विस्तृत कार्डिनल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[ समुच्चय सिद्धान्त |समुच्चय सिद्धान्त]] के गणितीय क्षेत्र में, '''बड़ा कार्डिनल''' एक निश्चित प्रकार की संपत्ति होती है जो [[पारलौकिक संख्या|पारलौकिक]] [[ बुनियादी संख्या |बुनियादी संख्या]] होती है। इस तरह के गुणों वाले कार्डिनल, जैसा कि नाम से पता चलता है, सामान्यतः बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। प्रस्ताव है कि इस तरह के कार्डिनल वहा उपस्थित होते है, जो सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् [[ZFC|जेडएफसी]], और इस तरह के प्रस्तावों को जेडएफसी से परे "कितना" मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।<ref>{{cite book|last=Bell|first=J. L.|title=सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ|url=https://archive.org/details/booleanvaluedmod0000bell|url-access=registration|pages=viii|publisher=Oxford University Press|year=1985|isbn=0-19-853241-5|no-pp=true}}</ref>
[[ समुच्चय सिद्धान्त |समुच्चय सिद्धान्त]] के गणितीय क्षेत्र में, '''बड़ा कार्डिनल''' एक निश्चित प्रकार की संपत्ति होती है जो [[पारलौकिक संख्या|पारलौकिक]] [[ बुनियादी संख्या |बुनियादी संख्या]] होती है। इस तरह के गुणों वाले कार्डिनल, जैसा कि नाम से पता चलता है, सामान्यतः बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। प्रस्ताव है कि इस तरह के कार्डिनल वहा उपस्थित होते है, जो सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् [[ZFC|जेडएफसी]], और इस तरह के प्रस्तावों को जेडएफसी से परे "कितना" मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।<ref>{{cite book|last=Bell|first=J. L.|title=सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ|url=https://archive.org/details/booleanvaluedmod0000bell|url-access=registration|pages=viii|publisher=Oxford University Press|year=1985|isbn=0-19-853241-5|no-pp=true}}</ref>


केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन अगर प्रमाण के लिए अन्य मान्यताओं (जैसे बड़े कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई सम्मेलन है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती है।ka
केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन अगर प्रमाण के लिए अन्य मान्यताओं (जैसे बड़े कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई सम्मेलन है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती है।


एक बड़ा कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट बड़ी कार्डिनल संपत्ति के साथ एक कार्डिनल (या शायद उनमें से कई) उपस्थित होता है।
एक बड़ा कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट बड़ी कार्डिनल संपत्ति के साथ एक कार्डिनल (या शायद उनमें से कई) उपस्थित होता है।

Revision as of 03:28, 29 May 2023

समुच्चय सिद्धान्त के गणितीय क्षेत्र में, बड़ा कार्डिनल एक निश्चित प्रकार की संपत्ति होती है जो पारलौकिक बुनियादी संख्या होती है। इस तरह के गुणों वाले कार्डिनल, जैसा कि नाम से पता चलता है, सामान्यतः बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। प्रस्ताव है कि इस तरह के कार्डिनल वहा उपस्थित होते है, जो सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् जेडएफसी, और इस तरह के प्रस्तावों को जेडएफसी से परे "कितना" मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।[1]

केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन अगर प्रमाण के लिए अन्य मान्यताओं (जैसे बड़े कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई सम्मेलन है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती है।

एक बड़ा कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट बड़ी कार्डिनल संपत्ति के साथ एक कार्डिनल (या शायद उनमें से कई) उपस्थित होता है।

अधिकांश कामकाजी सेट सिद्धांतकारों का मानना है कि वर्तमान में जिन बड़े कार्डिनल सिद्धांतों पर विचार किया जाता है, वे जेडएफसी के अनुरूप होते है। ये स्वयंसिद्ध जेडएफसी की निरंतरता को दर्शाने के लिए पर्याप्त मजबूत होता है। इसका परिणाम है (गोडेल की दूसरी अपूर्णता प्रमेय के माध्यम से) कि जेडएफसी के साथ उनकी निरंतरता जेडएफसी में सिद्ध नहीं की जा सकती है (यह मानते हुए कि जेडएफसी संगत है)।

एक बड़ी कार्डिनल संपत्ति क्या होती है, इसकी कोई सामान्यतः सहमत त्रुटिहीन परिभाषा नही होती है, चूंकि अनिवार्य रूप से सभी सहमत होते है कि बड़े कार्डिनल गुणों की सूची में बड़े कार्डिनल गुण होते है।

आंशिक परिभाषा

कार्डिनल अक्षरों की संपत्ति के लिए एक बड़ी कार्डिनल संपत्ति होने के लिए एक आवश्यक शर्त यह होती है कि ऐसे कार्डिनल का अस्तित्व जेडएफ के साथ असंगत नही होती है और ऐसा कार्डिनल Κ एक बेशुमार प्रारंभिक क्रमसूचक होता है जिसके लिए LΚ एक जेडएफसी मॉडल होता है। यदि जेडएफसी संगत है, तो जेडएफसी का अर्थ यह नही है कि इस तरह के बड़े कार्डिनल उपस्थित होते है।

स्थिरता शक्ति का पदानुक्रम

बड़े कार्डिनल स्वयंसिद्धों के बारे में एक उल्लेखनीय अवलोकन यह है कि वे स्थिरता शक्ति द्वारा सख्त रैखिक क्रम में प्रकट होते है। अर्थात्, निम्नलिखित के लिए कोई अपवाद ज्ञात नहीं होता है: दो बड़े कार्डिनल स्वयंसिद्धों A1 और A2 को देखते हुए, तीन चीजों में से एक होता है:

  1. जब तक जेडएफसी असंगत नही होता है, जेडएफसी+A1 संगत होता है अगर जेडएफसी+A2 संगत होता है,
  2. जेडएफसी+A1 सिद्ध करता है कि जेडएफसी+A2 संगत होता है, या
  3. जेडएफसी+A2 सिद्ध करता है कि जेडएफसी+A1 संगत होता है।

ये परस्पर अनन्य होता है, जब तक कि विचाराधीन सिद्धांतों में से एक वास्तव में असंगत नही होता है।

स्थिति 1 में, हम कहते है कि A1 और A2 समान है। स्थिति 2 में, हम कहते है कि A1 स्थिरता के लिहाज से A2 से अधिक मजबूत होता है (इसके विपरीत स्थिति 3 के लिए होता है)। यदि A2, A1 से अधिक मजबूत होता है, तो जेडएफसी+A1 सिद्ध नहीं कर सकता कि जेडएफसी+A2 संगत है, यहां तक कि अतिरिक्त परिकल्पना के साथ भी जेडएफसी+A1 स्वयं संगत होता है। यह गोडेल की दूसरी अपूर्णता प्रमेय से आता है।

अवलोकन कि बड़े कार्डिनल स्वयंसिद्धों को स्थिरता शक्ति द्वारा रैखिक रूप से आदेश दिया जाता है, यह केवल एक अवलोकन है, प्रमेय नहीं है। (बड़ी कार्डिनल संपत्ति की स्वीकृत परिभाषा के बिना, यह सामान्य अर्थों में प्रमाण के अधीन नही है।) साथ ही, यह हर स्थिति में ज्ञात नहीं है कि तीन स्थितियों में से कौन सा है। सहारन शेलाह ने पूछा है, "[i] क्या कोई प्रमेय इसे समझा रहा है, या क्या हमारी दृष्टि हमारे एहसास से कहीं अधिक समान है?" वुडिन, चूंकि, इसे Ω-अनुमान से घटाते है, जो उनके Ω-तर्क की मुख्य अनसुलझी समस्या है। यह भी उल्लेखनीय है कि कई संयोजी बयान उनके बीच मध्यवर्ती होने के अतिरिक्त, कुछ बड़े कार्डिनल के साथ बिल्कुल समतुल्य होते है।

स्थिरता शक्ति का क्रम जरूरी नहीं कि एक बड़े कार्डिनल स्वयंसिद्ध के सबसे छोटे गवाह के आकार के क्रम के समान होते है। उदाहरण के लिए, एक सुपरकॉम्पैक्ट कार्डिनल के अस्तित्व की तुलना में, एक विशाल कार्डिनल का अस्तित्व स्थिरता शक्ति के स्थिति में बहुत मजबूत होता है, लेकिन यह मानते हुए कि दोनों उपस्थित है, पहला विशाल पहले सुपरकॉम्पैक्ट से छोटा होता है।

प्रेरणा और महामारी की स्थिति

बड़े कार्डिनल्स को वॉन न्यूमैन ब्रह्माण्ड वी के संदर्भ में समझा जाता है, जो सत्ता स्थापित ऑपरेशन के ट्रांसफिनिट इंडक्शन द्वारा बनाया जाता है, जो किसी दिए गए सेट के सभी सबसेट को एक साथ इकट्ठा करता है। सामान्यतः, मॉडल सिद्धांत जिसमें बड़े कार्डिनल स्वयंसिद्ध विफल होते है, कुछ प्राकृतिक विधियों से उन लोगों के सबमॉडल के रूप में देखे जा सकता है। उदाहरण के लिए, यदि कोई दुर्गम कार्डिनल होता है, पहले कार्डिनल ऊंचाई पर होता है जिसमें कोई दुर्गम कार्डिनल नहीं होता है। यदि कोई औसत दर्जे का कार्डिनल होता है, तो पूर्ण के अतिरिक्त परिभाषित पावरसेट ऑपरेशन को दोहराते हुए गोडेल के रचनात्मक, एल, जो इस कथन को संतुष्ट नहीं करता है कि एक औसत दर्जे का कार्डिनल है (भले ही इसमें औसत दर्जे का कार्डिनल एक क्रमसूचक के रूप में हो)।

इस प्रकार, कई सेट सिद्धांतकारों द्वारा आयोजित एक निश्चित दृष्टिकोण से, बड़े कार्डिनल स्वयंसिद्ध "कहते है" कि हम उन सभी सेटों पर विचार करते है, जबकि उनके निषेध "प्रतिबंधात्मक" होते है और कहते है कि हम उनमें से केवल कुछ सेटों पर विचार करते है। इसके अतिरिक्त बड़े कार्डिनल स्वयंसिद्धों के परिणाम प्राकृतिक पैटर्न में आते प्रतीत होते है (देखें मैडी, "बिलीविंग द एक्सिओम्स, II")। इन कारणों से, इस तरह के सेट सिद्धांतकार जेडएफसी के विस्तार के बीच एक पसंदीदा स्थिति के लिए बड़े कार्डिनल स्वयंसिद्धों पर विचार करते है, एक जो कम स्पष्ट प्रेरणा के स्वयंसिद्धों (जैसे मार्टिन के स्वयंसिद्ध) या अन्य लोगों द्वारा साझा नहीं किया जाता है, जिन्हें वे सहज रूप से असंभावित मानते है (जैसे V = एल)। इस समूह में कट्टर यथार्थवादी अधिक सरलता से कहते है कि बड़े कार्डिनल स्वयंसिद्ध सत्य होते है।

यह दृष्टिकोण किसी भी तरह से सेट सिद्धांतकारों के बीच सार्वभौमिक नही होते है। कुछ औपचारिकतावादी यह प्रमाण करते है कि मानक सेट सिद्धांत जेडएफसी के परिणामों के अध्ययन की परिभाषा के अनुसार होता है, और जब वे अन्य प्रणालियों के परिणामों का अध्ययन करने के लिए सिद्धांत रूप में विरोध नहीं कर सकते है, तो वे बड़े कार्डिनल को पसंद करने का कोई कारण नही होता है। ऐसे यथार्थवादी भी होते है जो इस बात से इनकार करते है कि सत्तामूलक अधिकतावाद एक उचित प्रेरणा है, और यहाँ तक कि यह भी मानते है कि बड़े कार्डिनल स्वयंसिद्ध झूठे होते है। अंत में, कुछ ऐसे होते है जो इस बात से इनकार करते है कि बड़े कार्डिनल स्वयंसिद्धों की उपेक्षा प्रतिबंधात्मक है, यह इंगित करते हुए क L में एक सकर्मक सेट मॉडल हो सकता है जो मानता है कि एक औसत दर्जे का कार्डिनल उपस्थित है, भले ही L स्वयं संतुष्ट प्रस्ताव नही होता है।

यह भी देखें

  • बड़े कार्डिनल गुणों की सूची

टिप्पणियाँ

  1. Bell, J. L. (1985). सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ. Oxford University Press. viii. ISBN 0-19-853241-5.


संदर्भ


बाहरी संबंध