टी-नॉर्म फ़ज़ी लॉजिक: Difference between revisions

From Vigyanwiki
(Created page with "टी-नॉर्म फजी लॉजिक गैर-शास्त्रीय लॉजिक का एक परिवार है, अनौपचारिक...")
 
No edit summary
Line 1: Line 1:
टी-नॉर्म [[फजी लॉजिक]] गैर-शास्त्रीय लॉजिक का एक परिवार है, अनौपचारिक रूप से एक शब्दार्थ द्वारा सीमांकित किया जाता है जो [[वास्तविक संख्या]] इकाई अंतराल [0, 1] को सत्य मानों और कार्यों की प्रणाली के लिए लेता है जिसे टी-नॉर्म्स कहा जाता है ताकि [[तार्किक संयोजन]]ों की अनुमेय व्याख्या की जा सके। . वे मुख्य रूप से एप्लाइड फ़ज़ी लॉजिक और [[फजी सेट]] में अनुमानित तर्क के सैद्धांतिक आधार के रूप में उपयोग किए जाते हैं।
'''टी-नॉर्म [[फजी लॉजिक|फजी तर्क]]''' गैर-शास्त्रीय तर्क का एक परिवार है, अनौपचारिक रूप से एक शब्दार्थ द्वारा सीमांकित किया जाता है जो [[वास्तविक संख्या]] इकाई अंतराल [0, 1] को सत्य मूल्यों और कार्यों की प्रणाली के लिए टी-नॉर्म्स कहा जाता है जो [[तार्किक संयोजन]] की अनुमेय व्याख्याओं के लिए होता है। वे मुख्य रूप से एप्लाइड फ़ज़ी तर्क और [[फजी सेट|फजी समुच्चय]] सिद्धान्त में अनुमानित तर्क के सैद्धांतिक आधार के रूप में उपयोग किए जाते हैं।


[[टी-मानदंड]] फ़ज़ी लॉजिक फ़ज़ी लॉजिक और बहु-मूल्यवान लॉजिक के व्यापक वर्ग में आते हैं। एक अच्छी तरह से व्यवहार किए गए [[तार्किक निहितार्थ]] उत्पन्न करने के लिए, टी-मानदंडों को आमतौर पर बाएं-निरंतर होने की आवश्यकता होती है; बाएं-निरंतर टी-मानदंडों के लॉजिक्स आगे [[ अवसंरचनात्मक तर्क ]]्स की श्रेणी में आते हैं, जिनमें से वे 'लॉ ऑफ प्रीलीनियरिटी', ('''' → ''बी'') ∨ की वैधता के साथ चिह्नित हैं। ''बी'' → ''''). प्रस्तावात्[[मक तर्क]] और प्रथम-क्रम तर्क | प्रथम-क्रम (या उच्च-क्रम तर्क | उच्च-क्रम) टी-मानदंड फ़ज़ी लॉजिक्स, साथ ही [[ मोडल ऑपरेटर ]] और अन्य ऑपरेटरों द्वारा उनके विस्तार का अध्ययन किया जाता है। लॉजिक जो टी-नॉर्म [[अर्थ विज्ञान]] को वास्तविक इकाई अंतराल (उदाहरण के लिए, सूक्ष्म रूप से मूल्यवान Łukasiewicz लॉजिक्स) के एक सबसेट तक सीमित करते हैं, आमतौर पर कक्षा में भी शामिल होते हैं।
टी-मानदंड फ़ज़ी तर्क फ़ज़ी तर्क और बहु-मूल्यवान तर्क के व्यापक वर्ग में आते हैं। एक अच्छा व्यवहार निहितार्थ उत्पन्न करने के लिए, टी-मानदंडों को सामान्यतः बाएं-निरंतर होने की आवश्यकता होती है; बाएं-निरंतर टी-मानदंडों के तर्क आगे [[ अवसंरचनात्मक तर्क |अवसंरचनात्मक तर्क]] की श्रेणी में आते हैं, जिनमें से उन्हें पूर्व-रैखिकता के कानून की वैधता के साथ चिह्नित किया जाता है, (''A'' ''B'') ∨ (''B'' ''A'') प्रस्तावित और प्रथम-क्रम (या उच्च-क्रम) टी-मानदंड फ़ज़ी तर्क, साथ ही मोडल और अन्य ऑपरेटरों द्वारा उनके विस्तार दोनों का अध्ययन किया जाता है। तर्क जो टी-नॉर्म [[अर्थ विज्ञान]] को वास्तविक इकाई अंतराल (उदाहरण के लिए, सूक्ष्म रूप से मूल्यवान Łukasiewicz तर्क) के एक सबसमुच्चय तक सीमित करते हैं, सामान्यतः कक्षा में भी सम्मिलित होते हैं।


टी-नॉर्म फ़ज़ी लॉजिक के महत्वपूर्ण उदाहरण हैं [[मोनोइडल टी-नॉर्म लॉजिक]]|मोनॉयडल टी-नॉर्म लॉजिक (एमटीएल) ऑफ़ ऑल [[ वाम-निरंतर ]] टी-नॉर्म्स, [[ बीएल (तर्क) ]]|बेसिक लॉजिक (बीएल) ऑफ़ ऑल कंटीन्यूअस टी-नॉर्म्स, प्रोडक्ट उत्पाद टी-मानदंड का अस्पष्ट तर्क, या शून्य-शक्तिशाली न्यूनतम टी-मानदंड का शून्य-शक्तिशाली न्यूनतम तर्क। कुछ स्वतंत्र रूप से प्रेरित लॉजिक्स टी-नॉर्म फज़ी लॉजिक्स में भी शामिल हैं, उदाहरण के लिए लुकासिविज़ लॉजिक (जो लुकासिविक्ज़ टी-नॉर्म का लॉजिक है) या इंटरमीडिएट लॉजिक | गोडेल-डमेट लॉजिक (जो न्यूनतम टी-नॉर्म का लॉजिक है) .
टी-मानदंड फ़ज़ी तर्क के महत्वपूर्ण उदाहरण हैं सभी बाएँ-निरंतर टी-मानदंडों के [[मोनोइडल टी-नॉर्म लॉजिक|मोनोइडल टी-मानक]] तर्क (एमटीएल), सभी निरंतर टी-मानदंडों के मूल तर्क ([[ बीएल (तर्क) |बीएल]]), उत्पाद टी-मानदंड के उत्पाद फ़ज़ी तर्क, या नीलपोटेंट मिनिमम टी-नॉर्म का निलपोटेंट मिनिमम तर्क। कुछ स्वतंत्र रूप से प्रेरित तर्क टी-नॉर्म फ़ज़ी तर्क में भी सम्मिलित हैं, उदाहरण के लिए लुकासिविक्ज़ तर्क (जो लुकासिविक्ज़ टी-नॉर्म का तर्क है) या गोडेल-डमेट तर्क (जो न्यूनतम टी-नॉर्म का तर्क है)


== प्रेरणा ==
== प्रेरणा ==


फ़ज़ी लॉजिक्स के परिवार के सदस्यों के रूप में, टी-नॉर्म फ़ज़ी लॉजिक्स का मुख्य उद्देश्य 1 (सच्चाई) और 0 (झूठी) के बीच मध्यवर्ती [[सत्य मूल्य]]ों को स्वीकार करके शास्त्रीय दो-मूल्यवान तर्क को सामान्यीकृत करना है, जो प्रस्तावों की सत्यता की डिग्री का प्रतिनिधित्व करता है। इकाई अंतराल [0, 1] से डिग्री को वास्तविक संख्या माना जाता है। प्रपोजल टी-नॉर्म फजी लॉजिक्स में, [[प्रस्तावक सूत्र]] को [[सच कार्यात्मक]] होने के लिए निर्धारित किया जाता है, यानी, कुछ घटक प्रपोजल से प्रोपोजल कनेक्टिव द्वारा गठित एक जटिल प्रपोजल का ट्रुथ वैल्यू एक फंक्शन (कनेक्टिव का ट्रुथ फंक्शन कहा जाता है) है। घटक प्रस्तावों के सत्य मूल्य। ट्रूथ फ़ंक्शन ट्रूथ डिग्रियों के सेट पर काम करते हैं (मानक शब्दार्थ में, [0, 1] अंतराल पर); इस प्रकार एक n-ary साम्यवाचक संयोजक c का सत्य फलन एक फलन F है<sub>''c''</sub>: [0, 1]<sup>n</sup> → [0, 1]ट्रुथ फ़ंक्शंस क्लासिकल लॉजिक से ज्ञात प्रपोज़िशनल कनेक्टिव्स की [[ट्रुथ टेबल]] को सामान्य करता है ताकि ट्रुथ वैल्यू की बड़ी प्रणाली पर काम किया जा सके।
फ़ज़ी तर्क के परिवार के सदस्यों के रूप में, टी-मानदंड फ़ज़ी तर्क मुख्य रूप से 1 (सच्चाई) और 0 (झूठी) के बीच मध्यस्थ सत्य मूल्यों को स्वीकार करके प्रस्तावों की सत्यता की डिग्री का प्रतिनिधित्व करते हुए शास्त्रीय दो-मूल्यवान तर्क को सामान्य बनाने का लक्ष्य रखता है। इकाई अंतराल [0, 1] से डिग्रियों को वास्तविक संख्या माना जाता है। प्रस्तावात्मक टी-मानदंड फ़ज़ी तर्क में, प्रस्तावात्मक संयोजकों को सत्य-कार्यात्मक होने के लिए निर्धारित किया जाता है, अर्थात, कुछ घटक प्रस्तावों से एक प्रस्तावक संयोजक द्वारा गठित एक जटिल प्रस्ताव का सत्य मान एक कार्य है (संयोजी का सत्य कार्य कहा जाता है) घटक प्रस्तावों के सत्य मूल्य। सत्य कार्य सत्य डिग्री के समुच्चय पर काम करते हैं (मानक शब्दार्थ में, [0, 1] अंतराल पर); इस प्रकार एक n-आरी प्रस्तावक संयोजक c का सत्य फलन एक फलन ''F<sub>c</sub>'': [0, 1]<sup>''n''</sup> → [0, 1] है। ट्रुथ फ़ंक्शंस क्लासिकल तर्क से ज्ञात प्रपोज़िशनल कनेक्टिव्स की ट्रुथ टेबल को सामान्य करता है ताकि ट्रुथ वैल्यू की बड़ी प्रणाली पर काम किया जा सके।


टी-नॉर्म फ़ज़ी लॉजिक तार्किक संयोजन के सत्य कार्य पर कुछ प्राकृतिक प्रतिबंध लगाते हैं। सत्य समारोह <math>*\colon[0,1]^2\to[0,1]</math> संयोजन के निम्नलिखित शर्तों को पूरा करने के लिए माना जाता है:
टी-नॉर्म फज़ी तर्क संयोजन के सत्य कार्य पर कुछ प्राकृतिक प्रतिबंध लगाते हैं। ट्रूथ फंक्शन <math>*\colon[0,1]^2\to[0,1]</math> का संयोजन निम्नलिखित शर्तों को पूरा करने के लिए माना जाता है:
* कम्यूटेटिविटी, यानी, <math>x*y=y*x</math> [0, 1] में सभी x और y के लिए। यह इस धारणा को व्यक्त करता है कि फ़ज़ी प्रस्तावों का क्रम संयोजन के रूप में सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
* क्रमविनिमेयता, यानी [0, 1] में सभी x और y के लिए <math>x*y=y*x</math> है। यह इस धारणा को व्यक्त करता है कि फ़ज़ी प्रस्तावों का क्रम संयोजन के रूप में सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
* साहचर्य, अर्थात्, <math>(x*y)*z = x*(y*z)</math> [0, 1] में सभी x, y, और z के लिए। यह इस धारणा को व्यक्त करता है कि संयोजन करने का क्रम सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
* साहचर्य, यानी [0, 1] में सभी x, y, और z के लिए <math>(x*y)*z = x*(y*z)</math> यह इस धारणा को व्यक्त करता है कि संयोजन करने का क्रम सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
* एकरसता, अर्थात् यदि <math>x \le y</math> तब <math>x*z \le y*z</math> [0, 1] में सभी x, y, और z के लिए। यह इस धारणा को व्यक्त करता है कि एक संयोजन की सत्यता की डिग्री को बढ़ाने से संयोजन की सत्यता की डिग्री कम नहीं होनी चाहिए।
* एकरसता, यानी, यदि <math>x \le y</math> तो <math>x*z \le y*z</math> सभी x, y, और z in [0, 1] के लिए। यह इस धारणा को व्यक्त करता है कि एक संयोजन की सत्यता की डिग्री को बढ़ाने से संयोजन की सत्यता की डिग्री कम नहीं होनी चाहिए।
* 1 की तटस्थता, अर्थात, <math>1*x = x</math> [0, 1] में सभी x के लिए। यह धारणा सत्य डिग्री 1 को पूर्ण सत्य मानने से मेल खाती है, जिसके संयोजन से दूसरे संयोजन के सत्य मूल्य में कमी नहीं होती है। पिछली शर्तों के साथ यह स्थिति भी सुनिश्चित करती है <math>0*x = 0</math> [0, 1] में सभी x के लिए, जो सत्य डिग्री 0 को पूर्ण असत्य मानने से मेल खाता है, जिसके साथ संयोजन हमेशा पूर्णतः असत्य होता है।
* 1 की तटस्थता, जो [0, 1] में सभी x के लिए <math>1*x = x</math> है। यह धारणा सत्य डिग्री 1 को पूर्ण सत्य मानने से मेल खाती है, जिसके संयोजन से दूसरे संयोजन के सत्य मूल्य में कमी नहीं होती है। पिछली स्थितियों के साथ-साथ यह स्थिति सुनिश्चित करती है कि [0, 1] में सभी x के लिए <math>0*x = 0</math> भी है, जो सत्य डिग्री 0 को पूर्ण मिथ्या मानने के अनुरूप है, जिसके साथ संयोजन हमेशा पूर्णतः असत्य होता है।
* समारोह की निरंतरता <math>*</math> (पिछली शर्तें किसी भी तर्क में निरंतरता के लिए इस आवश्यकता को कम करती हैं)। अनौपचारिक रूप से यह धारणा व्यक्त करता है कि संयोजनों की सत्य डिग्री के सूक्ष्म परिवर्तनों का परिणाम उनके संयोजन की सत्य डिग्री के मैक्रोस्कोपिक परिवर्तन में नहीं होना चाहिए। यह स्थिति, अन्य बातों के अलावा, संयोजन से प्राप्त (अवशिष्ट) निहितार्थ का एक अच्छा व्यवहार सुनिश्चित करती है; हालांकि, अच्छे व्यवहार को सुनिश्चित करने के लिए, कार्य की बाईं-निरंतरता (किसी भी तर्क में)। <math>*</math> काफी है।<ref name="EG2001">Esteva &amp; Godo (2001)</ref> सामान्य तौर पर टी-मानदंड फ़ज़ी लॉजिक, इसलिए, केवल बाईं-निरंतरता <math>*</math> आवश्यक है, जो इस धारणा को व्यक्त करता है कि एक संयोजन की सत्य डिग्री की सूक्ष्म कमी को संयोजन की सत्य डिग्री को मैक्रोस्कोपिक रूप से कम नहीं करना चाहिए।
* समारोह की निरंतरता <math>*</math> (पिछली शर्तें किसी भी तर्क में निरंतरता के लिए इस आवश्यकता को कम करती हैं)। अनौपचारिक रूप से यह धारणा व्यक्त करता है कि संयोजनों की सत्य डिग्री के सूक्ष्म परिवर्तनों का परिणाम उनके संयोजन की सत्य डिग्री के मैक्रोस्कोपिक परिवर्तन में नहीं होना चाहिए। यह स्थिति, अन्य बातों के अलावा, संयोजन से प्राप्त (अवशिष्ट) निहितार्थ का एक अच्छा व्यवहार सुनिश्चित करती है; हालांकि, अच्छे व्यवहार को सुनिश्चित करने के लिए, कार्य की बाईं-निरंतरता (किसी भी तर्क में)। <math>*</math> काफी है।<ref name="EG2001">Esteva &amp; Godo (2001)</ref> सामान्य तौर पर टी-मानदंड फ़ज़ी तर्क, इसलिए, केवल बाईं-निरंतरता <math>*</math> आवश्यक है, जो इस धारणा को व्यक्त करता है कि एक संयोजन की सत्य डिग्री की सूक्ष्म कमी को संयोजन की सत्य डिग्री को मैक्रोस्कोपिक रूप से कम नहीं करना चाहिए।


ये धारणाएं संयुग्मन के सत्य कार्य को एक बाएं-निरंतर टी-मानदंड बनाती हैं, जो फ़ज़ी लॉजिक्स (टी-मानक आधारित) के परिवार के नाम की व्याख्या करता है। परिवार के विशेष लॉजिक्स संयुग्मन के व्यवहार के बारे में और धारणाएं बना सकते हैं (उदाहरण के लिए, गोडेल-डमेट लॉजिक को इसकी निष्क्रियता की आवश्यकता होती है) या अन्य कनेक्टिव्स (उदाहरण के लिए, लॉजिक आईएमटीएल (इनवॉल्विव मोनोइडल टी-नॉर्म लॉजिक) को [[इनवोल्यूशन (गणित)]] की आवश्यकता होती है। निषेध का)
ये धारणाएं संयुग्मन के सत्य कार्य को एक बाएं-निरंतर टी-मानदंड बनाती हैं, जो फ़ज़ी तर्क (टी-मानक आधारित) के परिवार के नाम की व्याख्या करता है। परिवार के विशेष तर्क संयुग्मन के व्यवहार के बारे में और धारणाएं बना सकते हैं (उदाहरण के लिए, गोडेल-डमेट तर्क को इसकी निष्क्रियता की आवश्यकता होती है) या अन्य कनेक्टिव्स (उदाहरण के लिए, तर्क आईएमटीएल (इनवॉल्विव मोनोइडल टी-नॉर्म तर्क) को नकारात्मकता की अनिवार्यता की आवश्यकता होती है)  


सभी बाएं-निरंतर टी-मानदंड <math>*</math> एक अद्वितीय टी-मानक # अवशिष्ट है, जो कि एक बाइनरी फ़ंक्शन है <math>\Rightarrow</math> ऐसा कि [0, 1] में सभी x, y, और z के लिए,
सभी बाएं-निरंतर टी-मानदंड <math>*</math> में एक अद्वितीय अवशेष है, जो कि एक बाइनरी फ़ंक्शन है <math>\Rightarrow</math> ऐसा है कि [0, 1] में सभी x, y, और z के लिए,
:<math>x*y\le z</math> अगर और केवल अगर <math>x\le y\Rightarrow z.</math>
:<math>x*y\le z</math> अगर और केवल अगर <math>x\le y\Rightarrow z.</math>
बाएं-निरंतर टी-मानदंड के अवशेषों को स्पष्ट रूप से परिभाषित किया जा सकता है
बाएं-निरंतर टी-मानदंड के अवशेषों को स्पष्ट रूप से परिभाषित किया जा सकता है:
:<math>(x\Rightarrow y)=\sup\{z\mid z*x\le y\}.</math>
:<math>(x\Rightarrow y)=\sup\{z\mid z*x\le y\}.</math>
यह सुनिश्चित करता है कि अवशेष बिंदुवार सबसे बड़ा कार्य है जैसे कि सभी x और y के लिए,
यह सुनिश्चित करता है कि अवशेष बिंदुवार सबसे बड़ा कार्य है जैसे कि सभी x और y के लिए,
:<math>x*(x\Rightarrow y)\le y.</math>
:<math>x*(x\Rightarrow y)\le y.</math>
उत्तरार्द्ध को अनुमान के तौर-तरीकों के नियम के एक फ़ज़ी संस्करण के रूप में व्याख्या किया जा सकता है। बाएं-निरंतर टी-मानदंड के अवशेषों को सबसे कमजोर कार्य के रूप में वर्णित किया जा सकता है जो फ़ज़ी [[ मूड सेट करना ]] को वैध बनाता है, जो इसे फ़ज़ी लॉजिक में निहितार्थ के लिए एक उपयुक्त सत्य कार्य बनाता है। टी-मानदंड संयोजन और इसके अवशिष्ट निहितार्थ के बीच इस संबंध के लिए टी-मानदंड की वाम-निरंतरता आवश्यक और पर्याप्त शर्त है।
उत्तरार्द्ध को अनुमान के तौर-तरीकों के नियम के एक फ़ज़ी संस्करण के रूप में व्याख्या किया जा सकता है। बाएं-निरंतर टी-मानदंड के अवशेषों को सबसे कमजोर कार्य के रूप में वर्णित किया जा सकता है जो फ़ज़ी मोडस पोनेंस को वैध बनाता है, जो इसे फ़ज़ी तर्क में निहितार्थ के लिए एक उपयुक्त सत्य कार्य बनाता है। टी-मानदंड संयोजन और इसके अवशिष्ट निहितार्थ के बीच इस संबंध के लिए टी-मानदंड की वाम-निरंतरता आवश्यक और पर्याप्त शर्त है।


आगे के प्रस्तावक संयोजकों के सत्य कार्यों को टी-मानदंड और इसके अवशेषों के माध्यम से परिभाषित किया जा सकता है, उदाहरण के लिए अवशिष्ट निषेध <math>\neg x=(x\Rightarrow 0)</math> या द्वि-अवशिष्ट तुल्यता <math>x\Leftrightarrow y = (x\Rightarrow y)*(y\Rightarrow x).</math> प्रस्तावपरक संयोजकों के सत्य कार्यों को अतिरिक्त परिभाषाओं द्वारा भी पेश किया जा सकता है: सबसे सामान्य न्यूनतम हैं (जो एक अन्य संयोजक संयोजी की भूमिका निभाता है), अधिकतम (जो एक वियोगात्मक संयोजी की भूमिका निभाता है), या बाज़ डेल्टा ऑपरेटर, [0, 1] में परिभाषित किया गया है <math>\Delta x = 1</math> अगर <math>x=1</math> और <math>\Delta x = 0</math> अन्यथा। इस तरह, एक बाएं-निरंतर टी-मानदंड, इसका अवशेष, और अतिरिक्त प्रस्तावात्मक संयोजकों के सत्य कार्य [0, 1] में जटिल प्रस्तावात्मक सूत्रों के सत्य मूल्यों को निर्धारित करते हैं।
आगे के प्रस्तावक संयोजकों के सत्य कार्यों को टी-मानदंड और इसके अवशेषों के माध्यम से परिभाषित किया जा सकता है, उदाहरण के लिए अवशिष्ट निषेध <math>\neg x=(x\Rightarrow 0)</math> या द्वि-अवशिष्ट तुल्यता <math>x\Leftrightarrow y = (x\Rightarrow y)*(y\Rightarrow x).</math> प्रस्तावपरक संयोजकों के सत्य कार्यों को अतिरिक्त परिभाषाओं द्वारा भी प्रस्तुत किया जा सकता है: सबसे सामान्य वाले न्यूनतम हैं (जो एक अन्य संयोजक संयोजक की भूमिका निभाते हैं), अधिकतम ( जो एक संयोजन संयोजन की भूमिका निभाता है), या बाज़ डेल्टा ऑपरेटर, [0, 1] में <math>\Delta x = 1</math> यदि <math>x=1</math> और <math>\Delta x = 0</math> अन्यथा परिभाषित किया गया है। इस तरह, एक बाएं-निरंतर टी-मानदंड, इसका अवशेष, और अतिरिक्त प्रस्तावात्मक संयोजकों के सत्य कार्य [0, 1] में जटिल तर्कवाक्य सूत्रों के सत्य मूल्यों को निर्धारित करते हैं।


सूत्र जो हमेशा 1 का मूल्यांकन करते हैं, उन्हें दिए गए बाएं-निरंतर टी-मानदंड के संबंध में तनातनी कहा जाता है <math>*,</math> या<math>*\mbox{-}</math>tautology. सभी का सेट <math>*\mbox{-}</math>टॉटोलॉजी को टी-नॉर्म का तर्क कहा जाता है <math>*,</math> क्योंकि ये सूत्र फ़ज़ी लॉजिक (टी-मानदंड द्वारा निर्धारित) के नियमों का प्रतिनिधित्व करते हैं जो [[परमाणु सूत्र]]ों की सत्य डिग्री की परवाह किए बिना (1 डिग्री तक) धारण करते हैं। वाम-निरंतर टी-मानदंडों के एक बड़े वर्ग के संबंध में कुछ सूत्र पुनरावलोकन (तर्क) हैं; ऐसे सूत्रों के समुच्चय को वर्ग का तर्क कहा जाता है। महत्वपूर्ण टी-मानदंड तर्क विशिष्ट टी-मानदंडों या टी-मानदंडों की कक्षाओं के तर्क हैं, उदाहरण के लिए:
सूत्र जो हमेशा 1 का मूल्यांकन करते हैं, उन्हें दिए गए बाएं-निरंतर टी-मानदंड <math>*,</math>या <math>*\mbox{-}</math> tautology के संबंध में tautology कहा जाता है। सभी का समुच्चय <math>*\mbox{-}</math>टॉटोलॉजी को टी-नॉर्म का तर्क कहा जाता है <math>*,</math> क्योंकि ये सूत्र फ़ज़ी तर्क (टी-मानदंड द्वारा निर्धारित) के नियमों का प्रतिनिधित्व करते हैं जो [[परमाणु सूत्र]]ों की सत्य डिग्री की परवाह किए बिना (1 डिग्री तक) धारण करते हैं। वाम-निरंतर टी-मानदंडों के एक बड़े वर्ग के संबंध में कुछ सूत्र पुनरावलोकन (तर्क) हैं; ऐसे सूत्रों के समुच्चय को वर्ग का तर्क कहा जाता है। महत्वपूर्ण टी-मानदंड तर्क विशिष्ट टी-मानदंडों या टी-मानदंडों की कक्षाओं के तर्क हैं, उदाहरण के लिए:
* लुकासिविज़ तर्क टी-मानदंड का तर्क है#प्रमुख उदाहरण|लुकासिएविक्ज़ टी-मानदंड <math>x*y = \max(x+y-1,0)</math>
* लुकासिविज़ तर्क <math>x*y = \max(x+y-1,0)</math> का तर्क है।
* इंटरमीडिएट लॉजिक|गोडेल-डमेट लॉजिक टी-नॉर्म का लॉजिक है#प्रमुख उदाहरण|न्यूनतम टी-नॉर्म <math>x*y = \min(x,y)</math>
* गोडेल-डमेट तर्क <math>x*y = \min(x,y)</math> न्यूनतम टी-नॉर्म न्यूनतम का तर्क है।
* उत्पाद फ़ज़ी लॉजिक टी-नॉर्म का तर्क है # प्रमुख उदाहरण | उत्पाद टी-नॉर्म <math>x*y = x\cdot y</math>
* उत्पाद फ़ज़ी तर्क उत्पाद <math>x*y = x\cdot y</math> का तर्क है।
* मोनोइडल टी-नॉर्म लॉजिक एमटीएल सभी बाएं-निरंतर टी-मानदंडों का (वर्ग का) तर्क है
* मोनोइडल टी-नॉर्म तर्क एमटीएल सभी बाएं-निरंतर टी-मानदंडों का (वर्ग का) तर्क है।
* [[ बेसिक फ़ज़ी लॉजिक ]] बीएल सभी निरंतर टी-मानदंडों का (वर्ग का) तर्क है
* [[ बेसिक फ़ज़ी लॉजिक |बेसिक फ़ज़ी तर्क]] बीएल सभी निरंतर टी-मानदंडों का (वर्ग का) तर्क है।


यह पता चला है कि विशेष टी-मानदंडों और टी-मानदंडों के वर्गों के कई तर्क स्वयंसिद्ध हैं। [0, 1] पर संबंधित टी-मानदंड शब्दार्थ के संबंध में स्वयंसिद्ध प्रणाली की पूर्णता प्रमेय को तब तर्क की मानक पूर्णता कहा जाता है। [0, 1] पर मानक वास्तविक-मूल्यवान शब्दार्थ के अलावा, सामान्य बीजगणितीय शब्दार्थ के संबंध में तर्क ठोस और पूर्ण हैं, जो कि प्रीलीनियर कम्यूटेटिव बाउंडेड इंटीग्रल [[ अवशिष्ट जाली ]] के उपयुक्त वर्गों द्वारा गठित है।
यह पता चला है कि विशेष टी-मानदंडों और टी-मानदंडों के वर्गों के कई तर्क स्वयंसिद्ध हैं। [0, 1] पर संबंधित टी-मानक शब्दार्थ के संबंध में स्वयंसिद्ध प्रणाली की पूर्णता प्रमेय को तब तर्क की मानक पूर्णता कहा जाता है। [0, 1] पर मानक वास्तविक-मूल्यवान शब्दार्थ के अलावा, सामान्य बीजगणितीय शब्दार्थ के संबंध में तर्क ध्वनि और पूर्ण हैं, जो प्रीलीनियर कम्यूटेटिव बाउंडेड इंटीग्रल रेसिड्यूएटेड लैटिस के उपयुक्त वर्गों द्वारा गठित हैं।


== इतिहास ==
== इतिहास ==


कुछ विशेष टी-मानदंड फ़ज़ी लॉजिक पेश किए गए हैं और परिवार को मान्यता देने से बहुत पहले जांच की गई है (फ़ज़ी लॉजिक या टी-मानदंड की धारणाओं के सामने आने से पहले):
फ़ज़ी तर्क या टी-मानदंड की धारणाओं के सामने आने से पहले ही परिवार को पहचानने से बहुत पहले कुछ विशेष टी-मानदंड फ़ज़ी तर्क पेश किए गए थे और उनकी जाँच की गई थी:
* Łukasiewicz तर्क (Łukasiewicz t-norm का तर्क) मूल रूप से Jan Łukasiewicz (1920) द्वारा [[तीन-मूल्यवान तर्क]] के रूप में परिभाषित किया गया था;<ref name="Luk1920">Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny '''5''':170–171.</ref> इसे बाद में एन-वैल्यूड (सभी परिमित एन के लिए) के साथ-साथ असीम रूप से कई-मूल्यवान वेरिएंट, दोनों प्रपोजल और फर्स्ट-ऑर्डर के लिए सामान्यीकृत किया गया था।<ref name="Hay1963">Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. ''[[Journal of Symbolic Logic]]'' '''28''':77–86.</ref>
* Łukasiewicz तर्क (Łukasiewicz t-norm का तर्क) मूल रूप से Jan Łukasiewicz (1920) द्वारा [[तीन-मूल्यवान तर्क]] के रूप में परिभाषित किया गया था;<ref name="Luk1920">Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny '''5''':170–171.</ref> इसे बाद में एन-वैल्यूड (सभी परिमित एन के लिए) के साथ-साथ असीम रूप से कई-मूल्यवान वेरिएंट, दोनों प्रपोजल और फर्स्ट-ऑर्डर के लिए सामान्यीकृत किया गया था।<ref name="Hay1963">Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. ''[[Journal of Symbolic Logic]]'' '''28''':77–86.</ref>
* इंटरमीडिएट लॉजिक | गोडेल-डमेट लॉजिक (न्यूनतम टी-मानदंड का तर्क) गोडेल के 1932 के [[ अंतर्ज्ञानवादी तर्क ]] के अनंत-मूल्यवान होने के प्रमाण में निहित था।<ref name="Goe1932">Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, ''Anzeiger Akademie der Wissenschaften Wien'' '''69''': 65–66.</ref> बाद में (1959) इसका स्पष्ट रूप से [[माइकल डमेट]] द्वारा अध्ययन किया गया जिन्होंने तर्क के लिए एक पूर्णता प्रमेय साबित किया।<ref name="Dum1959">Dummett M., 1959, Propositional calculus with denumerable matrix, ''Journal of Symbolic Logic'' '''27''': 97–106</ref>
* [[माइकल डमेट]] तर्क (न्यूनतम टी-मानदंड का तर्क) गोडेल के 1932 के [[ अंतर्ज्ञानवादी तर्क |अंतर्ज्ञानवादी तर्क]] के अनंत-मूल्यवान होने के प्रमाण में निहित था।<ref name="Goe1932">Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, ''Anzeiger Akademie der Wissenschaften Wien'' '''69''': 65–66.</ref> बाद में (1959) डमेट द्वारा स्पष्ट रूप से इसका अध्ययन किया गया जिसने तर्क के लिए एक पूर्णता प्रमेय साबित किया।<ref name="Dum1959">Dummett M., 1959, Propositional calculus with denumerable matrix, ''Journal of Symbolic Logic'' '''27''': 97–106</ref>
विशेष टी-मानदंड फ़ज़ी लॉजिक और उनकी कक्षाओं का एक व्यवस्थित अध्ययन पेट्र हाजेक के साथ शुरू हुआ। हाजेक (1998) मोनोग्राफ फ़ज़ी लॉजिक का मेटामैथमैटिक्स, जिसने एक सतत टी-मानदंड के तर्क की धारणा प्रस्तुत की, तीन बुनियादी निरंतर टी के तर्क -मानदंड (Łukasiewicz, Gödel, और उत्पाद), और सभी निरंतर टी-मानदंडों का 'मूल' फ़ज़ी लॉजिक BL (तर्क) (वे सभी प्रस्तावात्मक और प्रथम-क्रम दोनों)। पुस्तक ने हिल्बर्ट-शैली की गणना, बीजगणितीय शब्दार्थ और अन्य लॉजिक्स (पूर्णता प्रमेय, निगमन प्रमेय, कम्प्यूटेशनल जटिलता, आदि) से ज्ञात मेटामैथमैटिकल गुणों के साथ गैर-शास्त्रीय लॉजिक्स के रूप में फ़ज़ी लॉजिक्स की जांच भी शुरू की।
विशेष टी-मानदंड फ़ज़ी तर्क और उनकी कक्षाओं का एक व्यवस्थित अध्ययन हेजेक (1998) मोनोग्राफ मेटामैथमैटिक्स ऑफ़ फ़ज़ी तर्क के साथ शुरू हुआ, जिसने निरंतर टी-मानदंड के तर्क की धारणा प्रस्तुत की, तीन बुनियादी निरंतर टी-मानदंडों के तर्क ( Łukasiewicz, Gödel, और उत्पाद), और सभी निरंतर टी-मानदंडों का 'मूल' फ़ज़ी तर्क BL (वे सभी प्रस्तावात्मक और प्रथम-क्रम दोनों)। पुस्तक ने हिल्बर्ट-शैली की गणना, बीजगणितीय शब्दार्थ और अन्य तर्क (पूर्णता प्रमेय, निगमन प्रमेय, जटिलता, आदि) से ज्ञात मेटामाथमेटिकल गुणों के साथ गैर-शास्त्रीय तर्क के रूप में फ़ज़ी तर्क की जांच भी शुरू की।
 
तब से, टी-मानदंड फ़ज़ी लॉजिक्स की अधिकता पेश की गई है और उनके मेटामैथमैटिकल गुणों की जांच की गई है। एस्टेवा और गोडो (मोनॉयडल टी-नॉर्म लॉजिक, IMTL, SMTL, NM, WNM) द्वारा 2001 में कुछ सबसे महत्वपूर्ण टी-नॉर्म फ़ज़ी लॉजिक पेश किए गए थे।<ref name="EG2001" />एस्टेवा, गोडो, और मोंटागना (प्रस्तावात्मक एल),<ref name="EGM2001">Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, ''Archive for Mathematical Logic'' '''40''': 39–67.</ref> और सिंटुला (प्रथम-क्रम ŁΠ)।<ref name="Cin2001">Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, ''[[Fuzzy Sets and Systems]]'' '''124''': 289–302.</ref>
 


तब से, टी-मानदंड फ़ज़ी तर्क की अधिकता पेश की गई है और उनके मेटामैथमैटिकल गुणों की जांच की गई है। एस्टेवा और गोडो (MTL, IMTL, SMTL, NM, WNM), [1] एस्टेवा, गोडो, और मोंटागना (प्रस्तावात्मक ŁΠ)<ref name="EGM2001">Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, ''Archive for Mathematical Logic'' '''40''': 39–67.</ref> और सिंटुला द्वारा 2001 में कुछ सबसे महत्वपूर्ण टी-नॉर्म फ़ज़ी तर्क पेश किए गए थे। (प्रथम-क्रम ŁΠ).<ref name="Cin2001">Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, ''[[Fuzzy Sets and Systems]]'' '''124''': 289–302.</ref>
== तार्किक भाषा ==
== तार्किक भाषा ==


प्रस्तावपरक तर्क टी-मानदंड फजी लॉजिक्स की तार्किक शब्दावली में मानक रूप से निम्नलिखित संयोजक शामिल हैं:
प्रस्तावपरक टी-मानदंड फ़ज़ी तर्क की तार्किक शब्दावली में मानक रूप से निम्नलिखित संयोजक सम्मिलित हैं:
* निहितार्थ <math>\rightarrow</math> (धैर्य)। टी-नॉर्म-आधारित फ़ज़ी लॉजिक्स के अलावा अन्य के संदर्भ में, टी-नॉर्म-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या आर-निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-नॉर्म # टी-नॉर्म का अवशेष है जो मजबूत महसूस करता है संयोजक।
* निहितार्थ <math>\rightarrow</math> (धैर्य)। टी-मानदंड-आधारित फ़ज़ी तर्क के अलावा अन्य के संदर्भ में, टी-मानदंड-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या आर-निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-मानदंड का अवशेष है जो मजबूत संयोजन का एहसास करता है।
* प्रबल योग <math>\And</math> (बाइनरी)। सबस्ट्रक्चरल लॉजिक्स के संदर्भ में, साइन <math>\otimes</math> और नाम समूह, आकस्मिक, गुणक, या समानांतर संयोजन अक्सर मजबूत संयोजन के लिए उपयोग किए जाते हैं।
* प्रबल योग <math>\And</math> (बाइनरी)। सबस्ट्रक्चरल तर्क के संदर्भ में, साइन <math>\otimes</math> और नाम समूह, गहन, गुणक, या समानांतर संयोजन अक्सर मजबूत संयोजन के लिए उपयोग किए जाते हैं।
* 'कमजोर संयोजन' <math>\wedge</math> (बाइनरी), जिसे जाली संयुग्मन भी कहा जाता है (जैसा कि बीजगणितीय शब्दार्थ में मीट (गणित) के जाली (क्रम) संचालन द्वारा हमेशा महसूस किया जाता है)। सबस्ट्रक्चरल लॉजिक्स के संदर्भ में, 'एडिटिव', 'एक्सटेंशनल', या 'तुलनात्मक संयोजन' नाम कभी-कभी जाली संयोजन के लिए उपयोग किए जाते हैं। लॉजिक बीएल (तर्क) और इसके विस्तार में (हालांकि सामान्य रूप से टी-मानदंड लॉजिक्स में नहीं), निहितार्थ और मजबूत संयोजन के संदर्भ में कमजोर संयोजन निश्चित है, द्वारा <math display="block">A\wedge B \equiv A \mathbin{\And} (A \rightarrow B).</math> दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक लॉजिक्स की एक सामान्य विशेषता है।
*कमजोर संयोजन <math>\wedge</math> (बाइनरी), जिसे जाली संयोजन भी कहा जाता है (जैसा कि यह हमेशा बीजगणितीय शब्दार्थ में मिलने के जाली संचालन द्वारा महसूस किया जाता है)। सबस्ट्रक्चरल तर्क के संदर्भ में, एडिटिव, एक्सटेंशनल या तुलनात्मक संयोजन नाम कभी-कभी जाली संयोजन के लिए उपयोग किए जाते हैं। तर्क बीएल और इसके एक्सटेंशन में (हालांकि सामान्य रूप से टी-मानदंड तर्क में नहीं), निहितार्थ और मजबूत संयोजन के संदर्भ में कमजोर संयोजन निश्चित है:<math display="block">A\wedge B \equiv A \mathbin{\And} (A \rightarrow B).</math> दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक तर्क की एक सामान्य विशेषता है।
* तल <math>\bot</math> (शून्य); <math>0</math> या <math>\overline{0}</math> सामान्य वैकल्पिक संकेत हैं और शून्य प्रस्तावक स्थिरांक के लिए एक सामान्य वैकल्पिक नाम है (जैसा कि अवसंरचनात्मक तर्क के स्थिरांक नीचे और शून्य टी-मानदंड फ़ज़ी लॉजिक्स में मेल खाते हैं)। विनती <math>\bot</math> असत्यता या असत्यता का प्रतिनिधित्व करता है और शास्त्रीय सत्य मान असत्य से मेल खाता है।
* बॉटम <math>\bot</math> <math>0</math> या <math>\overline{0}</math> आम वैकल्पिक संकेत हैं और ज़ीरो प्रोपोज़िशनल कांस्टेंट के लिए एक कॉमन वैकल्पिक नाम है (जैसा कि सबस्ट्रक्चरल तर्क के कॉन्स्टेंट नीचे और शून्य टी-नॉर्म फ़ज़ी में मेल खाते हैं तर्क)। विनती <math>\bot</math> असत्यता या बेतुकापन का प्रतिनिधित्व करता है और शास्त्रीय सत्य मूल्य असत्य से मेल खाता है।
* 'निषेध' <math>\neg</math> ([[ एकात्मक ऑपरेशन ]]), जिसे कभी-कभी अवशिष्ट निषेध कहा जाता है यदि अन्य नकारात्मक संयोजकों पर विचार किया जाता है, जैसा कि रिडक्टियो एड एब्सर्डम द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है: <math display="block">\neg A \equiv A \rightarrow \bot</math>
* 'निषेध' <math>\neg</math> ([[ एकात्मक ऑपरेशन ]]), जिसे कभी-कभी अवशिष्ट निषेध कहा जाता है यदि अन्य नकारात्मक संयोजकों पर विचार किया जाता है, जैसा कि रिडक्टियो एड एब्सर्डम द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है: <math display="block">\neg A \equiv A \rightarrow \bot</math>
* समानता <math>\leftrightarrow</math> (बाइनरी), के रूप में परिभाषित किया गया <math display="block">A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math> टी-नॉर्म लॉजिक्स में, परिभाषा इसके समकक्ष है <math>(A \rightarrow B) \mathbin{\And} (B \rightarrow A).</math>
* समानता <math>\leftrightarrow</math> (बाइनरी), के रूप में परिभाषित किया गया <math display="block">A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math> टी-नॉर्म तर्क में, परिभाषा इसके समकक्ष है <math>(A \rightarrow B) \mathbin{\And} (B \rightarrow A).</math>
* (कमजोर) संयोजन <math>\vee</math> (बाइनरी), जिसे लैटिस डिसजंक्शन भी कहा जाता है (जैसा कि बीजगणितीय शब्दार्थ में ज्वाइन (गणित) के लैटिस (ऑर्डर) ऑपरेशन द्वारा हमेशा महसूस किया जाता है)। टी-नॉर्म लॉजिक्स में यह अन्य संयोजकों के संदर्भ में निश्चित है <math display="block">A \vee B \equiv ((A \rightarrow B) \rightarrow B) \wedge ((B \rightarrow A) \rightarrow A)</math>
* (कमजोर) संयोजन <math>\vee</math> (बाइनरी), जिसे लैटिस डिसजंक्शन भी कहा जाता है (जैसा कि बीजगणितीय शब्दार्थ में ज्वाइन (गणित) के लैटिस (ऑर्डर) ऑपरेशन द्वारा हमेशा महसूस किया जाता है)। टी-नॉर्म तर्क में यह अन्य संयोजकों के संदर्भ में निश्चित है <math display="block">A \vee B \equiv ((A \rightarrow B) \rightarrow B) \wedge ((B \rightarrow A) \rightarrow A)</math>
* ऊपर <math>\top</math> (शून्य), जिसे एक भी कहा जाता है और इसके द्वारा निरूपित किया जाता है <math>1</math> या <math>\overline{1}</math> (जैसा कि अवसंरचनात्मक लॉजिक्स के स्थिरांक शीर्ष और शून्य टी-नॉर्म फ़ज़ी लॉजिक्स में मेल खाते हैं)। विनती <math>\top</math> क्लासिकल ट्रूथ वैल्यू ट्रू से मेल खाता है और टी-नॉर्मल लॉजिक में परिभाषित किया जा सकता है <math display="block">\top \equiv \bot \rightarrow \bot.</math>
* ऊपर <math>\top</math> (शून्य), जिसे एक भी कहा जाता है और इसके द्वारा निरूपित किया जाता है <math>1</math> या <math>\overline{1}</math> (जैसा कि अवसंरचनात्मक तर्क के स्थिरांक शीर्ष और शून्य टी-नॉर्म फ़ज़ी तर्क में मेल खाते हैं)। विनती <math>\top</math> क्लासिकल ट्रूथ वैल्यू ट्रू से मेल खाता है और टी-नॉर्मल तर्क में परिभाषित किया जा सकता है <math display="block">\top \equiv \bot \rightarrow \bot.</math>
कुछ प्रस्तावात्मक टी-मानदंड लॉजिक उपरोक्त भाषा में और प्रस्तावात्मक संयोजक जोड़ते हैं, जो अक्सर निम्नलिखित होते हैं:
कुछ प्रस्तावात्मक टी-मानदंड तर्क उपरोक्त भाषा में और प्रस्तावात्मक संयोजक जोड़ते हैं, जो अक्सर निम्नलिखित होते हैं:
* डेल्टा संयोजक <math>\triangle</math> एक एकात्मक संयोजक है जो किसी प्रस्ताव के शास्त्रीय सत्य को रूप के सूत्रों के रूप में प्रस्तुत करता है <math>\triangle A</math> शास्त्रीय तर्क के रूप में व्यवहार करें। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा इंटरमीडिएट लॉजिक | गोडेल-डमेट लॉजिक के लिए उपयोग किया गया था।<ref name="Baa96">Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), ''Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics'', Springer, ''Lecture Notes in Logic'' '''6''': 23–33</ref> एक टी-मानक तर्क का विस्तार <math>L</math> डेल्टा संयोजक द्वारा आमतौर पर निरूपित किया जाता है <math>L_{\triangle}.</math>
* डेल्टा संयोजक <math>\triangle</math> एक एकात्मक संयोजक है जो किसी प्रस्ताव के शास्त्रीय सत्य को रूप के सूत्रों के रूप में प्रस्तुत करता है <math>\triangle A</math> शास्त्रीय तर्क के रूप में व्यवहार करें। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा इंटरमीडिएट तर्क | गोडेल-डमेट तर्क के लिए उपयोग किया गया था।<ref name="Baa96">Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), ''Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics'', Springer, ''Lecture Notes in Logic'' '''6''': 23–33</ref> एक टी-मानक तर्क का विस्तार <math>L</math> डेल्टा संयोजक द्वारा सामान्यतः निरूपित किया जाता है <math>L_{\triangle}.</math>
* सत्य स्थिरांक शून्य संयोजक हैं जो मानक वास्तविक-मूल्यवान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मानों का प्रतिनिधित्व करते हैं। वास्तविक संख्या के लिए <math>r</math>, संगत सत्य स्थिरांक को आमतौर पर द्वारा निरूपित किया जाता है <math>\overline{r}.</math> बहुधा, सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली है:<ref name="Haj98">Hájek (1998)</ref> <math display="block">\overline{r \mathbin{\And} s} \leftrightarrow (\overline{r} \mathbin{\And} \overline{s}),</math> <math display="block">\overline{r \rightarrow s} \leftrightarrow (\overline{r} \mathbin{\rightarrow} \overline{s}),</math> आदि सभी प्रस्तावात्मक संयोजकों और भाषा में परिभाषित सभी सत्य स्थिरांकों के लिए।
* सत्य स्थिरांक शून्य संयोजक हैं जो मानक वास्तविक-मूल्यवान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मानों का प्रतिनिधित्व करते हैं। वास्तविक संख्या के लिए <math>r</math>, संगत सत्य स्थिरांक को सामान्यतः द्वारा निरूपित किया जाता है <math>\overline{r}.</math> बहुधा, सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली है:<ref name="Haj98">Hájek (1998)</ref> <math display="block">\overline{r \mathbin{\And} s} \leftrightarrow (\overline{r} \mathbin{\And} \overline{s}),</math> <math display="block">\overline{r \rightarrow s} \leftrightarrow (\overline{r} \mathbin{\rightarrow} \overline{s}),</math> आदि सभी प्रस्तावात्मक संयोजकों और भाषा में परिभाषित सभी सत्य स्थिरांकों के लिए।
* समावेशी निषेध <math>\sim</math> (यूनरी) को टी-नॉर्म लॉजिक्स में एक अतिरिक्त निषेध के रूप में जोड़ा जा सकता है जिसका अवशिष्ट निषेध स्वयं इनवोल्यूशन (गणित) नहीं है, अर्थात यदि यह दोहरे निषेध के नियम का पालन नहीं करता है <math>\neg\neg A \leftrightarrow A</math>. एक टी-मानक तर्क <math>L</math> समावेशी निषेध के साथ विस्तारित आमतौर पर द्वारा निरूपित किया जाता है <math>L_{\sim}</math> और बुलाया<math>L</math> शामिल होने के साथ।
* समावेशी निषेध <math>\sim</math> (यूनरी) को टी-नॉर्म तर्क में एक अतिरिक्त निषेध के रूप में जोड़ा जा सकता है जिसका अवशिष्ट निषेध स्वयं इनवोल्यूशन (गणित) नहीं है, अर्थात यदि यह दोहरे निषेध के नियम का पालन नहीं करता है <math>\neg\neg A \leftrightarrow A</math>. एक टी-मानक तर्क <math>L</math> समावेशी निषेध के साथ विस्तारित सामान्यतः द्वारा निरूपित किया जाता है <math>L_{\sim}</math> और बुलाया<math>L</math> सम्मिलित होने के साथ।
* 'मजबूत संयोजन' <math>\oplus</math> (बाइनरी)। सबस्ट्रक्चरल लॉजिक्स के संदर्भ में इसे ग्रुप, इंटेन्शनल, मल्टीप्लिकेटिव या पैरेलल डिसजंक्शन भी कहा जाता है। भले ही संकुचन-मुक्त अवसंरचनात्मक लॉजिक्स में मानक, टी-मानदंड फ़ज़ी लॉजिक्स में यह आमतौर पर केवल समावेशी निषेध की उपस्थिति में उपयोग किया जाता है, जो इसे मजबूत संयोजन से डी मॉर्गन के कानून द्वारा निश्चित (और इतना स्वयंसिद्ध) बनाता है: <math display="block">A \oplus B \equiv \mathrm{\sim}(\mathrm{\sim}A \mathbin{\And} \mathrm{\sim}B).</math>
* 'मजबूत संयोजन' <math>\oplus</math> (बाइनरी)। सबस्ट्रक्चरल तर्क के संदर्भ में इसे ग्रुप, इंटेन्शनल, मल्टीप्लिकेटिव या पैरेलल डिसजंक्शन भी कहा जाता है। भले ही संकुचन-मुक्त अवसंरचनात्मक तर्क में मानक, टी-मानदंड फ़ज़ी तर्क में यह सामान्यतः केवल समावेशी निषेध की उपस्थिति में उपयोग किया जाता है, जो इसे मजबूत संयोजन से डी मॉर्गन के कानून द्वारा निश्चित (और इतना स्वयंसिद्ध) बनाता है: <math display="block">A \oplus B \equiv \mathrm{\sim}(\mathrm{\sim}A \mathbin{\And} \mathrm{\sim}B).</math>
* अतिरिक्त टी-मानक संयोजन और अवशिष्ट निहितार्थ। कुछ स्पष्ट रूप से मजबूत टी-मानदंड तर्क, उदाहरण के लिए तर्क ŁΠ, उनकी भाषा में एक से अधिक मजबूत संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक-मूल्यवान शब्दार्थ में, ऐसे सभी मजबूत संयोजनों को अलग-अलग टी-मानदंडों और उनके अवशिष्टों द्वारा अवशिष्ट निहितार्थों द्वारा महसूस किया जाता है।
* अतिरिक्त टी-मानक संयोजन और अवशिष्ट निहितार्थ। कुछ स्पष्ट रूप से मजबूत टी-मानदंड तर्क, उदाहरण के लिए तर्क ŁΠ, उनकी भाषा में एक से अधिक मजबूत संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक-मूल्यवान शब्दार्थ में, ऐसे सभी मजबूत संयोजनों को अलग-अलग टी-मानदंडों और उनके अवशिष्टों द्वारा अवशिष्ट निहितार्थों द्वारा महसूस किया जाता है।


प्रस्तावपरक टी-मानदंड तर्कशास्त्र के सुनिर्मित सूत्रों को प्रस्तावात्मक चरों (आमतौर पर गिनने योग्य कई) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसा कि सामान्य रूप से प्रस्तावात्मक तर्कों में होता है। कोष्ठकों को बचाने के लिए, वरीयता के निम्नलिखित क्रम का उपयोग करना आम है:
प्रस्तावपरक टी-मानदंड तर्कशास्त्र के सुनिर्मित सूत्रों को प्रस्तावात्मक चरों (सामान्यतः गिनने योग्य कई) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसा कि सामान्य रूप से प्रस्तावात्मक तर्कों में होता है। कोष्ठकों को बचाने के लिए, वरीयता के निम्नलिखित क्रम का उपयोग करना आम है:
* यूनरी कनेक्टिव्स (सबसे बारीकी से बांधें)
* यूनरी कनेक्टिव्स (सबसे बारीकी से बांधें)
* निहितार्थ और तुल्यता के अलावा अन्य बाइनरी संयोजक
* निहितार्थ और तुल्यता के अलावा अन्य बाइनरी संयोजक
* निहितार्थ और तुल्यता (सबसे शिथिल बाँधें)
* निहितार्थ और तुल्यता (सबसे शिथिल बाँधें)


टी-नॉर्म लॉजिक के प्रथम-क्रम वेरिएंट उपरोक्त प्रस्तावक संयोजकों और निम्नलिखित [[परिमाणक (तर्क)]]तर्क) के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:
टी-नॉर्म तर्क के प्रथम-क्रम वेरिएंट उपरोक्त प्रस्तावक संयोजकों और निम्नलिखित [[परिमाणक (तर्क)]]तर्क) के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:
* सामान्य परिमाणक <math>\forall</math>
* सामान्य परिमाणक <math>\forall</math>
* अस्तित्वगत परिमाणक <math>\exists</math>
* अस्तित्वगत परिमाणक <math>\exists</math>
प्रस्तावपरक टी-मानदंड तर्क का प्रथम-क्रम संस्करण <math>L</math> आमतौर पर द्वारा निरूपित किया जाता है <math>L\forall.</math>
प्रस्तावपरक टी-मानदंड तर्क का प्रथम-क्रम संस्करण <math>L</math> सामान्यतः द्वारा निरूपित किया जाता है <math>L\forall.</math>




== शब्दार्थ ==
== शब्दार्थ ==


[[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] मुख्य रूप से प्रस्तावित टी-मानदंड फ़ज़ी लॉजिक के लिए उपयोग किया जाता है, जिसमें [[बीजगणितीय संरचना]] के तीन मुख्य वर्ग होते हैं जिनके संबंध में एक टी-मानदंड फ़ज़ी लॉजिक होता है। <math>L</math> पूर्णता है (तर्क):
[[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] मुख्य रूप से प्रस्तावित टी-मानदंड फ़ज़ी तर्क के लिए उपयोग किया जाता है, जिसमें [[बीजगणितीय संरचना]] के तीन मुख्य वर्ग होते हैं जिनके संबंध में एक टी-मानदंड फ़ज़ी तर्क होता है। <math>L</math> पूर्णता है (तर्क):
* सामान्य शब्दार्थ, सभी का गठन ''<math>L</math>-अलजेब्रस - यानी, सभी बीजगणित जिनके लिए साउंडनेस प्रमेय तर्क है।
* सामान्य शब्दार्थ, सभी का गठन ''<math>L</math>-अलजेब्रस - यानी, सभी बीजगणित जिनके लिए साउंडनेस प्रमेय तर्क है।
* 'रैखिक शब्दार्थ', सभी रैखिक का गठन <math>L</math>-अलजेब्रस - यानी, सभी <math>L</math>- बीजगणित जिसका जालक (क्रम) क्रम कुल क्रम होता है।
* 'रैखिक शब्दार्थ', सभी रैखिक का गठन <math>L</math>-अलजेब्रस - यानी, सभी <math>L</math>- बीजगणित जिसका जालक (क्रम) क्रम कुल क्रम होता है।
Line 85: Line 83:
== ग्रन्थसूची ==
== ग्रन्थसूची ==


* Esteva F. & Godo L., 2001, "Monoidal t-norm based logic: Towards a logic of left-continuous t-norms". ''Fuzzy Sets and Systems'' '''124''': 271–288.
* एस्टेवा एफ. एंड गोडो एल., 2001, "मोनॉयडल टी-नॉर्म बेस्ड तर्क: टुवार्ड्स ए तर्क ऑफ़ लेफ्ट-कंटीन्यूअस टी-नॉर्म्स"। फ़ज़ी समुच्चय्स एंड सिस्टम्स 124: 271–288।
* Flaminio T. & Marchioni E., 2006, T-norm based logics with an independent involutive negation. ''Fuzzy Sets and Systems'' '''157''': 3125–3144.
* फ्लैमिनियो टी. एंड मार्चियोनी ई., 2006, टी-मानदंड आधारित तर्क एक स्वतंत्र समावेशी निषेध के साथ। फ़ज़ी समुच्चय्स एंड सिस्टम्स 157: 3125–3144।
* Gottwald S. & Hájek P., 2005, Triangular norm based mathematical fuzzy logic. In E.P. Klement & R. Mesiar (eds.), ''Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms'', pp.&nbsp;275–300. Elsevier, Amsterdam 2005.
* गॉटवाल्ड एस. और हेजेक पी., 2005, त्रिकोणीय मानदंड आधारित गणितीय फ़ज़ी तर्क। ई.पी. क्लेमेंट एंड आर. मेसियर (संपा.), तार्किक, बीजगणितीय, विश्लेषणात्मक और त्रिकोणीय मानदंड के संभाव्य पहलू, पीपी. 275-300. एल्सेवियर, एम्स्टर्डम 2005।
* Hájek P., 1998, ''Metamathematics of Fuzzy Logic''. Dordrecht: Kluwer. {{isbn|0-7923-5238-6}}.
* हाजेक पी., 1998, मेटामैथमैटिक्स ऑफ फ़ज़ी तर्क। डॉर्ड्रेक्ट: क्लूवर {{isbn|0-7923-5238-6}}.
 
 
== संदर्भ ==
== संदर्भ ==



Revision as of 17:31, 29 May 2023

टी-नॉर्म फजी तर्क गैर-शास्त्रीय तर्क का एक परिवार है, अनौपचारिक रूप से एक शब्दार्थ द्वारा सीमांकित किया जाता है जो वास्तविक संख्या इकाई अंतराल [0, 1] को सत्य मूल्यों और कार्यों की प्रणाली के लिए टी-नॉर्म्स कहा जाता है जो तार्किक संयोजन की अनुमेय व्याख्याओं के लिए होता है। वे मुख्य रूप से एप्लाइड फ़ज़ी तर्क और फजी समुच्चय सिद्धान्त में अनुमानित तर्क के सैद्धांतिक आधार के रूप में उपयोग किए जाते हैं।

टी-मानदंड फ़ज़ी तर्क फ़ज़ी तर्क और बहु-मूल्यवान तर्क के व्यापक वर्ग में आते हैं। एक अच्छा व्यवहार निहितार्थ उत्पन्न करने के लिए, टी-मानदंडों को सामान्यतः बाएं-निरंतर होने की आवश्यकता होती है; बाएं-निरंतर टी-मानदंडों के तर्क आगे अवसंरचनात्मक तर्क की श्रेणी में आते हैं, जिनमें से उन्हें पूर्व-रैखिकता के कानून की वैधता के साथ चिह्नित किया जाता है, (AB) ∨ (BA) प्रस्तावित और प्रथम-क्रम (या उच्च-क्रम) टी-मानदंड फ़ज़ी तर्क, साथ ही मोडल और अन्य ऑपरेटरों द्वारा उनके विस्तार दोनों का अध्ययन किया जाता है। तर्क जो टी-नॉर्म अर्थ विज्ञान को वास्तविक इकाई अंतराल (उदाहरण के लिए, सूक्ष्म रूप से मूल्यवान Łukasiewicz तर्क) के एक सबसमुच्चय तक सीमित करते हैं, सामान्यतः कक्षा में भी सम्मिलित होते हैं।

टी-मानदंड फ़ज़ी तर्क के महत्वपूर्ण उदाहरण हैं सभी बाएँ-निरंतर टी-मानदंडों के मोनोइडल टी-मानक तर्क (एमटीएल), सभी निरंतर टी-मानदंडों के मूल तर्क (बीएल), उत्पाद टी-मानदंड के उत्पाद फ़ज़ी तर्क, या नीलपोटेंट मिनिमम टी-नॉर्म का निलपोटेंट मिनिमम तर्क। कुछ स्वतंत्र रूप से प्रेरित तर्क टी-नॉर्म फ़ज़ी तर्क में भी सम्मिलित हैं, उदाहरण के लिए लुकासिविक्ज़ तर्क (जो लुकासिविक्ज़ टी-नॉर्म का तर्क है) या गोडेल-डमेट तर्क (जो न्यूनतम टी-नॉर्म का तर्क है)।

प्रेरणा

फ़ज़ी तर्क के परिवार के सदस्यों के रूप में, टी-मानदंड फ़ज़ी तर्क मुख्य रूप से 1 (सच्चाई) और 0 (झूठी) के बीच मध्यस्थ सत्य मूल्यों को स्वीकार करके प्रस्तावों की सत्यता की डिग्री का प्रतिनिधित्व करते हुए शास्त्रीय दो-मूल्यवान तर्क को सामान्य बनाने का लक्ष्य रखता है। इकाई अंतराल [0, 1] से डिग्रियों को वास्तविक संख्या माना जाता है। प्रस्तावात्मक टी-मानदंड फ़ज़ी तर्क में, प्रस्तावात्मक संयोजकों को सत्य-कार्यात्मक होने के लिए निर्धारित किया जाता है, अर्थात, कुछ घटक प्रस्तावों से एक प्रस्तावक संयोजक द्वारा गठित एक जटिल प्रस्ताव का सत्य मान एक कार्य है (संयोजी का सत्य कार्य कहा जाता है) घटक प्रस्तावों के सत्य मूल्य। सत्य कार्य सत्य डिग्री के समुच्चय पर काम करते हैं (मानक शब्दार्थ में, [0, 1] अंतराल पर); इस प्रकार एक n-आरी प्रस्तावक संयोजक c का सत्य फलन एक फलन Fc: [0, 1]n → [0, 1] है। ट्रुथ फ़ंक्शंस क्लासिकल तर्क से ज्ञात प्रपोज़िशनल कनेक्टिव्स की ट्रुथ टेबल को सामान्य करता है ताकि ट्रुथ वैल्यू की बड़ी प्रणाली पर काम किया जा सके।

टी-नॉर्म फज़ी तर्क संयोजन के सत्य कार्य पर कुछ प्राकृतिक प्रतिबंध लगाते हैं। ट्रूथ फंक्शन का संयोजन निम्नलिखित शर्तों को पूरा करने के लिए माना जाता है:

  • क्रमविनिमेयता, यानी [0, 1] में सभी x और y के लिए है। यह इस धारणा को व्यक्त करता है कि फ़ज़ी प्रस्तावों का क्रम संयोजन के रूप में सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
  • साहचर्य, यानी [0, 1] में सभी x, y, और z के लिए यह इस धारणा को व्यक्त करता है कि संयोजन करने का क्रम सारहीन है, भले ही मध्यवर्ती सत्य डिग्री स्वीकार की जाती हैं।
  • एकरसता, यानी, यदि तो सभी x, y, और z in [0, 1] के लिए। यह इस धारणा को व्यक्त करता है कि एक संयोजन की सत्यता की डिग्री को बढ़ाने से संयोजन की सत्यता की डिग्री कम नहीं होनी चाहिए।
  • 1 की तटस्थता, जो [0, 1] में सभी x के लिए है। यह धारणा सत्य डिग्री 1 को पूर्ण सत्य मानने से मेल खाती है, जिसके संयोजन से दूसरे संयोजन के सत्य मूल्य में कमी नहीं होती है। पिछली स्थितियों के साथ-साथ यह स्थिति सुनिश्चित करती है कि [0, 1] में सभी x के लिए भी है, जो सत्य डिग्री 0 को पूर्ण मिथ्या मानने के अनुरूप है, जिसके साथ संयोजन हमेशा पूर्णतः असत्य होता है।
  • समारोह की निरंतरता (पिछली शर्तें किसी भी तर्क में निरंतरता के लिए इस आवश्यकता को कम करती हैं)। अनौपचारिक रूप से यह धारणा व्यक्त करता है कि संयोजनों की सत्य डिग्री के सूक्ष्म परिवर्तनों का परिणाम उनके संयोजन की सत्य डिग्री के मैक्रोस्कोपिक परिवर्तन में नहीं होना चाहिए। यह स्थिति, अन्य बातों के अलावा, संयोजन से प्राप्त (अवशिष्ट) निहितार्थ का एक अच्छा व्यवहार सुनिश्चित करती है; हालांकि, अच्छे व्यवहार को सुनिश्चित करने के लिए, कार्य की बाईं-निरंतरता (किसी भी तर्क में)। काफी है।[1] सामान्य तौर पर टी-मानदंड फ़ज़ी तर्क, इसलिए, केवल बाईं-निरंतरता आवश्यक है, जो इस धारणा को व्यक्त करता है कि एक संयोजन की सत्य डिग्री की सूक्ष्म कमी को संयोजन की सत्य डिग्री को मैक्रोस्कोपिक रूप से कम नहीं करना चाहिए।

ये धारणाएं संयुग्मन के सत्य कार्य को एक बाएं-निरंतर टी-मानदंड बनाती हैं, जो फ़ज़ी तर्क (टी-मानक आधारित) के परिवार के नाम की व्याख्या करता है। परिवार के विशेष तर्क संयुग्मन के व्यवहार के बारे में और धारणाएं बना सकते हैं (उदाहरण के लिए, गोडेल-डमेट तर्क को इसकी निष्क्रियता की आवश्यकता होती है) या अन्य कनेक्टिव्स (उदाहरण के लिए, तर्क आईएमटीएल (इनवॉल्विव मोनोइडल टी-नॉर्म तर्क) को नकारात्मकता की अनिवार्यता की आवश्यकता होती है)

सभी बाएं-निरंतर टी-मानदंड में एक अद्वितीय अवशेष है, जो कि एक बाइनरी फ़ंक्शन है ऐसा है कि [0, 1] में सभी x, y, और z के लिए,

अगर और केवल अगर

बाएं-निरंतर टी-मानदंड के अवशेषों को स्पष्ट रूप से परिभाषित किया जा सकता है:

यह सुनिश्चित करता है कि अवशेष बिंदुवार सबसे बड़ा कार्य है जैसे कि सभी x और y के लिए,

उत्तरार्द्ध को अनुमान के तौर-तरीकों के नियम के एक फ़ज़ी संस्करण के रूप में व्याख्या किया जा सकता है। बाएं-निरंतर टी-मानदंड के अवशेषों को सबसे कमजोर कार्य के रूप में वर्णित किया जा सकता है जो फ़ज़ी मोडस पोनेंस को वैध बनाता है, जो इसे फ़ज़ी तर्क में निहितार्थ के लिए एक उपयुक्त सत्य कार्य बनाता है। टी-मानदंड संयोजन और इसके अवशिष्ट निहितार्थ के बीच इस संबंध के लिए टी-मानदंड की वाम-निरंतरता आवश्यक और पर्याप्त शर्त है।

आगे के प्रस्तावक संयोजकों के सत्य कार्यों को टी-मानदंड और इसके अवशेषों के माध्यम से परिभाषित किया जा सकता है, उदाहरण के लिए अवशिष्ट निषेध या द्वि-अवशिष्ट तुल्यता प्रस्तावपरक संयोजकों के सत्य कार्यों को अतिरिक्त परिभाषाओं द्वारा भी प्रस्तुत किया जा सकता है: सबसे सामान्य वाले न्यूनतम हैं (जो एक अन्य संयोजक संयोजक की भूमिका निभाते हैं), अधिकतम ( जो एक संयोजन संयोजन की भूमिका निभाता है), या बाज़ डेल्टा ऑपरेटर, [0, 1] में यदि और अन्यथा परिभाषित किया गया है। इस तरह, एक बाएं-निरंतर टी-मानदंड, इसका अवशेष, और अतिरिक्त प्रस्तावात्मक संयोजकों के सत्य कार्य [0, 1] में जटिल तर्कवाक्य सूत्रों के सत्य मूल्यों को निर्धारित करते हैं।

सूत्र जो हमेशा 1 का मूल्यांकन करते हैं, उन्हें दिए गए बाएं-निरंतर टी-मानदंड या tautology के संबंध में tautology कहा जाता है। सभी का समुच्चय टॉटोलॉजी को टी-नॉर्म का तर्क कहा जाता है क्योंकि ये सूत्र फ़ज़ी तर्क (टी-मानदंड द्वारा निर्धारित) के नियमों का प्रतिनिधित्व करते हैं जो परमाणु सूत्रों की सत्य डिग्री की परवाह किए बिना (1 डिग्री तक) धारण करते हैं। वाम-निरंतर टी-मानदंडों के एक बड़े वर्ग के संबंध में कुछ सूत्र पुनरावलोकन (तर्क) हैं; ऐसे सूत्रों के समुच्चय को वर्ग का तर्क कहा जाता है। महत्वपूर्ण टी-मानदंड तर्क विशिष्ट टी-मानदंडों या टी-मानदंडों की कक्षाओं के तर्क हैं, उदाहरण के लिए:

  • लुकासिविज़ तर्क का तर्क है।
  • गोडेल-डमेट तर्क न्यूनतम टी-नॉर्म न्यूनतम का तर्क है।
  • उत्पाद फ़ज़ी तर्क उत्पाद का तर्क है।
  • मोनोइडल टी-नॉर्म तर्क एमटीएल सभी बाएं-निरंतर टी-मानदंडों का (वर्ग का) तर्क है।
  • बेसिक फ़ज़ी तर्क बीएल सभी निरंतर टी-मानदंडों का (वर्ग का) तर्क है।

यह पता चला है कि विशेष टी-मानदंडों और टी-मानदंडों के वर्गों के कई तर्क स्वयंसिद्ध हैं। [0, 1] पर संबंधित टी-मानक शब्दार्थ के संबंध में स्वयंसिद्ध प्रणाली की पूर्णता प्रमेय को तब तर्क की मानक पूर्णता कहा जाता है। [0, 1] पर मानक वास्तविक-मूल्यवान शब्दार्थ के अलावा, सामान्य बीजगणितीय शब्दार्थ के संबंध में तर्क ध्वनि और पूर्ण हैं, जो प्रीलीनियर कम्यूटेटिव बाउंडेड इंटीग्रल रेसिड्यूएटेड लैटिस के उपयुक्त वर्गों द्वारा गठित हैं।

इतिहास

फ़ज़ी तर्क या टी-मानदंड की धारणाओं के सामने आने से पहले ही परिवार को पहचानने से बहुत पहले कुछ विशेष टी-मानदंड फ़ज़ी तर्क पेश किए गए थे और उनकी जाँच की गई थी:

  • Łukasiewicz तर्क (Łukasiewicz t-norm का तर्क) मूल रूप से Jan Łukasiewicz (1920) द्वारा तीन-मूल्यवान तर्क के रूप में परिभाषित किया गया था;[2] इसे बाद में एन-वैल्यूड (सभी परिमित एन के लिए) के साथ-साथ असीम रूप से कई-मूल्यवान वेरिएंट, दोनों प्रपोजल और फर्स्ट-ऑर्डर के लिए सामान्यीकृत किया गया था।[3]
  • माइकल डमेट तर्क (न्यूनतम टी-मानदंड का तर्क) गोडेल के 1932 के अंतर्ज्ञानवादी तर्क के अनंत-मूल्यवान होने के प्रमाण में निहित था।[4] बाद में (1959) डमेट द्वारा स्पष्ट रूप से इसका अध्ययन किया गया जिसने तर्क के लिए एक पूर्णता प्रमेय साबित किया।[5]

विशेष टी-मानदंड फ़ज़ी तर्क और उनकी कक्षाओं का एक व्यवस्थित अध्ययन हेजेक (1998) मोनोग्राफ मेटामैथमैटिक्स ऑफ़ फ़ज़ी तर्क के साथ शुरू हुआ, जिसने निरंतर टी-मानदंड के तर्क की धारणा प्रस्तुत की, तीन बुनियादी निरंतर टी-मानदंडों के तर्क ( Łukasiewicz, Gödel, और उत्पाद), और सभी निरंतर टी-मानदंडों का 'मूल' फ़ज़ी तर्क BL (वे सभी प्रस्तावात्मक और प्रथम-क्रम दोनों)। पुस्तक ने हिल्बर्ट-शैली की गणना, बीजगणितीय शब्दार्थ और अन्य तर्क (पूर्णता प्रमेय, निगमन प्रमेय, जटिलता, आदि) से ज्ञात मेटामाथमेटिकल गुणों के साथ गैर-शास्त्रीय तर्क के रूप में फ़ज़ी तर्क की जांच भी शुरू की।

तब से, टी-मानदंड फ़ज़ी तर्क की अधिकता पेश की गई है और उनके मेटामैथमैटिकल गुणों की जांच की गई है। एस्टेवा और गोडो (MTL, IMTL, SMTL, NM, WNM), [1] एस्टेवा, गोडो, और मोंटागना (प्रस्तावात्मक ŁΠ)[6] और सिंटुला द्वारा 2001 में कुछ सबसे महत्वपूर्ण टी-नॉर्म फ़ज़ी तर्क पेश किए गए थे। (प्रथम-क्रम ŁΠ).[7]

तार्किक भाषा

प्रस्तावपरक टी-मानदंड फ़ज़ी तर्क की तार्किक शब्दावली में मानक रूप से निम्नलिखित संयोजक सम्मिलित हैं:

  • निहितार्थ (धैर्य)। टी-मानदंड-आधारित फ़ज़ी तर्क के अलावा अन्य के संदर्भ में, टी-मानदंड-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या आर-निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-मानदंड का अवशेष है जो मजबूत संयोजन का एहसास करता है।
  • प्रबल योग (बाइनरी)। सबस्ट्रक्चरल तर्क के संदर्भ में, साइन और नाम समूह, गहन, गुणक, या समानांतर संयोजन अक्सर मजबूत संयोजन के लिए उपयोग किए जाते हैं।
  • कमजोर संयोजन (बाइनरी), जिसे जाली संयोजन भी कहा जाता है (जैसा कि यह हमेशा बीजगणितीय शब्दार्थ में मिलने के जाली संचालन द्वारा महसूस किया जाता है)। सबस्ट्रक्चरल तर्क के संदर्भ में, एडिटिव, एक्सटेंशनल या तुलनात्मक संयोजन नाम कभी-कभी जाली संयोजन के लिए उपयोग किए जाते हैं। तर्क बीएल और इसके एक्सटेंशन में (हालांकि सामान्य रूप से टी-मानदंड तर्क में नहीं), निहितार्थ और मजबूत संयोजन के संदर्भ में कमजोर संयोजन निश्चित है:
    दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक तर्क की एक सामान्य विशेषता है।
  • बॉटम या आम वैकल्पिक संकेत हैं और ज़ीरो प्रोपोज़िशनल कांस्टेंट के लिए एक कॉमन वैकल्पिक नाम है (जैसा कि सबस्ट्रक्चरल तर्क के कॉन्स्टेंट नीचे और शून्य टी-नॉर्म फ़ज़ी में मेल खाते हैं तर्क)। विनती असत्यता या बेतुकापन का प्रतिनिधित्व करता है और शास्त्रीय सत्य मूल्य असत्य से मेल खाता है।
  • 'निषेध' (एकात्मक ऑपरेशन ), जिसे कभी-कभी अवशिष्ट निषेध कहा जाता है यदि अन्य नकारात्मक संयोजकों पर विचार किया जाता है, जैसा कि रिडक्टियो एड एब्सर्डम द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है:
  • समानता (बाइनरी), के रूप में परिभाषित किया गया
    टी-नॉर्म तर्क में, परिभाषा इसके समकक्ष है
  • (कमजोर) संयोजन (बाइनरी), जिसे लैटिस डिसजंक्शन भी कहा जाता है (जैसा कि बीजगणितीय शब्दार्थ में ज्वाइन (गणित) के लैटिस (ऑर्डर) ऑपरेशन द्वारा हमेशा महसूस किया जाता है)। टी-नॉर्म तर्क में यह अन्य संयोजकों के संदर्भ में निश्चित है
  • ऊपर (शून्य), जिसे एक भी कहा जाता है और इसके द्वारा निरूपित किया जाता है या (जैसा कि अवसंरचनात्मक तर्क के स्थिरांक शीर्ष और शून्य टी-नॉर्म फ़ज़ी तर्क में मेल खाते हैं)। विनती क्लासिकल ट्रूथ वैल्यू ट्रू से मेल खाता है और टी-नॉर्मल तर्क में परिभाषित किया जा सकता है

कुछ प्रस्तावात्मक टी-मानदंड तर्क उपरोक्त भाषा में और प्रस्तावात्मक संयोजक जोड़ते हैं, जो अक्सर निम्नलिखित होते हैं:

  • डेल्टा संयोजक एक एकात्मक संयोजक है जो किसी प्रस्ताव के शास्त्रीय सत्य को रूप के सूत्रों के रूप में प्रस्तुत करता है शास्त्रीय तर्क के रूप में व्यवहार करें। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा इंटरमीडिएट तर्क | गोडेल-डमेट तर्क के लिए उपयोग किया गया था।[8] एक टी-मानक तर्क का विस्तार डेल्टा संयोजक द्वारा सामान्यतः निरूपित किया जाता है
  • सत्य स्थिरांक शून्य संयोजक हैं जो मानक वास्तविक-मूल्यवान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मानों का प्रतिनिधित्व करते हैं। वास्तविक संख्या के लिए , संगत सत्य स्थिरांक को सामान्यतः द्वारा निरूपित किया जाता है बहुधा, सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली है:[9]
    आदि सभी प्रस्तावात्मक संयोजकों और भाषा में परिभाषित सभी सत्य स्थिरांकों के लिए।
  • समावेशी निषेध (यूनरी) को टी-नॉर्म तर्क में एक अतिरिक्त निषेध के रूप में जोड़ा जा सकता है जिसका अवशिष्ट निषेध स्वयं इनवोल्यूशन (गणित) नहीं है, अर्थात यदि यह दोहरे निषेध के नियम का पालन नहीं करता है . एक टी-मानक तर्क समावेशी निषेध के साथ विस्तारित सामान्यतः द्वारा निरूपित किया जाता है और बुलाया सम्मिलित होने के साथ।
  • 'मजबूत संयोजन' (बाइनरी)। सबस्ट्रक्चरल तर्क के संदर्भ में इसे ग्रुप, इंटेन्शनल, मल्टीप्लिकेटिव या पैरेलल डिसजंक्शन भी कहा जाता है। भले ही संकुचन-मुक्त अवसंरचनात्मक तर्क में मानक, टी-मानदंड फ़ज़ी तर्क में यह सामान्यतः केवल समावेशी निषेध की उपस्थिति में उपयोग किया जाता है, जो इसे मजबूत संयोजन से डी मॉर्गन के कानून द्वारा निश्चित (और इतना स्वयंसिद्ध) बनाता है:
  • अतिरिक्त टी-मानक संयोजन और अवशिष्ट निहितार्थ। कुछ स्पष्ट रूप से मजबूत टी-मानदंड तर्क, उदाहरण के लिए तर्क ŁΠ, उनकी भाषा में एक से अधिक मजबूत संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक-मूल्यवान शब्दार्थ में, ऐसे सभी मजबूत संयोजनों को अलग-अलग टी-मानदंडों और उनके अवशिष्टों द्वारा अवशिष्ट निहितार्थों द्वारा महसूस किया जाता है।

प्रस्तावपरक टी-मानदंड तर्कशास्त्र के सुनिर्मित सूत्रों को प्रस्तावात्मक चरों (सामान्यतः गिनने योग्य कई) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसा कि सामान्य रूप से प्रस्तावात्मक तर्कों में होता है। कोष्ठकों को बचाने के लिए, वरीयता के निम्नलिखित क्रम का उपयोग करना आम है:

  • यूनरी कनेक्टिव्स (सबसे बारीकी से बांधें)
  • निहितार्थ और तुल्यता के अलावा अन्य बाइनरी संयोजक
  • निहितार्थ और तुल्यता (सबसे शिथिल बाँधें)

टी-नॉर्म तर्क के प्रथम-क्रम वेरिएंट उपरोक्त प्रस्तावक संयोजकों और निम्नलिखित परिमाणक (तर्क)तर्क) के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:

  • सामान्य परिमाणक
  • अस्तित्वगत परिमाणक

प्रस्तावपरक टी-मानदंड तर्क का प्रथम-क्रम संस्करण सामान्यतः द्वारा निरूपित किया जाता है


शब्दार्थ

बीजगणितीय शब्दार्थ (गणितीय तर्क) मुख्य रूप से प्रस्तावित टी-मानदंड फ़ज़ी तर्क के लिए उपयोग किया जाता है, जिसमें बीजगणितीय संरचना के तीन मुख्य वर्ग होते हैं जिनके संबंध में एक टी-मानदंड फ़ज़ी तर्क होता है। पूर्णता है (तर्क):

  • सामान्य शब्दार्थ, सभी का गठन -अलजेब्रस - यानी, सभी बीजगणित जिनके लिए साउंडनेस प्रमेय तर्क है।
  • 'रैखिक शब्दार्थ', सभी रैखिक का गठन -अलजेब्रस - यानी, सभी - बीजगणित जिसका जालक (क्रम) क्रम कुल क्रम होता है।
  • मानक शब्दार्थ, सभी मानक से निर्मित -अलजेब्रस - यानी, सभी -ऐल्जेब्रा जिसका जालक रिडक्ट सामान्य क्रम के साथ वास्तविक इकाई अंतराल [0, 1] है। मानक में -अलजेब्रस, मजबूत संयोजन की व्याख्या एक बाएं-निरंतर टी-मानदंड है और अधिकांश प्रस्तावात्मक संयोजकों की व्याख्या टी-मानदंड द्वारा निर्धारित की जाती है (इसलिए नाम टी-मानक-आधारित तर्कशास्त्र और टी-मानदंड -अलजेब्रा, जिसका उपयोग भी किया जाता है जाली पर बीजगणित [0, 1])। अतिरिक्त संयोजकों के साथ टी-मानदंड तर्क में, हालांकि, अतिरिक्त संयोजकों की वास्तविक-मूल्यवान व्याख्या टी-मानक बीजगणित को मानक कहे जाने के लिए आगे की शर्तों द्वारा प्रतिबंधित हो सकती है: उदाहरण के लिए, मानक में तर्क के बीजगणित समावेशन के साथ, अतिरिक्त समावेशी निषेध की व्याख्या मानक समावेश होना आवश्यक है बजाय अन्य निवेशों के जो व्याख्या भी कर सकते हैं टी-मानदंड से अधिक -बीजगणित।[10] सामान्य तौर पर, मानक टी-मानदंड बीजगणित की परिभाषा को अतिरिक्त कनेक्टिव्स के साथ टी-मानदंड तर्क के लिए स्पष्ट रूप से दिया जाना चाहिए।

ग्रन्थसूची

  • एस्टेवा एफ. एंड गोडो एल., 2001, "मोनॉयडल टी-नॉर्म बेस्ड तर्क: टुवार्ड्स ए तर्क ऑफ़ लेफ्ट-कंटीन्यूअस टी-नॉर्म्स"। फ़ज़ी समुच्चय्स एंड सिस्टम्स 124: 271–288।
  • फ्लैमिनियो टी. एंड मार्चियोनी ई., 2006, टी-मानदंड आधारित तर्क एक स्वतंत्र समावेशी निषेध के साथ। फ़ज़ी समुच्चय्स एंड सिस्टम्स 157: 3125–3144।
  • गॉटवाल्ड एस. और हेजेक पी., 2005, त्रिकोणीय मानदंड आधारित गणितीय फ़ज़ी तर्क। ई.पी. क्लेमेंट एंड आर. मेसियर (संपा.), तार्किक, बीजगणितीय, विश्लेषणात्मक और त्रिकोणीय मानदंड के संभाव्य पहलू, पीपी. 275-300. एल्सेवियर, एम्स्टर्डम 2005।
  • हाजेक पी., 1998, मेटामैथमैटिक्स ऑफ फ़ज़ी तर्क। डॉर्ड्रेक्ट: क्लूवर ISBN 0-7923-5238-6.

संदर्भ

  1. Esteva & Godo (2001)
  2. Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny 5:170–171.
  3. Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28:77–86.
  4. Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wissenschaften Wien 69: 65–66.
  5. Dummett M., 1959, Propositional calculus with denumerable matrix, Journal of Symbolic Logic 27: 97–106
  6. Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, Archive for Mathematical Logic 40: 39–67.
  7. Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, Fuzzy Sets and Systems 124: 289–302.
  8. Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics, Springer, Lecture Notes in Logic 6: 23–33
  9. Hájek (1998)
  10. Flaminio & Marchioni (2006)