प्रकार है; बेज़ाउट कार्यक्षेत्र की पारिभाषिक संपत्ति प्रत्येक सूक्ष्म रूप से उत्पन्न गुणावली एक प्रमुख गुणावली है। बेज़ाउट कार्यक्षेत्र एक Prüfer कार्यक्षेत्र के सभी ऊपरी वलय गुणों को साझा करेगा।{{sfn|Fontana|Papick|2002}}{{rp|168}}


पूर्णांक वलय एक प्रुफ़र वलय है, और सभी अधिगम भागफल के वलय हैं।{{sfn|Davis|1964}}{{rp|196}}
पूर्णांक वलय एक प्रुफ़र वलय है, और सभी अधिगम भागफल के वलय हैं।{{sfn|Davis|1964}}{{rp|196}}
Line 167: Line 167:
== संबंधित श्रेणियां ==
== संबंधित श्रेणियां ==
श्रेणी:रिंग सिद्धांत
श्रेणी:रिंग सिद्धांत
श्रेणी:आदर्श (वलय सिद्धांत)
 
श्रेणी:गुणावली (वलय सिद्धांत)
 
श्रेणी:बीजगणितीय संरचनाएं
श्रेणी:बीजगणितीय संरचनाएं
श्रेणी:क्रमविनिमेय बीजगणित
श्रेणी:क्रमविनिमेय बीजगणित


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]

Revision as of 15:51, 24 May 2023

यह लेख गणितीय अवधारणा के बारे में है। उच्चारण के लिए, रिंग (विशेषक) देखें

गणित में, अविभाज्य कार्यक्षेत्र के ओवररिंग (ऊपरी वलय) में अविभाज्य कार्यक्षेत्र होता है, और अविभाज्य कार्यक्षेत्र के अंशों के क्षेत्र में ऊपरी वलय होता है। ऊपरी वलय विभिन्न प्रकार के वलय और कार्यक्षेत्र (रिंग सिद्धांत) की बेहतर समझ प्रदान करते हैं।

परिभाषा

इस लेख में, सभी वलय (गणित) क्रमविनिमेय वलय हैं, और वलय और ऊपरी वलय समान समरूप तत्व साझा करते हैं।

माना की एक अविभाज्य कार्यक्षेत्र के अंशों के क्षेत्र का प्रतिनिधित्व करते हैं, वलय अविभाज्य कार्यक्षेत्र का एक ऊपरी वलय है। यदि का उपसमूह है और अंशों के क्षेत्र का एक उपसमूह है ;[1]: 167 तब और का संबंध है .[2]: 373 

गुण

अंशो का वलय

वलय गुणक समुच्चय द्वारा वलय के अंशों का कुल वलय हैं.[3]: 46  मान लीजिए का ऊपरी वलय है और में एक गुणक समुच्चय है। वलय का ऊपरी वलय है। यदि प्रत्येक गैर-इकाई तत्व का एक शून्य भाजक है तो वलय के अंशों का कुल वलय है।[4]: 52–53  यदि पूर्ण रूप से में बंद है तो वलय में अभिन्न तत्व है प्रत्येक ऊपरी वलय जो में निहित है एक वलय है , और का ऊपरी वलय है।[4]: 52–53 

नोथेरियन कार्यक्षेत्र

परिभाषाएं

एक नोथेरियन वलय 3 समतुल्य परिमित स्थितियों को संतुष्ट करता है i) गुणावली (वलय सिद्धांत) की प्रत्येक आरोही श्रृंखला की स्थिति परिमित है, ii) गुणावलीों के प्रत्येक गैर-रिक्त श्रेणी का अधिकतम होता है और iii) प्रत्येक गुणावली का एक परिमित आधार होता है।[3]: 199 

एक अविभाज्य कार्यक्षेत्र एक डेडेकिंड कार्यक्षेत्र होता है, अगर कार्यक्षेत्र का प्रत्येक गुणावली प्रमुख गुणावलीों का एक परिमित उत्पाद है ।[3]: 270 

वलय का प्रतिबंधित आकार उन सभी प्राथमिक गुणावली की श्रेणियों के बीच अधिकतम क्रुल आकार है जिसमें एक नियमित तत्व होता है.[4]: 52 

एक वलय स्थानीय रूप से नगण्य है अगर हर वलय अधिकतम गुणावली के साथ नगण्य तत्वों से मुक्त है या प्रत्येक गैर इकाई के साथ एक शून्य विभाजक है।[4]: 52 

एक प्रायोजित वलय एक क्षेत्र (गणित) पर एक बहुपद वलय की समरूप छवि (गणित) है।[4]: 58 

गुण

डेडेकाइंड वलय का हर ऊपरी वलय डेडेकाइंड वलय होता है।[5][6]

वलय के प्रत्यक्ष योग का प्रत्येक ऊपरी वलय, जिसके गैर-इकाई तत्व सभी शून्य-भाजक हैं, एक नोथेरियन वलय है।[4]: 53 

क्रुल डायमेंशन 1-डायमेंशनल नोथेरियन कार्यक्षेत्र का हर ऊपरी वलय नोथेरियन वलय है।[4]: 53 

ये कथन नोथेरियन वलय के समतुल्य हैं अभिन्न बंद होने के साथ .[4]: 57 

  • हर ओववलय एक नोथेरियन वलय है।
  • प्रत्येक अधिकतम गुणावली के लिए का , हर ओवरिंग एक नोथेरियन वलय है।
  • अँगूठी प्रतिबंधित आकार 1 या उससे कम के साथ स्थानीय रूप से शून्य है।
  • अँगूठी नोथेरियन है, और वलय सीमित आकार 1 या उससे कम है।
  • हर ओवरिंग अभिन्न रूप से बंद है।

ये बयान affine ring के बराबर हैं अभिन्न बंद होने के साथ .[4]: 58 

  • अँगूठी स्थानीय रूप से शून्य है।
  • अँगूठी एक परिमित है मॉड्यूल (गणित)
  • अँगूठी नोथेरियन है।

एक अभिन्न रूप से बंद स्थानीय वलय एक अविभाज्य कार्यक्षेत्र या वलय है जिसका गैर-इकाई तत्व सभी शून्य-भाजक हैं।[4]: 58 

नोथेरियन अविभाज्य कार्यक्षेत्र एक डेडेकिंड वलय है, अगर नोथेरियन वलय का हर ऊपरी वलय इंटीग्रेटेड रूप से बंद है।[7]: 198 

नोथेरियन अविभाज्य कार्यक्षेत्र का हर ऊपरी वलय अंशों का वलय है यदि नोथेरियन अविभाज्य कार्यक्षेत्र एक मरोड़ वर्ग समूह के साथ डेडेकिंड वलय है।[7]: 200 

सुसंगत छल्ले

परिभाषाएं

एक सुसंगत वलय क्रमविनिमेय वलय है जिसमें वलय सिद्धांत की प्रत्येक शब्दावली वलय सिद्धांत की गुणावली शब्दावली है।[2]: 373  नोथेरियन कार्यक्षेत्र और प्रुफ़र कार्यक्षेत्र सुसंगत हैं।[8]: 137 

एक जोड़ी वलय सिद्धांत के अविभाज्य कार्यक्षेत्र ग्लोसरी को इंगित करता है ऊपर .[9]: 331 

अँगूठी जोड़ी के लिए एक मध्यवर्ती कार्यक्षेत्र है अगर का उपकार्यक्षेत्र है और का उपकार्यक्षेत्र है .[9]: 331 

गुण

प्रत्येक ऊपरी वलय सुसंगत होने पर एक नोथेरियन वलय का क्रुल आकार 1 या उससे कम होता है।[2]: 373 

अविभाज्य कार्यक्षेत्र जोड़ी के लिए , का ऊपरी वलय है यदि प्रत्येक मध्यवर्ती अविभाज्य कार्यक्षेत्र अभिन्न रूप से बंद है .[9]: 332 [10]: 175 

का अभिन्न समापन एक Prüfer कार्यक्षेत्र है यदि प्रत्येक उपसमुच्चय का ऊपरी वलय सुसंगत है।[8]: 137 

Prüfer कार्यक्षेत्र और Krull 1-आकारी नोथेरियन कार्यक्षेत्र के ऊपरी वलय सुसंगत हैं।[8]: 138 

चेकर कार्यक्षेत्र

गुण

एक वलय में QR गुण होता है यदि प्रत्येक ऊपरी वलय गुणक सेट के साथ एक स्थानीयकरण है।[11]: 196  QR कार्यक्षेत्र Prüfer कार्यक्षेत्र हैं।[11]: 196  मरोड़ पिकार्ड समूह वाला Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र है।[11]: 196  एक Prüfer कार्यक्षेत्र एक QR कार्यक्षेत्र होता है यदि प्रत्येक अंतिम रूप से उत्पन्न गुणावली के रिंग का रेडिकल एक प्रमुख गुणावली द्वारा उत्पन्न रेडिकल के बराबर होता है।[12]: 500 

कथन एक Prüfer कार्यक्षेत्र इसके बराबर है:[13]: 56 

  • प्रत्येक ऊपरी वलय के स्थानीयकरणों का प्रतिच्छेदन (सेट सिद्धांत) है , और अभिन्न रूप से बंद है।
  • प्रत्येक ऊपरी वलय के अंशों के छल्लों का प्रतिच्छेदन है , और अभिन्न रूप से बंद है।
  • प्रत्येक ऊपरी वलय प्रमुख गुणावली हैं जो के प्रमुख गुणावलीों के विस्तार हैं , और अभिन्न रूप से बंद है।
  • प्रत्येक ऊपरी वलय के किसी भी अभाज्य गुणावली के ऊपर अधिक से अधिक 1 मुख्य गुणावली होता है , और अभिन्न रूप से बंद है
  • प्रत्येक ऊपरी वलय अभिन्न रूप से बंद है।
  • प्रत्येक ऊपरी वलय सुसंगत है।

कथन एक Prüfer कार्यक्षेत्र इसके बराबर है:[1]: 167 

  • प्रत्येक ऊपरी वलय का एक के रूप में मॉड्यूल (गणित) है मापांक।
  • प्रत्येक मूल्यांकन की वलय अंशों का एक वलय है।

न्यूनतम overring

परिभाषाएं

न्यूनतम वलय समरूपता एक इंजेक्शन समारोह विशेषण समारोह होमोमोर्फिज़्म है, और यदि होमोमोर्फिज़्म है समरूपता की एक रचना है और तब या एक समरूपता है।[14]: 461 

एक उचित न्यूनतम वलय एक्सटेंशन उपवलय का होता है अगर की वलय शामिल है में एक न्यूनतम वलय समरूपता है। इसका तात्पर्य वलय जोड़ी से है कोई उचित मध्यवर्ती वलय नहीं है।[15]: 186 

एक न्यूनतम ऊपरी वलय वलय का होता है अगर रोकना एक उपवलय और वलय जोड़ी के रूप में कोई उचित मध्यवर्ती वलय नहीं है।[16]: 60 

गुणावली का कप्लैन्स्की गुणावली रूपांतरण (हेज़ रूपांतरण, S-रूपांतरण) अविभाज्य कार्यक्षेत्र के संबंध में अंश क्षेत्र का एक उपसमुच्चय है . इस उपसमुच्चय में तत्व होते हैं ऐसा है कि प्रत्येक तत्व के लिए गुणावली का एक सकारात्मक पूर्णांक है उत्पाद के साथ अविभाज्य कार्यक्षेत्र में निहित .[17][16]: 60 

गुण

कार्यक्षेत्र के न्यूनतम वलय एक्सटेंशन से उत्पन्न कोई भी कार्यक्षेत्र का ऊपरी वलय है अगर एक क्षेत्र नहीं है।[17][15]: 186 

के अंशों का क्षेत्र न्यूनतम ऊपरी वलय शामिल है का कब एक क्षेत्र नहीं है।[16]: 60 

एक अभिन्न रूप से बंद अविभाज्य कार्यक्षेत्र मान लें एक फ़ील्ड नहीं है, यदि अविभाज्य कार्यक्षेत्र का न्यूनतम ऊपरी वलय है मौजूद है, यह न्यूनतम ऊपरी वलय एक अधिकतम गुणावली के कप्लान्स्की परिवर्तन के रूप में होता है .[16]: 60 

उदाहरण

बेज़ाउट कार्यक्षेत्र | बेज़ाउट अविभाज्य कार्यक्षेत्र प्रुफ़र कार्यक्षेत्र का एक प्रकार है; बेज़ाउट कार्यक्षेत्र की पारिभाषिक संपत्ति प्रत्येक सूक्ष्म रूप से उत्पन्न गुणावली एक प्रमुख गुणावली है। बेज़ाउट कार्यक्षेत्र एक Prüfer कार्यक्षेत्र के सभी ऊपरी वलय गुणों को साझा करेगा।[1]: 168 

पूर्णांक वलय एक प्रुफ़र वलय है, और सभी अधिगम भागफल के वलय हैं।[7]: 196 

डायाडिक परिमेय एक पूर्णांक अंश और 2 भाजक की शक्ति वाला एक अंश है।

डायाडिक परिमेय वलय दो की शक्तियों और पूर्णांक वलय के एक ऊपरी वलय द्वारा पूर्णांकों का स्थानीयकरण है।

यह भी देखें

  • स्पष्ट अंगूठी
  • अंगूठियों की श्रेणी
  • सुसंगत अंगूठी
  • डेडेकाइंड डोमेन
  • रिंग थ्योरी की शब्दावली
  • अभिन्न तत्व
  • क्रुल आयाम
  • स्थानीय रिंग
  • स्थानीयकरण (कम्यूटेटिव बीजगणित)
  • नीलपोटेंट
  • पिकार्ड समूह
  • प्रधान आदर्श
  • प्रूफर डोमेन
  • नोथेरियन रिंग
  • नियमित तत्व[disambiguation needed]
  • सब्रिंग
  • अंशों का कुल वलय
  • वैल्यूएशन रिंग

टिप्पणियाँ


संदर्भ


संबंधित श्रेणियां

श्रेणी:रिंग सिद्धांत

श्रेणी:गुणावली (वलय सिद्धांत)

श्रेणी:बीजगणितीय संरचनाएं

श्रेणी:क्रमविनिमेय बीजगणित