विटाली समुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Set of real numbers that is not Lebesgue measurable}} | {{short description|Set of real numbers that is not Lebesgue measurable}} | ||
गणित में, एक विटाली | गणित में, एक विटाली संग्रह [[वास्तविक संख्या]]ओं के एक संग्रह का एक प्राथमिक उदाहरण है, जो [[लेबेस्ग उपाय]] नहीं है, जिसे 1905 में ग्यूसेप विटाली द्वारा शोध किया गया था।<ref>{{cite journal|last=Vitali|first=Giuseppe|authorlink=Giuseppe Vitali|year=1905|title= एक सीधी रेखा के बिंदुओं के समूह को मापने की समस्या पर|journal=Bologna, Tip. Gamberini e Parmeggiani}}</ref> विटाली प्रमेय [[अस्तित्व प्रमेय]] है कि ऐसे संग्रह हैं। [[अनगिनत]] विटाली संग्रह हैं, और उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है। 1970 में, रॉबर्ट एम. सोलोवे ने पसंद के स्वयंसिद्ध के बिना ज़र्मेलो-फ्रेंकेल संग्रह सिद्धांत के एक मॉडल का निर्माण किया, जहां वास्तविक संख्याओं के सभी संग्रह लेबेस्गु मापन योग्य हैं, एक [[दुर्गम कार्डिनल]] के अस्तित्व को मानते हुए ([[ कोकिला मॉडल ]] देखें)।<ref>{{Citation |last1=Solovay |first1=Robert M. |author1-link=Robert M. Solovay |title=A model of set-theory in which every set of reals is Lebesgue measurable |jstor=1970696 |mr=0265151 |year=1970 |journal=[[Annals of Mathematics]] |series=Second Series |issn=0003-486X |volume=92 |issue=1 |pages=1–56 |doi=10.2307/1970696}}</ref> | ||
== मापने योग्य | == मापने योग्य संग्रह == | ||
कुछ समुच्चयों की एक निश्चित 'लंबाई' या 'द्रव्यमान' होता है। उदाहरण के लिए | कुछ समुच्चयों की एक निश्चित 'लंबाई' या 'द्रव्यमान' होता है। उदाहरण के लिए [[अंतराल (गणित)]] [0, 1] को लंबाई 1 माना जाता है; प्रायः, अंतराल [ए, बी], ए ≤ बी, को लंबाई बी − ए माना जाता है। यदि हम ऐसे अंतरालों को समान घनत्व वाली धातु की छड़ों के रूप में सोचते हैं, तो उनके पास भी अच्छी तरह से परिभाषित द्रव्यमान होते हैं। संग्रह [0, 1] ∪ [2, 3] लंबाई एक के दो अंतराल से बना है, इसलिए हम इसकी कुल लंबाई 2 लेते हैं। द्रव्यमान के संदर्भ में, हमारे पास द्रव्यमान 1 की दो छड़ें हैं, इसलिए कुल द्रव्यमान है 2. | ||
यहां एक स्वाभाविक प्रश्न है: यदि ई वास्तविक रेखा का एक मनमाना उपसमुच्चय है, तो क्या इसका 'द्रव्यमान' या 'कुल लंबाई' है? एक उदाहरण के रूप में, हम पूछ सकते हैं कि परिमेय संख्याओं के समुच्चय का द्रव्यमान क्या है, यह देखते हुए कि अंतराल [0, 1] का द्रव्यमान 1 है। 1 उचित प्रतीत हो सकता है। | यहां एक स्वाभाविक प्रश्न है: यदि ई वास्तविक रेखा का एक मनमाना उपसमुच्चय है, तो क्या इसका 'द्रव्यमान' या 'कुल लंबाई' है? एक उदाहरण के रूप में, हम पूछ सकते हैं कि परिमेय संख्याओं के समुच्चय का द्रव्यमान क्या है, यह देखते हुए कि अंतराल [0, 1] का द्रव्यमान 1 है। 1 उचित प्रतीत हो सकता है। | ||
हालांकि द्रव्यमान का निकटतम सामान्यीकरण [[ सिग्मा योगात्मकता ]] है, जो लेबेस्गु माप को जन्म देता है। यह अंतराल [ए, बी] के लिए बी-ए का माप निर्दिष्ट करता है, लेकिन [[तर्कसंगत संख्या]]ओं के | हालांकि द्रव्यमान का निकटतम सामान्यीकरण [[ सिग्मा योगात्मकता ]] है, जो लेबेस्गु माप को जन्म देता है। यह अंतराल [ए, बी] के लिए बी-ए का माप निर्दिष्ट करता है, लेकिन [[तर्कसंगत संख्या]]ओं के संग्रह को 0 का माप प्रदान करेगा क्योंकि यह [[गणनीय]] है। कोई भी संग्रह जिसमें एक अच्छी तरह से परिभाषित लेबेस्ग माप है, को मापने योग्य कहा जाता है, लेकिन लेबेस्ग माप का निर्माण (उदाहरण के लिए कैराथियोडोरी के विस्तार प्रमेय का उपयोग करके) यह स्पष्ट नहीं करता है कि गैर-मापने योग्य संग्रह उपस्थित हैं या नहीं। उस प्रश्न के उत्तर में पसंद का स्वयंसिद्ध सम्मिलित है। | ||
== निर्माण और प्रमाण == | == निर्माण और प्रमाण == | ||
एक विटाली | एक विटाली संग्रह एक उपसमुच्चय है <math>V</math> अंतराल का (गणित) <math>[0,1]</math> वास्तविक संख्याओं का ऐसा कि, प्रत्येक वास्तविक संख्या के लिए <math>r</math>, ठीक एक संख्या है <math>v \in V</math> ऐसा है कि <math>v-r</math> एक परिमेय संख्या है। विटाली संग्रह उपस्थित हैं क्योंकि परिमेय संख्याएँ <math>\mathbb{Q}</math> वास्तविक संख्याओं का एक [[सामान्य उपसमूह]] बनाएं <math>\mathbb{R}</math> इसके अलावा, और यह योज्य [[भागफल समूह]] के निर्माण की अनुमति देता है <math>\mathbb{R}/\mathbb{Q}</math> इन दो समूहों में से जो [[ सह समुच्चय ]] द्वारा गठित समूह है <math>r+\mathbb{Q}</math> जोड़ के तहत वास्तविक संख्याओं के उपसमूह के रूप में परिमेय संख्याओं का। इस समूह <math>\mathbb{R}/\mathbb{Q}</math> असंयुक्त संग्रह की स्थानांतरित प्रतियां सम्मिलित हैं <math>\mathbb{Q}</math> इस अर्थ में कि इस भागफल समूह का प्रत्येक तत्व रूप का एक समूह है <math>r+\mathbb{Q}</math> कुछ के लिए <math>r</math> में <math>\mathbb{R}</math>. के [[बेशुमार सेट|अगणित संग्रह]] तत्व <math>\mathbb{R}/\mathbb{Q}</math> [[एक सेट का विभाजन|एक संग्रह का विभाजन]] <math>\mathbb{R}</math> अलग संग्रह में, और प्रत्येक तत्व घने संग्रह में है <math>\mathbb{R}</math>. का प्रत्येक तत्व <math>\mathbb{R}/\mathbb{Q}</math> काटती है <math>[0,1]</math>, और पसंद का स्वयंसिद्ध एक सबसंग्रह के अस्तित्व की गारंटी देता है <math>[0,1]</math> के प्रत्येक तत्व में से ठीक एक [[प्रतिनिधि (गणित)]] युक्त <math>\mathbb{R}/\mathbb{Q}</math>. इस तरह से बने संग्रह को विटाली संग्रह कहा जाता है। | ||
हर विटाली | हर विटाली संग्रह <math>V</math> अगणित है, और <math>v-u</math> किसी के लिए तर्कहीन है <math>u,v \in V, u \neq v</math>. | ||
=== गैर-मापनीयता === | === गैर-मापनीयता === | ||
[[File:diagonal argument.svg|thumb|धनात्मक परिमेय संख्याओं की संभावित गणना]]एक विटाली | [[File:diagonal argument.svg|thumb|धनात्मक परिमेय संख्याओं की संभावित गणना]]एक विटाली संग्रह गैर-मापने योग्य नहीं है। इसे दर्शाने के लिए हम यह मान लेते हैं <math>V</math> औसत दर्जे का है और हम एक विरोधाभास प्राप्त करते हैं। होने देना <math>q_1,q_2,\dots</math> में परिमेय संख्याओं की गणना हो <math>[-1,1]</math> (याद रखें कि परिमेय संख्याएँ गणनीय होती हैं)। के निर्माण से <math>V</math>, ध्यान दें कि अनुवादित संग्रह <math>V_k=V+q_k=\{v+q_k : v \in V\}</math>, <math>k=1,2,\dots</math> जोड़ो में असंयुक्त हैं, और आगे ध्यान दें कि | ||
:<math>[0,1]\subseteq\bigcup_k V_k\subseteq[-1,2].</math> | :<math>[0,1]\subseteq\bigcup_k V_k\subseteq[-1,2].</math> | ||
पहला समावेशन देखने के लिए, किसी भी वास्तविक संख्या पर विचार करें <math>r</math> में <math>[0,1]</math> और जाने <math>v</math> में प्रतिनिधि हो <math>V</math> समतुल्य वर्ग के लिए <math>[r]</math>; तब | पहला समावेशन देखने के लिए, किसी भी वास्तविक संख्या पर विचार करें <math>r</math> में <math>[0,1]</math> और जाने <math>v</math> में प्रतिनिधि हो <math>V</math> समतुल्य वर्ग के लिए <math>[r]</math>; तब |
Revision as of 15:55, 29 May 2023
गणित में, एक विटाली संग्रह वास्तविक संख्याओं के एक संग्रह का एक प्राथमिक उदाहरण है, जो लेबेस्ग उपाय नहीं है, जिसे 1905 में ग्यूसेप विटाली द्वारा शोध किया गया था।[1] विटाली प्रमेय अस्तित्व प्रमेय है कि ऐसे संग्रह हैं। अनगिनत विटाली संग्रह हैं, और उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है। 1970 में, रॉबर्ट एम. सोलोवे ने पसंद के स्वयंसिद्ध के बिना ज़र्मेलो-फ्रेंकेल संग्रह सिद्धांत के एक मॉडल का निर्माण किया, जहां वास्तविक संख्याओं के सभी संग्रह लेबेस्गु मापन योग्य हैं, एक दुर्गम कार्डिनल के अस्तित्व को मानते हुए (कोकिला मॉडल देखें)।[2]
मापने योग्य संग्रह
कुछ समुच्चयों की एक निश्चित 'लंबाई' या 'द्रव्यमान' होता है। उदाहरण के लिए अंतराल (गणित) [0, 1] को लंबाई 1 माना जाता है; प्रायः, अंतराल [ए, बी], ए ≤ बी, को लंबाई बी − ए माना जाता है। यदि हम ऐसे अंतरालों को समान घनत्व वाली धातु की छड़ों के रूप में सोचते हैं, तो उनके पास भी अच्छी तरह से परिभाषित द्रव्यमान होते हैं। संग्रह [0, 1] ∪ [2, 3] लंबाई एक के दो अंतराल से बना है, इसलिए हम इसकी कुल लंबाई 2 लेते हैं। द्रव्यमान के संदर्भ में, हमारे पास द्रव्यमान 1 की दो छड़ें हैं, इसलिए कुल द्रव्यमान है 2.
यहां एक स्वाभाविक प्रश्न है: यदि ई वास्तविक रेखा का एक मनमाना उपसमुच्चय है, तो क्या इसका 'द्रव्यमान' या 'कुल लंबाई' है? एक उदाहरण के रूप में, हम पूछ सकते हैं कि परिमेय संख्याओं के समुच्चय का द्रव्यमान क्या है, यह देखते हुए कि अंतराल [0, 1] का द्रव्यमान 1 है। 1 उचित प्रतीत हो सकता है।
हालांकि द्रव्यमान का निकटतम सामान्यीकरण सिग्मा योगात्मकता है, जो लेबेस्गु माप को जन्म देता है। यह अंतराल [ए, बी] के लिए बी-ए का माप निर्दिष्ट करता है, लेकिन तर्कसंगत संख्याओं के संग्रह को 0 का माप प्रदान करेगा क्योंकि यह गणनीय है। कोई भी संग्रह जिसमें एक अच्छी तरह से परिभाषित लेबेस्ग माप है, को मापने योग्य कहा जाता है, लेकिन लेबेस्ग माप का निर्माण (उदाहरण के लिए कैराथियोडोरी के विस्तार प्रमेय का उपयोग करके) यह स्पष्ट नहीं करता है कि गैर-मापने योग्य संग्रह उपस्थित हैं या नहीं। उस प्रश्न के उत्तर में पसंद का स्वयंसिद्ध सम्मिलित है।
निर्माण और प्रमाण
एक विटाली संग्रह एक उपसमुच्चय है अंतराल का (गणित) वास्तविक संख्याओं का ऐसा कि, प्रत्येक वास्तविक संख्या के लिए , ठीक एक संख्या है ऐसा है कि एक परिमेय संख्या है। विटाली संग्रह उपस्थित हैं क्योंकि परिमेय संख्याएँ वास्तविक संख्याओं का एक सामान्य उपसमूह बनाएं इसके अलावा, और यह योज्य भागफल समूह के निर्माण की अनुमति देता है इन दो समूहों में से जो सह समुच्चय द्वारा गठित समूह है जोड़ के तहत वास्तविक संख्याओं के उपसमूह के रूप में परिमेय संख्याओं का। इस समूह असंयुक्त संग्रह की स्थानांतरित प्रतियां सम्मिलित हैं इस अर्थ में कि इस भागफल समूह का प्रत्येक तत्व रूप का एक समूह है कुछ के लिए में . के अगणित संग्रह तत्व एक संग्रह का विभाजन अलग संग्रह में, और प्रत्येक तत्व घने संग्रह में है . का प्रत्येक तत्व काटती है , और पसंद का स्वयंसिद्ध एक सबसंग्रह के अस्तित्व की गारंटी देता है के प्रत्येक तत्व में से ठीक एक प्रतिनिधि (गणित) युक्त . इस तरह से बने संग्रह को विटाली संग्रह कहा जाता है।
हर विटाली संग्रह अगणित है, और किसी के लिए तर्कहीन है .
गैर-मापनीयता
एक विटाली संग्रह गैर-मापने योग्य नहीं है। इसे दर्शाने के लिए हम यह मान लेते हैं औसत दर्जे का है और हम एक विरोधाभास प्राप्त करते हैं। होने देना में परिमेय संख्याओं की गणना हो (याद रखें कि परिमेय संख्याएँ गणनीय होती हैं)। के निर्माण से , ध्यान दें कि अनुवादित संग्रह , जोड़ो में असंयुक्त हैं, और आगे ध्यान दें कि
पहला समावेशन देखने के लिए, किसी भी वास्तविक संख्या पर विचार करें में और जाने में प्रतिनिधि हो समतुल्य वर्ग के लिए ; तब
कुछ तर्कसंगत संख्या के लिए में जिसका तात्पर्य है में है .
सिग्मा एडिटिविटी का उपयोग करके इन समावेशन के लिए लेबेस्ग उपाय लागू करें:
क्योंकि लेबेस्ग उपाय अनुवाद अपरिवर्तनीय है, और इसलिए
लेकिन यह असंभव है। निरंतर की असीमित रूप से कई प्रतियाँ स्थिरांक शून्य है या धनात्मक, इसके अनुसार या तो शून्य या अनंत प्राप्त होता है। किसी भी स्थिति में योग नहीं है . इसलिए सब के बाद मापने योग्य नहीं हो सकता है, यानी लेबेस्ग उपाय के लिए कोई मान परिभाषित नहीं करना चाहिए .
यह भी देखें
- बनच-तर्स्की विरोधाभास
- कैराथोडोरी की कसौटी
- गैर-मापने योग्य सेट
- बाहरी माप – Mathematical function
संदर्भ
- ↑ Vitali, Giuseppe (1905). "एक सीधी रेखा के बिंदुओं के समूह को मापने की समस्या पर". Bologna, Tip. Gamberini e Parmeggiani.
- ↑ Solovay, Robert M. (1970), "A model of set-theory in which every set of reals is Lebesgue measurable", Annals of Mathematics, Second Series, 92 (1): 1–56, doi:10.2307/1970696, ISSN 0003-486X, JSTOR 1970696, MR 0265151
ग्रन्थसूची
- हेरलिच, होर्स्ट (2006). पसंद का स्वयंसिद्ध. कोंपल. p. 120. ISBN 9783540309895.
{{cite book}}
: Invalid|url-access=सीमित
(help) - Vitali, Giuseppe (1905). "Sul problema della misura dei gruppi di punti di una retta". Bologna, Tip. Gamberini e Parmeggiani.