चरम बिंदु: Difference between revisions

From Vigyanwiki
No edit summary
Line 75: Line 75:


{{Math theorem|name=Theorem|note=[[Gerald Edgar]]|math_statement=
{{Math theorem|name=Theorem|note=[[Gerald Edgar]]|math_statement=
<math>E</math> को राडोन-निकोडीम संपत्ति के साथ एक बानाच स्थान होने दें, <math>C</math> को <math>E,</math> का एक वियोज्य, बंद, घिरा, उत्तल उपसमुच्चय होने दें <math>a</math> को <math>C में एक बिंदु होने दें। </math> फिर <math>C में सार्वभौमिक रूप से मापने योग्य सेट पर एक [[संभाव्यता माप]] <math>p</math> है </math> ऐसा कि <math>a</math>, <math>p,</math> का [[barycenter]] है और <math>C</math> के चरम बिंदुओं के समुच्चय में <math> है p</math>-माप 1.<ref>एडगर जीए। [https://www.ams.org/journals/proc/1975-049-02/S0002-9939-1975-0372586-2/S0002-9939-1975-0372586-2.pdf एक नॉनकॉम्पैक्ट चॉकेट प्रमेय।] की कार्यवाही अमेरिकी गणितीय सोसायटी। 1975;49(2):354-8.</ref>
Let <math>E</math> be a Banach space with the Radon-Nikodym property, let <math>C</math> be a separable, closed, bounded, convex subset of <math>E,</math> and let <math>a</math> be a point in <math>C.</math> Then there is a [[probability measure]] <math>p</math> on the universally measurable sets in <math>C</math> such that <math>a</math> is the [[barycenter]] of <math>p,</math> and the set of extreme points of <math>C</math> has <math>p</math>-measure 1.<ref>Edgar GA. [https://www.ams.org/journals/proc/1975-049-02/S0002-9939-1975-0372586-2/S0002-9939-1975-0372586-2.pdf A noncompact Choquet theorem.] Proceedings of the American Mathematical Society. 1975;49(2):354-8.</ref>
}}
}}
एडगर के प्रमेय का तात्पर्य लिंडेनस्ट्रॉस प्रमेय से है।
एडगर के प्रमेय का तात्पर्य लिंडेनस्ट्रॉस प्रमेय से है।
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 25/05/2023]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with math errors]]
[[Category:Pages with math render errors]]
[[Category:Pages with script errors]]


== संबंधित धारणाएं ==
== संबंधित धारणाएं ==

Revision as of 08:35, 30 May 2023

हल्के नीले रंग में एक अवमुख समुच्चय , और इसके चरम बिंदु लाल रंग में।

गणित में, अवमुख समुच्चय का एक चरम बिंदु एक वास्तविक संख्या या जटिल संख्या में सदिश स्थान एक बिंदु होता है। जो दो बिन्दुओं को मिलाने वाले किसी खुले रेखाखण्ड में स्थित नहीं है।

रैखिक प्रोग्रामिंग समस्याओं में, एक चरम बिंदु को कोण बिंदु या कॉर्नर पॉइंट भी कहा जाता है[1]


परिभाषा

पूरे समय यह माना जाता है कि एक वास्तविक संख्या या जटिल संख्या सदिश स्थान है।

किसी कहते हैं कि बीच मे स्थित[2] और अगर और वहाँ एक ऐसा है कि उपलब्ध है।

अगर का उपसमुच्चय है और तब एक चरम बिंदु[2] कहा जाता है का अगर यह किन्हीं दो के बीच नहीं है अलग अलग के अंक अर्थात अगर का अस्तित्व नहीं होता है और ऐसा है कि और के सभी चरम बिंदुओं का समुच्चय द्वारा निरूपित किया जाता है।

सामान्यीकरण

अगर सदिश समष्टि का एक उपसमुच्चय है फिर एक रेखीय उप-किस्म (अर्थात, एक सजातीय उप-वर्ग) सदिश समष्टि का भाग कहलाता है Template:दृश्यमान एंकर अगर की बैठक (वह है, रिक्त नहीं है) और हर खुला खंड जिसका आंतरिक भाग मिलता है अनिवार्य रूप से का एक उपसमुच्चय है [3] एक 0-आयामी समर्थन विविधता को चरम बिंदु [3] कहा जाता है।

लक्षण वर्णन

मध्य बिंदु[2] दो तत्वों का और सदिश स्थान में सदिश है।

किसी भी तत्व के लिए और वेक्टर अंतरिक्ष में, समुच्चय कहा जाता है बंद रेखा खंड याबंद अंतराल बीच में और ओपन लाइन खंड या खुला अंतराल बीच में और है कब जबकि यह है कब [2] बिन्दु और कहलाते हैंअंतिमबिंदुओं इन अंतरालों में से। एक अंतराल कहा जाता है। गैर-पतित अंतराल या एउचित अंतराल यदि इसके अंतिम बिंदु अलग हैं।एक अंतराल का मध्य बिंदु इसके समापन बिंदुओं का मध्य बिंदु है।

बंद अंतराल के उत्तल पतवार के बराबर है अगर और केवल अगर) तो यदि उत्तल है और तब अगर का एक अरिक्त उपसमुच्चय है और का एक अरिक्त उपसमुच्चय है तब ए कहा जाता है ऊपरी भाग [2] का अगर जब भी एक बिंदु के दो बिंदुओं के बीच स्थित है तो वे दो बिंदु अनिवार्य रूप से संबंधित हैं।

Theorem[2] — Let be a non-empty convex subset of a vector space and let Then the following statements are equivalent:

  1. is an extreme point of
  2. is convex.
  3. is not the midpoint of a non-degenerate line segment contained in
  4. for any if then
  5. if is such that both and belong to then
  6. is a face of

उदाहरण

अगर तब दो वास्तविक संख्याएँ हैं और अंतराल के चरम बिंदु हैं हालाँकि, खुला अंतराल कोई चरम बिंदु नहीं है।[2]

में कोई खुला अंतराल कोई चरम बिंदु नहीं है जबकि कोई गैर-पतित बंद अंतराल के बराबर नहीं है में चरम बिंदु होते हैं (अर्थात, बंद अंतराल का समापन बिंदु)। अधिक ऊपरी भाग, परिमित-आयामी यूक्लिडियन अंतरिक्ष का कोई भी खुला समुच्चय कोई चरम बिंदु नहीं है।

बंद यूनिट डिस्क के चरम बिंदु अंदर इकाई वृत्त है।

समतल में किसी भी उत्तल बहुभुज का परिमाप उस बहुभुज का एक फलक होता है।[2]

समतल में किसी भी उत्तल बहुभुज के शीर्ष उस बहुभुज के चरम बिंदु हैं।

एक इंजेक्शन रैखिक नक्शा अवमुख समुच्चय के चरम बिंदुओं को भेजता है अवमुख समुच्चय के चरम बिंदुओं पर [2] यह इंजेक्टिव एफ़िन मैप्स के लिए भी सही है।

गुण

एक सघन अवमुख समुच्चय के चरम बिंदु एक बाहर की स्थान (उप-स्पेस सांस्थितिक के साथ) बनाते हैं लेकिन यह समुच्चय हो सकता है असफल में बंद होना है।[2]

प्रमेय

क्रेन–मिलमैन प्रमेय

केरीन-मिलमैन प्रमेय यकीनन चरम बिंदुओं के बारे में सबसे प्रसिद्ध प्रमेयों में से एक है।

क्रेन-मिलमैन प्रमेय — यदि उत्तल है और कॉम्पैक्ट एक स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस में है, तो बंद उत्तल हल है इसके चरम बिंदु: विशेष रूप से, ऐसे सेट के चरम बिंदु होते हैं।

बनच रिक्त स्थान के लिए

ये प्रमेय रैडॉन-निकोडीम संपत्ति के साथ बानाच रिक्त स्थान के लिए हैं।

जोराम लिंडेनस्ट्रॉस के एक प्रमेय में कहा गया है कि, राडोन-निकोडीम संपत्ति के साथ एक बनच स्थान में, एक गैर-रिक्त बंधा हुआ समुच्चय और परिबद्ध समुच्चय का एक चरम बिंदु है। (अनंत-आयामी स्थानों में, सघन स्थान की संपत्ति बंद होने और बाध्य होने के संयुक्त गुणों से अधिक मजबूत होती है।[4])

Theorem (Gerald Edgar) — Let be a Banach space with the Radon-Nikodym property, let be a separable, closed, bounded, convex subset of and let be a point in Then there is a probability measure on the universally measurable sets in such that is the barycenter of and the set of extreme points of has -measure 1.[5]

एडगर के प्रमेय का तात्पर्य लिंडेनस्ट्रॉस प्रमेय से है।

संबंधित धारणाएं

एक सांस्थितिक सदिश स्थान का एक बंद उत्तल उपसमुच्चय कहलाता है सख्ती से उत्तल यदि इसकी प्रत्येक सीमा (सांस्थितिक ) | (सांस्थितिक ) सीमा बिंदु एक चरम बिंदु है।[6] किसी भी हिल्बर्ट अंतरिक्ष की यूनिट बॉल एक सख्त अवमुख समुच्चय है।[6]

के-चरम अंक

अधिक सामान्यतः, एक अवमुख समुच्चय में एक बिंदु है-चरम अगर यह एक के इंटीरियर में स्थित है -आयामी उत्तल भीतर समुच्चय लेकिन नहीं -आयामी उत्तल भीतर समुच्चय इस प्रकार, एक चरम बिंदु भी एक है -चरम बिंदु। अगर एक पॉलीटॉप है, तो -चरम बिंदु ठीक इसके आंतरिक बिंदु हैं -आयामी चेहरे अधिक सामान्यतः, किसी भी अवमुख समुच्चय के लिए -Extreme Points में विभाजित हैं -आयामी खुले चेहरे विभाजित हैं।

परिमित-विम केरिन-मिलमैन प्रमेय, जो मिंकोवस्कीके कारण है, की अवधारणा का उपयोग करके जल्दी से सिद्ध किया जा सकता है -चरम बिंदु। अगर बंद है, घिरा हुआ है, और -आयामी, और अगर में एक बिंदु है तब है -कुछ के लिए चरम प्रमेय का दावा है कि चरम बिंदुओं का उत्तल संयोजन है। अगर तो यह तत्काल है। अन्यथा में एक रेखाखंड पर स्थित है जिसे अधिकतम बढ़ाया जा सकता है (क्योंकि बंद और घिरा हुआ है)। यदि खंड के समापन बिंदुए हैं और तो उनकी चरम रैंक इससे कम होनी चाहिए और प्रमेय प्रेरण द्वारा अनुसरण करता है।

यह भी देखें

उद्धरण

  1. Saltzman, Matthew. "What is the difference between corner points and extreme points in linear programming problems?".
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Narici & Beckenstein 2011, pp. 275–339.
  3. 3.0 3.1 Grothendieck 1973, p. 186.
  4. Artstein, Zvi (1980). "Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points". SIAM Review. 22 (2): 172–185. doi:10.1137/1022026. JSTOR 2029960. MR 0564562.
  5. Edgar GA. A noncompact Choquet theorem. Proceedings of the American Mathematical Society. 1975;49(2):354-8.
  6. 6.0 6.1 Halmos 1982, p. 5.


ग्रन्थसूची