चरम बिंदु: Difference between revisions
(Created page with "{{short description|Point not between two other points}} {{Other uses}} Image:Extreme points.svg|thumb|right|हल्के नीले रंग में एक उत...") |
No edit summary |
||
Line 9: | Line 9: | ||
पूरे समय यह माना जाता है <math>X</math> एक वास्तविक संख्या या जटिल संख्या सदिश स्थान है। | पूरे समय यह माना जाता है <math>X</math> एक वास्तविक संख्या या जटिल संख्या सदिश स्थान है। | ||
किसी के लिए <math>p, x, y \in X,</math> कहते हैं कि <math>p</math> {{visible anchor|lies between}}{{sfn|Narici|Beckenstein|2011|pp=275-339}} <math>x</math> और <math>y</math> अगर <math>x \neq y</math> और वहाँ एक | किसी के लिए <math>p, x, y \in X,</math> कहते हैं कि <math>p</math> {{visible anchor|lies between}}{{sfn|Narici|Beckenstein|2011|pp=275-339}} <math>x</math> और <math>y</math> अगर <math>x \neq y</math> और वहाँ एक उपलब्ध है <math>0 < t < 1</math> ऐसा है कि <math>p = t x + (1-t) y.</math> | ||
अगर <math>K</math> का उपसमुच्चय है <math>X</math> और <math>p \in K,</math> तब <math>p</math> एक कहा जाता है{{visible anchor|extreme point}}{{sfn|Narici|Beckenstein|2011|pp=275-339}} का <math>K</math> अगर यह किन्हीं दो के बीच नहीं है {{em|distinct}} के अंक <math>K.</math> | अगर <math>K</math> का उपसमुच्चय है <math>X</math> और <math>p \in K,</math> तब <math>p</math> एक कहा जाता है{{visible anchor|extreme point}}{{sfn|Narici|Beckenstein|2011|pp=275-339}} का <math>K</math> अगर यह किन्हीं दो के बीच नहीं है {{em|distinct}} के अंक <math>K.</math> अर्थात अगर होता है {{em|not}} अस्तित्व <math>x, y \in K</math> और <math>0 < t < 1</math> ऐसा है कि <math>x \neq y</math> और <math>p = t x + (1-t) y.</math> के सभी चरम बिंदुओं का समुच्चय <math>K</math> द्वारा निरूपित किया जाता है <math>\operatorname{extreme}(K).</math> | ||
सामान्यीकरण | सामान्यीकरण | ||
Line 114: | Line 114: | ||
{{Functional analysis}} | {{Functional analysis}} | ||
{{Topological vector spaces}} | {{Topological vector spaces}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 25/05/2023]] | [[Category:Created On 25/05/2023]] | ||
[[Category:Harv and Sfn no-target errors]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] |
Revision as of 14:26, 28 May 2023
गणित में, उत्तल सेट का एक चरम बिंदु एक वास्तविक संख्या या जटिल संख्या में सदिश स्थान एक बिंदु होता है के दो बिन्दुओं को मिलाने वाली किसी खुली रेखाखण्ड में स्थित नहीं है रैखिक प्रोग्रामिंग समस्याओं में, एक चरम बिंदु को वर्टेक्स या कॉर्नर पॉइंट भी कहा जाता है [1]
परिभाषा
पूरे समय यह माना जाता है एक वास्तविक संख्या या जटिल संख्या सदिश स्थान है।
किसी के लिए कहते हैं कि lies between[2] और अगर और वहाँ एक उपलब्ध है ऐसा है कि अगर का उपसमुच्चय है और तब एक कहा जाता हैextreme point[2] का अगर यह किन्हीं दो के बीच नहीं है distinct के अंक अर्थात अगर होता है not अस्तित्व और ऐसा है कि और के सभी चरम बिंदुओं का समुच्चय द्वारा निरूपित किया जाता है सामान्यीकरण
अगर सदिश समष्टि का एक उपसमुच्चय है फिर एक रेखीय उप-किस्म (अर्थात, एक सजातीय उप-वर्ग) सदिश समष्टि का भाग कहलाता है support variety अगर की बैठक (वह है, खाली नहीं है) और हर खुला खंड जिसका आंतरिक भाग मिलता है अनिवार्य रूप से का एक उपसमुच्चय है [3] एक 0-आयामी समर्थन विविधता को चरम बिंदु कहा जाता है [3]
लक्षण वर्णन
midpoint[2] दो तत्वों का और सदिश स्थान में सदिश है किसी भी तत्व के लिए और वेक्टर अंतरिक्ष में, सेट कहा जाता हैclosed line segment याclosed interval बीच में और open line segment याopen interval बीच में और है कब जबकि यह है कब [2] बिन्दु और कहलाते हैंendpoints इन अंतरालों में से। एक अंतराल कहा जाता हैnon−degenerate interval या एproper interval यदि इसके अंतिम बिंदु अलग हैं।midpoint of an interval इसके समापन बिंदुओं का मध्य बिंदु है।
बंद अंतराल के उत्तल पतवार के बराबर है अगर और केवल अगर) तो यदि उत्तल है और तब अगर का एक अरिक्त उपसमुच्चय है और का एक अरिक्त उपसमुच्चय है तब ए कहा जाता हैface[2] का अगर जब भी एक बिंदु के दो बिंदुओं के बीच स्थित है तो वे दो बिंदु अनिवार्य रूप से संबंधित हैं
Theorem[2] — Let be a non-empty convex subset of a vector space and let Then the following statements are equivalent:
- is an extreme point of
- is convex.
- is not the midpoint of a non-degenerate line segment contained in
- for any if then
- if is such that both and belong to then
- is a face of
उदाहरण
अगर तब दो वास्तविक संख्याएँ हैं और अंतराल के चरम बिंदु हैं हालाँकि, खुला अंतराल कोई चरम बिंदु नहीं है।[2] में कोई खुला अंतराल कोई चरम बिंदु नहीं है जबकि कोई गैर-पतित बंद अंतराल के बराबर नहीं है में चरम बिंदु होते हैं (अर्थात, बंद अंतराल का समापन बिंदु)। अधिक आम तौर पर, परिमित-आयामी यूक्लिडियन अंतरिक्ष का कोई भी खुला सेट कोई चरम बिंदु नहीं है।
बंद यूनिट डिस्क के चरम बिंदु अंदर इकाई वृत्त है।
समतल में किसी भी उत्तल बहुभुज का परिमाप उस बहुभुज का एक फलक होता है।[2] समतल में किसी भी उत्तल बहुभुज के शीर्ष उस बहुभुज के चरम बिंदु हैं।
एक इंजेक्शन रैखिक नक्शा उत्तल सेट के चरम बिंदुओं को भेजता है उत्तल सेट के चरम बिंदुओं पर [2] यह इंजेक्टिव एफ़िन मैप्स के लिए भी सही है।
गुण
एक कॉम्पैक्ट उत्तल सेट के चरम बिंदु एक बाहर की जगह (उप-स्पेस टोपोलॉजी के साथ) बनाते हैं लेकिन यह सेट हो सकता है fail में बंद होना है [2]
प्रमेय
क्रेन–मिलमैन प्रमेय
केरीन-मिलमैन प्रमेय यकीनन चरम बिंदुओं के बारे में सबसे प्रसिद्ध प्रमेयों में से एक है।
Krein–Milman theorem — If is convex and compact in a locally convex topological vector space, then is the closed convex hull of its extreme points: In particular, such a set has extreme points.
बनच रिक्त स्थान के लिए
ये प्रमेय रैडॉन-निकोडीम संपत्ति के साथ बानाच रिक्त स्थान के लिए हैं।
जोराम लिंडेनस्ट्रॉस के एक प्रमेय में कहा गया है कि, राडोन-निकोडीम संपत्ति के साथ एक बनच स्थान में, एक गैर-खाली बंधा हुआ सेट और परिबद्ध सेट का एक चरम बिंदु है। (अनंत-आयामी स्थानों में, कॉम्पैक्ट जगह की संपत्ति बंद होने और बाध्य होने के संयुक्त गुणों से अधिक मजबूत होती है।[4])
Theorem (Gerald Edgar) — Let be a Banach space with the Radon-Nikodym property, let be a separable, closed, bounded, convex subset of and let be a point in Then there is a probability measure on the universally measurable sets in such that is the barycenter of and the set of extreme points of has -measure 1.[5]
एडगर के प्रमेय का तात्पर्य लिंडेनस्ट्रॉस प्रमेय से है।
संबंधित धारणाएं
एक सांस्थितिक सदिश स्थान का एक बंद उत्तल उपसमुच्चय कहलाता है strictly convex यदि इसकी प्रत्येक सीमा (टोपोलॉजी) | (टोपोलॉजिकल) सीमा बिंदु एक चरम बिंदु है।[6] किसी भी हिल्बर्ट अंतरिक्ष की यूनिट बॉल एक सख्त उत्तल सेट है।[6]
के-चरम अंक
अधिक सामान्यतः, एक उत्तल सेट में एक बिंदु है-चरम अगर यह एक के इंटीरियर में स्थित है -आयामी उत्तल भीतर सेट लेकिन नहीं -आयामी उत्तल भीतर सेट इस प्रकार, एक चरम बिंदु भी एक है -चरम बिंदु। अगर एक पॉलीटॉप है, तो -चरम बिंदु ठीक इसके आंतरिक बिंदु हैं -आयामी चेहरे अधिक सामान्यतः, किसी भी उत्तल सेट के लिए -Extreme Points में विभाजित हैं -आयामी खुले चेहरे।
परिमित-विम Krein-Milman प्रमेय, जो Minkowski के कारण है, की अवधारणा का उपयोग करके जल्दी से सिद्ध किया जा सकता है -चरम बिंदु। अगर बंद है, घिरा हुआ है, और -आयामी, और अगर में एक बिंदु है तब है -कुछ के लिए चरम प्रमेय का दावा है कि चरम बिंदुओं का उत्तल संयोजन है। अगर तो यह तत्काल है। अन्यथा में एक रेखाखंड पर स्थित है जिसे अधिकतम बढ़ाया जा सकता है (क्योंकि बंद और घिरा हुआ है)। यदि खंड के समापन बिंदु हैं और तो उनकी चरम रैंक इससे कम होनी चाहिए और प्रमेय प्रेरण द्वारा अनुसरण करता है।
यह भी देखें
उद्धरण
- ↑ Saltzman, Matthew. "What is the difference between corner points and extreme points in linear programming problems?".
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Narici & Beckenstein 2011, pp. 275–339.
- ↑ 3.0 3.1 Grothendieck 1973, p. 186.
- ↑ Artstein, Zvi (1980). "Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points". SIAM Review. 22 (2): 172–185. doi:10.1137/1022026. JSTOR 2029960. MR 0564562.
- ↑ Edgar GA. A noncompact Choquet theorem. Proceedings of the American Mathematical Society. 1975;49(2):354-8.
- ↑ 6.0 6.1 Halmos 1982, p. 5.
ग्रन्थसूची
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
- Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
- Paul E. Black, ed. (2004-12-17). "extreme point". Dictionary of algorithms and data structures. US National institute of standards and technology. Retrieved 2011-03-24.
- Borowski, Ephraim J.; Borwein, Jonathan M. (1989). "extreme point". Dictionary of mathematics. Collins dictionary. HarperCollins. ISBN 0-00-434347-6.
- Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
- Halmos, Paul R. (8 November 1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. Vol. 19 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-90685-0. OCLC 8169781.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
- Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. Vol. 237. New York: Springer Science & Business Media. ISBN 978-0-387-90400-9. OCLC 180577972.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.